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Nonlinear systems have many different types. Since there is no simple
mathematical method for the description of different structures (and is unlike
to be in the future) only special tasks of nonlinear systems parameter estima-
tion could be solved. In the same way as the impulse response for linear systems
the VOLTERRA series expansion means a non-parametric system description for
a wide class of nonlinear systems. During parametrizing this linear form,
approximating the series of “twice infinite size” (infinite in time and in order
of expansion), a functional relationship — linear in parameters — can be
obtained which considerably simplifies the identification procedure. Unfortu-
nately, the number of necessary parameters is too great for many practical
cases [2].

The methods elaborated for the identification of linear discrete-time
systems can simply be extended for a special class of nonlinear systems — i.e.
for the HaMMERSTEIN model where the zero memory nonlinearity is followed
by linear dynamies.

Considering a discrete-time svstem. assuming second-order polynomial
as a nonlinearity and using the impulse transfer function, the HAMMERSTEIN
model is shown in Fig. 1. The equation of the no-memory nonlinearity is
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Fig. 1

v(t) = r, = ru(t) + rut) (1)

and the difference equation for the discrete-time system is (assuming unit
sampling time)
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where
A1) = 14 azt ...+ a,z7" 3)
and V
B = 1+ bzt + ...+ b,z"; m-<n. (4)

(Herez~1lis a backward shift operator: z7lu(t) = u(t—1). Notice that the first

term of the polynomial B(z71) is taken as unity for the sake of a safely unam-
biguous description.) On the basis of (1} and (2) input and output are related by:

y) = Sbalt —i) — Sa,y(t — i) =
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This equation formally corresponds to a ‘“‘multiple input” single output
system as illustrated in Fig. 2. Introducing the (n+2m--3) vector g:
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o

g(t) = [1, u(t), .. ., u(t — m), u?(@), . . ., u?(t — m),
—y(t—1),.. —y(t —n)]T

and the parameter veetor p:

P=1rgo s ryby e iy ToyTobyy oo ol ay oo a, ]’ )
where
[ m
N 1—1—2@]. (8)
) i=1 )

Eq. (5) can be given as a scalar product

y(&) = g (t)p. 9)
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{Here T means the transposition.) Thus we get a system equation having
linearity in parameters, the vector p has, however, redundant elements, since

bi: Pa+i — Pa+m=+i : 1

Do Pa+m

<L 1< m. (10)

If the full parameter vector is estimated then the estimates of numerator of
dynamics may be different for the linear part

Bi(s7Y) = 1+ bzt + 00+ bys ™ (113
and for the quadratic part
Byz™) =1+ byzt 4= ...~ b,z (12)

Further generalisation and extension of the model are presented in [3].
For practical applications the measurement noises must be taken into
account. The majority of methods — inlack of sufficient a prioriinformation --
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Fig. 3

require to measure the input signal without noise. At the output, however, a
linear noise model having rational spectrum is assumed according to practical
experiences, this situation is presented in Fig. 3. Here

CzY) = 1+ ¢ya 1 L. gz k<1 (13)
and

DY) =1-+dz1 4+ ...+ dgt. (14)

The source noise e(t) is assumed to be normally distributed white noise with
variance one and independent of u(z).

The system to be identified is considered as a structurally stable one with
constant parameters and that every root of polynomial z*C(x71) is assumed to
lie inside the unit circle. In this paper the possibilities of the off-line pa-
rameter estimation are considered, i.e. for IV values of (u(t), ¥(t) ), where u(t)
is a “persistently and sufficiently exciting™ signal [2].
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1. Tterative Estimation Technique

NARENDRA and GALLMANN (1966) suggested an iterative technique for
the identification of the HAMMERSTEIN model [9]. Arrange the IV values u(t) and
yB) (t=1,2,.. .. N) to Nx1 vector u and y and define the vector v simil-
arly. Furthermore. introduce the vectors

pr = [rg 7. 1] (15)
gty = [1, u(), v3(n]” (16)

and
po = [bgbpv by ayan . a,]” (17)

g.(t) = [v(t), v(t — 1), ..., vt —m),

—y(t — 1), —=y(t —2),. ... —¥(t — n)]". 18)

Determination of the parameters consists of the following steps:

(a) Assume that B(z71)/A(z~1) = 1, thus ,(t) = ¥(t), where v refers to the
estimated value.

