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Iniroduction

To state the problem in general, let us consider the idealized process
model in Fig. 1. There u, z,, z, are an (M < 1) vector of control action, an (M x 1)
vector of disturbances in control action and (K x 1) vector of observable but
uncontrollable input variables, respectively; x, — is an (/Vx 1) vector of ideal
input signals, (N = M-+ K); £ — is an (N x 1) vector of input noise; x — is an
(N % 1) vector of the measured input signals; # — is an (P x 1) vector of non-
observable disturbances; v — is an (L x 1) vector of “inner” state-variables;
¥o — is the ideal output signal; ¢ — is the output noise; y — is the measured
output signal. Let us assume that

E{z,}=0; E{0l=0 and E{cl=0 (1)

where E{...} is the expected value,

According to a recently generalized conception, the inner structure of
process can be divided to a linear dynamic and a non-linear static part by
means of state variables v which can be chosen in several ways. Here G(s) is an
(L x N} transfer function matrix of dynamics, v (v) Is a scalar-vector function
assumed to be unimodal, deseribing the nonlinear characteristics.

First, let us investigate the adaptive optimal control of a quasistationary
process. Then G(s) = I (identity matrix), l.e. v equals x. The purpose of the
control is to determine an effect u observing x and y which guarantees minimum
expected value of y (case of the cost performanceindex). The strategy of the
adaptive optimum control is realized according to the idea of dual control
where the decision on the control is made by means of an adaptive model
computed on the basis of observed input and output values. The usual complete
guadratic form is used for the quasistationary process with large-scale signal
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Fig. 1. Model of process

as an adaptive model. For sake of simplicity let us introduce notations
z, =z and

S [u"'.,z'][ {(Nx1) veetor . (2)

where T refers to the transposition and N = M-+ K. According 1o the above,
our static adaptive model is

y=c, -+ e'x + x"Cx = alep(x) (3)
where
¢ = [e]. eI]" (4)
and ’
G, C,.
oS &) .

According to Eq. (2) ¢, and ¢. ave (M < 1), (M < K} vectors, €, C., and (. =
== (Jlu are (M < M), (K< K) and (M x K) matrices, respectively. The right side
of Eq. (3) means the linearized form of the quadratic expression. The elements
in the diagonal line and above the diagonal of matrix x'x""used to be assigned
to the vector of function components @(x) row by row, where x” = [1, XT]T.
Accordingly, there are ¢ = (N-+1) (N+2)/2 elements in ¢(x) and in vector a.
Unambiguous relationships can be established between the left and right side
of (3) that are simple to convert.

The algorithm of optimal control

Considering the adaptive optimal control as a discrete-time process
according to the process control by computer — x[nt] is replaced by the
simpler x[n] for the discrete-time signals, i.e. sampling time ¢ is taken unit.
As it was mentioned the purpose of control is to provide for the condition

E{y(u,z,...)} = min (6)

u
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in spite of disturbances. The general form of relevant algorithms [1]:

u[n 4+ 1] =u[n] — R [n]\v v(x[n], a[n]). (7
(Here v means the gradient vector.) This expression can be considered as a
general form of stochastic approximation which may include other methods [5],

too considered as classical - by suitably choosing R [n].
Let us determine

vuy(x[n], a[n])a< v¥(x[n]. a[n]) (8)

from the adaptive model according to the idea of dual control. Differentiating
(3) the optimal control is:

uln + 1] =un] — Ri[n]i{e,(n] + 2C, [n]uln] + 2C,,[n]z[n]} (9;
where R;[n]is an (M x M), so called weighting or convergence matrix and more

or less general eonvergence conditions are formulated for it in {1}, [3]. [5].
The optimal convergence matrix in quadratic sense is:

’ n =1
R,[n] = j NH, (H(s[n]. a[m])} (10)
where
H, (7 (x[n]. a[m])} = ] Y } = 2C,.[m] (11)
T ' ou; ou;

is the Hessian-matrix of second order derivatives by u. Unfortunately R {n]
in (10) cannot be computed by iteration. The algorithm becomes simpler if the
control action intervenes only after coefficients a[n] reached a certain accuracy.