(b) A simple least-squares (LS) estimation is made for p, on the basis of
u and VA'I, i.e.

pr= (6{ )71 G ¥,. ‘ (19)
Here
gl (1)
G, = : (20)
g1 (N)
(c) Estimate v(f) again:
0,(1) = &()p: - (21)

(d) Make a LS estimation for p, on the basis of v, and y:

po= (67 G, G y (22)
where
g (1)
.= | (23)
g: (V)

Naturally, now v, is replacing v in g,(¢).
{e) After these, estimate v(t) from ¥(t) by p.:

0y(0) = 3(1) + N y(t — i) — - N bvy (1 —1i). (24)

i=1 0 i=1
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Here the unambiguity is guaranteed with division by i’o- The iteration is con-
tinued from (b) up to a sufficient accuracy or a given iteration number. Having
some a priori information about the parameters of dynamic or nonlinear part
of the system, the iteration can be joined at an other point, to the meaning.

2. Estimation Technique with Restrictions

Besides the previous method, iterative technique can also be elaborated
for the estimation of the HamMmERSTEIN-model parameters [7]. Let us redraw
Fig. 2 to be equivalent for the input and output points, Fig. 4. Let us introduce
the vectors:

ps=[r.r.ro.ap. .o o]t (25)
£a(t) = [L. w*(0), w*(2), —y(t — L)oo oo —x(t — )]" (26)
where
w(t)= B u() = Sbult—i) 27)
i=0
@) = BN w() = 5 byt — i), (28)

The steps of iteration:

(a) The initial estimation of v,(f). (For example, according to iterative estim-
ation technique (a), (b}, and (c).)

(b) A simple least-squares estimation for p, in knowledge of v, and y:

po= (6] 6,1 G .

o

(c) u*(t) and u(t) are estimated according to (27) and (28), where B(z"1) i
determined from p, by (17).

(d) Least-squares estimation of p, on the basis of measured values ¥ and
computed values u* and u**:

by = (67 6~ 6] y (29)
where
gl (1)
G, =1 (30)
gl ()

(e) pycan be computed from f)2 and py (see (15), (17) and (25) ), so

21) = gi(0)py (31)

repeating these steps from (b).
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During the identification from noisy measurements it must be taken
into account that — in these algorithms — the necessary condition of unbiased
parameter estimation is C{s7%) =1 and D(z7!) = 4(s~'). Namely, in this
case the “‘equation error™ in (22) is white noise (equals e(t) ) and the LS estim-
ation coincides with the maximum likelthood (ML) one [2]. Though this noise
structure is necessary for an unbiased estimation, but this is not a sufficient

——L s = n
ut) Vo oppy n 7 7+ P {4
P n
Fig. 4

condition in both previously iterative techniques presented above since e. g.
the “input” signal and the equation error are correlated in (22) because of (24).
Additional problem is that the solution obtained by these procedures is not
surely the best one (only a local minimum).

3. Direct (Noniterative) Estimation Technique

Hsia (1968) and Craxe (1971) suggested a direct method instead of the
iterative technique for a special case and for the HAMMERSTEIN model, respec-
tively [5]. It is shown in the previous item that both the simple and the genera-
lized HaAMMERSTEIN model can be described by Eq. (9), linear in parameters.
This means that in case of C(z7!) = 1 and D(s71) = A(z71) the ordinary LS

estimation gives an unbiased estimation of p, i.e.

b= (GTG) 16Ty, (32)
Here
g'(1)
G =] ) (33)
g'(N)

This method permits considerable saving in computation time compared to
the iterative technique. In each case it has to be investigated which the better
estimation of b, is because the parameter vector (7) in the linearized equation
of the simple HaMMERSTEIN model has redundant elements, see (10). This can
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be performed by the investigation of covariance matrix (G'G)~! or by compari-
son of squared sums of residuals. Estimation techniques can be elaborated for
other noise structures, too, applying the methods used for the identification
of linear discrete-time systems. In the next item the generalized-least-squares

(GLS) method [6] and the ML method [1] are extended for the HAMMERSTEIN
model.

4. Generalized-Least-Squares Method

The GLS method suggested by CLARKE is actually a special case of
AITEEN estimation for the linear discrete-time systems. The estimation pro-
cedure consists of the following steps [6]:

(a) An ordinary LS estimation for the parameters of (9) according to (32).
(b) Computation of the residuals (equation errors)

fit) = y(t) — gT)p; t=1,2,.. N (34)

by the estimated parameters of p.
o l P
(¢) Assume that the equation of noise model is

[y =q"() h, (35)

i.e. linear in parameters, where

qt) = [f(t = 1), f(t = 2), ... ft — 91" (36)
and

bh=T[h,h, ....,h]T. 37
1 2

Thus the LS estimation of parameter vector h can be determined on the
basis of values f(t) computed according to (34):

h=FTF)1F( (38)

[ q (1) }
F=|: (39)
(V)

and vector f contains the IV values of f(t). Eq. (35) is valid only for
C(z=1) =1 and D(z71) = A(z~Y) H(z™ 1), where

where

H(=1 =14 hyzt & ... = h .z, (40)
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Thus the GLS method gives an asymptotically unbiased estimation. In
general, the noise structure assumed above fairly approximates other
noise structures. The approximation is the better, the more exactly it
realizes the condition:

H(=) = D) [AE)CE)] .
Compute the filtered values multiplying both sides of Eq. (9) by H(z~1):

llf(t) = H(;_])u,(t) : ll.f(t) - H(:‘l)u'z(z)
(a1)
yE@) = H(="")y(1).

For the HaMMERSTEIN model the system equation with the filtered
values is

yE(t) = gkt pr (42)

where

gr(t) = [1F, ul (1), .. . uf (t — m), uf (1), ..., uf(t — m),

43
— P —1), .. . —yF@ — )" (43)
and
Pr o= [Foarys ey 1o oo oo ag, o a]T = pu (44)
Here
R
1 = (1 + ’hi) (45)
=1
Constituting vector y. from values 7 (1) and matrix
“gh(1)
Gr=1: (46)
gF(N)
the GLS estimation of pj is:
b= P = (GEGs) ! GEyr. (47)

The procedure is continued from point (b). (Notice that the second filtering

method of CLARKE can also be applied but in general it is of poorer conver-

gence [6].)
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Maximum Likelihood Method

In the previous methods the noise model is to be assumed a special
case of the general one shown in Fig. 3, and reduce the essentially nonlinear
estimation problem to a linear one in parameters via “quasi-linearization”,
AsTrOM (1965) has developed the ML method for linear discrete-time systems
for D(z7) == A(371) solving the nonlinear estimation problem and has given
its computation technique {1]. (Since the system model and the noise model
can be reduced to common denominator in every case, the condition D(z™1) =
= A(z7!) is not too severe.) Let us investigate the application of ML method
for the HAMMERSTEIN model.