In this case

N .
Rl[”] == sz[n] (l"')
is also suitable. This latter R {n] has an expressive meaning, namely in this case

aln 4 1 = —Cailnli - e,[n] = Cp[n]zlnl} (13)

which gives an estimation for the exiremum of quadratic surface under

restriction z[n].
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Algorithm of adaptive identification

The least-squares model is applied to identify the static characteristic
of process, i.e. to determine the adaptive model. (This method gives optimal,
unbiased estimation for the meodel parameters in the case of independent
output noise of normal distribution and identical variance if the input variables
are measured without error [4].) In case of LS method, the expected value
of performance index

Q). aln — 1) = O[] — 5[] = - (] — a7ln — Upladf (1)

L

is minimized. The general algorithm of stochastic approximation is used for
the minimization (see in [1]} similarly to (7), according to which

aln]=a[n — 1] — Ry[n]v Q(x[n], a[n — 1]) . (15)

Convergence conditions relating to (gx<g) convergence matrix R,[n] can be
found in [1]. [3], [5]. Applying the rules of vector differentiation [6] the term

VoQ(x[n].aln - 1]) in (15) is:

VlQ(x[n]. aln — 1]) = — (y[n] — a”[n — 1] o(s[n])) -

ofstan) - sp L2l =1, (16)

where the (g« M) sensitivity matrix [1]
du’[n]

S[n]=1J"(u[n], a[n — 1]) = Ada[nml]

(17)
is introduced to cope with the fact that during the identification also the control
is changing, in general case. Here J' means the transpose of Jacobian-matrix
[6]. In control stragies where the intervals of two control actions permit the
model to become sufficiently accurate during which the control is constant, the

S[n] is zero. From (15), (16) and (3):
a[n] = aln — 1] = Ry[n] (v[n] — a”[n — 1] (x[n]))
(p(x[n]) + S[n] [euln — 1] = 2€,,[n —1Jun] =2 €,ln — 1Jz[n]]}. (18)
The convergence matrix of identification algorithm can be chosen in

several ways. If R,[n] is optimized in quadratic sense, then the result of
stochastic approximation corresponds to the generally known recursive sola-
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tion of LS method [3], [5]. In this case the optimal weighting matrix can be
computed step by step, recursively:

Ryfn] = Ryfn — 1] — el = LelxlnD] [Ryln — 1 e(x[a]))”
14 @"(x[n]) Roln — 1] p(x[n])

(19)

In the recursive algorithm (19) R,[0] can be chosen as a result of an off-line
LS estimation

Rzmz[ > cp(x[m])cpf(x[mn] B (20)

m=—j

or as a diagonal matrix of a sufficiently large constant value.

The suboptimal scalar convergence coefficient r[n] needs less operations
than (19), and it can also be used but it provides a lower convergence speed.
Determining the suboptimal valuer[n] by the steepest-descent method we get

] 1 @)kl — Gfrdal — 1]y,
y[n] — aT[n — 1] o(x[n]) @’ (x[n]) G[n] @(x[n])
where
k{n]=k[n — 1] + v[n]eox[n]): k[0]=10 (22)
Gl = 6[n — 1] + (x[n]) @7(x[n]):  6[0] = 0. (23)

The adaptive model can be investigated for adequacy by a dynamic quadratic
sum of residuals

> GT ST
difn] = =R — L kg (24)

where g is the number of model parameters. For k = n, i.e. every measurement
. . a : . .
is taken into account, d,[n] = d*[n] can be computed by iteration:

o ) 1 a | (;V[n] - aT[n _ 1] (P(x[n]))z
d*[n]=d*n — 1]+ ———+| —d?[n — 1] + .
e { o T ot Rt — 11«p<x[n])]