Residual £(1) is defined by equation

Clz~1e(t) = Az )y (8) — ri — By(z u(t) — By(=Hu() , (48)

and it is the estimation of source noise /e(t) shown in Figs 2, 3.
The logarithm of likelihood function becomes

—

L=— >et) — Nlo

. 4 -+ const. (49)
272

Maximizing this function is equivalent to minimizing the loss function:
. 1 X, -
Vip) = 'y (1) (50)

The ML estimation of 7 can be obtained by p belonging to the minimum of
the loss function:

P = ]:ijﬂ(m | (51)

Now p has the following form:
s . . . 1T =
pP= [r()v Fio e ooy 71blrm Tarenns ’2b2n17 Ao v v vy Qs Cps v v s CZ:J M (32)

The ML estimate is consistent, asymptotically normal and efficient under mild
conditions [1].

In general, combined Gavss—NeEwToN and NeEwrox—RarmsonN algo-
rithms are used to minimize the loss function:

st = P — x[ V)] V() (53)

where V is the gradient of V(p), and V,, is the matrix of second order partial

derivates. The problem involves the restriction that during the minimum
. i _ P . . C .

seeking every root of z"C(z71) must lie inside the unit circle. In the vicinity
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of illegitimate region the factor « has a role that can be computed according
to different strategies [4]. The computation of derivatives was detailed in [3].
In lack of a priori information the seeking starts from a LS estimation. The
globality of obtained minimum has to be controlled by restarting the seeking
from other initial points.

It is obvious from these relationships that Eq. (48) formally corresponds
to a triple input, single output linear discrete-time system, where u,(f) = 1,
w,(t) = u(t) and uy(t) = u®(t). (This, of course, can be extended to higher order
nonlinearities.) The parameters to be estimated are the coefficients of poly-
nomials G(z71), A(z~Y), By(z71), B,(s~1) and B,(z71). Here B,(~!) must be
assume% of zero order. Thus, if a program is available for the ML identification
of a multiple input, single output system then this program can be easily
adapted for identifying the HAMMERSTEIN model, as well.

Both the GLS method and the ML one have been considered for the
estimation of the redundant parameter vector of the HAMMERSTEIN model.
Namely first it is to be seen whetherseparability, i.e. condition (10), is approxi-
mately valid.

In the positive case the problem will be solved under restriction (10) to
ensure the unambiguity. A possible simple solution of this problem arises by
replacing Eq. (9) by an equivalent one:

¥(1) = gi(p, (54)
where

Py = [réaririby e by o @y . ay]? (55)

and
g:() = [Lu(). u(t — 1), .., u(t — m), x(t), —y(t — 1), ..., — y(t — n)]" (56)

where
m

x(t) = uir) = 3 bu(t — m). (57)

i1

Since both methods GLS and ML contain iterative procedures, b; values can
always be computed between the iteration cycles on the basis of (10) to con-
stitute x(¢). In this way the parameter vector becomes unambiguous and
corresponding to the simple separable HAMMERSTEIN model.

6. Simulation Results

.

The programs of every algorithm mentioned in this paper have been
made. Their operations and estimation properties, the necessary computing
times have been investigated and compared by several simulation examples.
We give the estimated parameter values of the following HAMMERSTEIN model
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for different polynomials C(z7%) and ry =0 and ry=2; r, = 2; B(z™}) =
= 1+0.5z" and A(z"1) = D(s71) = 1 —1.571+0.727% The noise/signal ratio
at the output was p = 30 per cent, a rather high value. The input signal was
a random sequence with normal distribution, zero mean and variance one.
The mean square error value

MSE = |/

is also given. Here y, is the system output without noise. The estimation of
parameters of the HAMMERSTEIN-model containing also a constant term (r, = 2)
— is presented in Fig. 5 for the case of iterative technique (IT) suggested by
NArReENDRA and GALLMAN and for the case of technique suggested here under
restrictions (BIT), where the equation error is white noise, C(z7%) = 1, N = 300,

L4
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p = 0 and 3 = 309. This latter method is seen to give a higher convergence

rate. The iteration started by a static regression (SR) or a direet LS estimation
(DR), this latter gives the value of steady state of iteration in one step. The
estimates of model with no constant term (r, = 0) are summarized in Table I

under different noise conditions and N = 500, y = 309,. The following

polynomials C(z~

=z

I1.