(25)

In adequacy testing either we consider whether d*[n] is become constant enough
or one of the statistical tests is applied to compare d*[n] with the variance of y.
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Determination of sensitivity model

In the general case of dual control the control action is changing during
identification, therefore — as it was shown in (18) — the sensitivity matrix
S[n] appears in the algorithm of identification. The sensitivity model — which
produces the recursive computation of sensitivity matrix S[n]— is obtained by
differentiating uT[n] by a[n-1]:

S[n]=S[n—1]— {J(p(x[n —1]),u[ln —1])+28[n — 1JC,,[n — 1]} Ry[n — 1].
(26)

Here J(ep(x[n—1]), u[n—1]) is a (¢ x M) Jacobian matrix of (x[n—1]) with
respect to u[n--1] easy to compute on the basis of (3) [1], [8].

Remind that if R;[n] is chosen according to (12) and there is no observ-
able, uncontrollable input then the sensitivity matrix S[n] is obviously irrele-

vant for (18).

Utilization of input signal synthesis

In case of control strategies where the control is delayed until a certain
accuracy of identification, the convergence rate of identification is very
important. The convergence speed and information about the process can be
maximized by the input signal synthesis. In case of R,[n] in (19) the optimiz-
ation of identification can only be ensured by x{n]. The global maximum of
quadratic form ¢’ (x[n])R,[n—1]ep(x[n]) is ensured by z,[n] in a given confined
environment of the actual u[n] as working point. In this way the determinant
of R,[n] (R,[n] is proportional to covariance matrix of estimation a[n]) can
be ensured to decrease at a maximum rate in every step [9]. This method can
also be applied when the control is changing in every step but then the situ-
ation of so-called triple control is brought about. Thus, after all, the optimiz-
ation of perturbing test signals, entering the system from outside, is due to
the triple contrel method.

Consideration of restrictions

Let us suppose that the control problem (6) has to be solved under
restrictions
Eigx)} =0 (27)

where g(x) is an (F'x 1) vector. Assuming the ¥(x) and g(x) to be continuously
differentiable, furthermore g(x) to satisfy the Slaterian regularity condition,
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the optimal control can be obtained by local Kuhn-Tucker’s theory solved by
stochastic approximation as [1]:

uln 4+ 1] = u[n] — R [n]{e,[n] + 2€,[n]u[n] -

- 2€,[ne[n] + I(g(x[n]) , uln]A[n]} (28)

where
Aln 1] = max {0; A[n] + R,{n]g(xn])}; A[0] >0. (29)
Here the note ““max™ relates to each component, J means — as mentioned

above - the Jacobian-matrix (derivatives of g’ with respect to u). (10) and (12)
can be chosen for R [n] but for R,[n] the scalar convergence coefficient
r[n] = 1/(n*+j) proved to be the best one.

The influence of process dynamies

As far as the transfer functions (or impulse responses) of “channels”
referred to the input variables of process are a priori known, the algorithms
in the previous section can be simply modified for the dynamic case. Then the
transfer function matrix G(s) = diag[W,(s), . . . Wx(s)] for vector v is assumed
to be a diagonal matrix. In this case the discrete convolution model for compo-
nents of state vector is:

ped

vn] = Py w,[mlx;fn — m], t=1,..., N (30)

M)
where 1; is the impulse response of the ith “‘channel”. Accordingly

_dviln]  pent — diae e . |
du[n — 1] = D(w[l]) = diag [w,[1]. .. ., w.[1]] (31)

where v, contains only the part relating to u of vector v, since similarly to x
[T 7T ¢
v=[v;.vi]". (32)