IIT.

IV.

C(=-1)

1) were applied: in case

B - 1 B
1 — 0.6z

1

1) e .
= e

C{z-1) = 1— 1.5zt 4 0.

)

Ce)=1—5z"14 02z-2,

7

P

ol

In the table also the nen-iterative (LS), the GLS and the ML methods are

compared.

Table 1
r b . b a
s p , . -
2 1 1 0.3 , —15
LS 1.952 0.971 1.009 0.499 1517
GLS 1.952 0.967 1.010 0.498 1518
GLS @ 0.5 1.971 1.025 1.002 0,509 —1.500
ML 1.961 1.009 1.002 0.509 ~1.509
ML 1.973 1.025 1.005 0.511 1504
s © 1903 1.346 0.955 = 0.635 = —1411

GLS 1.926 1135 0.995 0.553 —1.484
GLS an 15 1.926 1.088 1.003 0.532 —-1.496
ML 1.895 1.117 0.987 0.547 —1.493
ML 1.916 1.115 0.995 0.546 —1.492
s 1.829 2.110 0.943  0.898 = —1.142
GLS (111) 3.0 1.837 1.470 0.978 0.659 1433
ML 1.846 1.246 1.018 0.538 1481
LS 1.851 2.639 0.917 1.109 ~0.923
GLS (Iv) 3.0 1.974 1.422 1.003 0.657 —1.409
ML 1.879 1.196 0.979 0.565 —1.488
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7. Conclusions

The identification technique of a special nonlinear system, the HayMER-
sTEIN model, has been shown to closely approach the methods elaborated for
linear systems. The published estimation procedures have been reviewed, the
relationships pointed out and suggested to extend the GLS and ML methods
for the nonlinear case, presenting the formula necessary for the application.
The usefulness of the suggested methods is supported by simulation results.
Further extensive investigations are needed to study in practical cases whether
the HAMMERSTEIN model suit to describe the real nonlinear dynamic systems.

The most extensive application of the suggested methods seems to be

by the moment — for investigating a process wether it can be described
by a linear discrete-time model in the vieinity of the working point, in the
range of an unchanged input signal or not. In this latter case, - hence for a
strong nonlinear character — the linear approximation is only allowed for a
lesser changing range of the input signal.

Methods applied for identifying the HAMMERSTEIN model can be used at
the adaptive extremum control, as well. Remind that the GLS method suits
on-line estimation, while the adaptive system model necessary for the dual
control, can be produced by the HamyersTEIN model.

o - L s , oy i MSE

0.7 . ¢ ¢

0.713 - - 0497 0494 0.472

0.714 0.034 0.496 0493 - 0.480

0.700 ~0.526 ~0.086- 0.520 0.508 - 0.157

0.705 0.502 - 0.515 0.508 0.534

0,701 0.568 0236 0.520 0.508 0.519

0.618 - — 0707 0664 — -

0.687 0488 - o 0.589 0.555 £.406

0.697  0.633 0115 0565 0.531 0.384

0.694 = —0.492 - L 0.389 0.554 1.607 0.427

0.694 | —0.579 0.239 0577 0.348 1.511 0.377
0380 - 1153 0952 — 3951

0.649 0.774 0.363 0.800 0.674 — 1.167

0.686 | —0.994 0198 | 0.676 0528 | 3.066 1029
0175 — T 1Az 1200 — 5.109

0.625 0.997 0.498 0.720 0.655 — 1.368

0.694 —1.519 0747 0.637 0.577 ! 3.007 1: 0.467

6*
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Summary

The possibility of parameter estimation of the HaMMERSTEIN model is investigated
detail in case of quadratic polynomial form and different noise situations. Over and above

the well-known and new iterative and noniterative methods, the extensions for nonlinear case

of

generalised least-squares and maximum likelihood method — used inthelinear systems — are

presented. These methods are supported by simulation results.

W o
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