Taking into account expressions (30), (31) and (32), Eqgs. (9), (18) and (26) are
modified as:

ufn + 1] = ufn] — By[n]D(e[1]){e,[n] + 2€,[n]v,[n] + 2C..[n]v.[n]} (33)

a[n] = a[n — 1] + Ry[n](y[n] —a’[n — 1]ep(v[n])
{p(v[n]) = S[n]D(w[1]) [e,[n — 1] + 2€,,[n—1]v,[n] + 2C[n — 1]v.[n]]} (34)
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S[n] = S[n — 1] — J(e(v[n — 11), uln — 1) +
+ 28[n — I]D(.w[l])Cuu[n — 11}D[1)R,[n — 1] (35)

since now v == x and

¥ = ¢, +eTv L+ vIiCv = aTep(v). (36)

It is obvious also in the dynamic case, that use of R,[n] in (12) eliminates the
sensitivity model, makes it irrelevant for the identification.

Simulation results

A simulator PCSP (Process Control Simulator Program) has been con-
structed for investigating ideas and algorithms worked out for adaptive optimal
control. Our results given by this program will be briefly reviewed.

The static characteristic is represented by a positive quadratic form; for
sake of simplicity, the dynamics of process in every ““channel” is chosen as
first-order lag, hence the state-variables v are produced by the following
equation [7]:

vifn] = emeyfn — 1] + (1 — e ~)x,[n] (37)
where

m = AT, (38)

Here T means the time constant of first order lag (for sake of simplicity, it is
identical for every ‘““channel”).

Let us first investigate the case where the identification at certain work-
ing points determined by the control oceurs in time ¢, i.e. 0 <7 n <7 ¢,/ ¢ in (18).
The necessary condition of this strategy is the existence of vector z; in Fig. 1,
the perturbation part of control signal. Now let us consider the case where
m — =c, i.e. that of quasistationary control (8[n] = 0; D{(w[1]) =1). The
influence of variance of the output noise on control is shown in Fig. 2 for
cases of optimal convergence matrix (19) and suboptimal convergence coeffi-
cient (21) controlled by (9), R [n] corresponds to (12). The optimal identifi-
cation algorithm is presented in Fig. 2/a and the suboptimal one in Fig. 2/b.
For sake of comparability, the identification time is fixed at t; = 30/¢. The
variance of output error has been referred to constant term a, of static character-
istics (meanwhile dispersion of z; is constant). Possibilities of choosing initial
values R,[0], G[0] and k[0] differently have no great influence on the conver-
gence rate of identification. It can be established from the figure that the vari-
ance of output noise does not influence significantly the convergence rate of
control.. Accordingly further on the optimal convergence matrix will be used
also for identification.
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The case where the algorithms suppose a quasistationary process, while
in fact it has dynamics, has been investigated. The results are surprising: the
control did make the system to tend to optimum, if not in the suboptimal (21)
case by using the optimal convergence matrix (19) even in the case of m = 0.5
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Fig. 2. Comparison of optimal and suboptimal strategies for identification
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(see Fig. 3). Obviously, the result can be improved by increasing the identif-
ication time even form = 0.5, Fig. 4. Figs 3 and 4 lead to the conclusion that
the convergence rate of control depends slightly on the variance of output
noise. Omitting the process dynamies in the algorithms acts as if a “dynamic
noise”” would appear inside the process, equivalent to input variables measured
with error.
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Fig. 4. Influence of identification time on the control

In case of small time constants the quasistationary control is still admis-
sible but for higher values the identification becomes so unreliable that the
control is completely bad. In case of large time constants of a priori known
values the algorithms (33), (34), (35) can be used. The influence of a priori
knowledge of time constants (m values) on the control is presented in Fig. 5.
On the left side of Fig. 5, m == i — ~c, on the right one m = th (here m is an
a priori known value). Control by the algorithms relating to the dynamie case
is seen to work well.
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In the classical case of dual control, i.e. for t; = ¢, the experiences are
equivalent to the previous ones but the control is more sensitive to the process
dynamics.

The control under restriction has also been investigated by PCSP on
the basis of algorithm (28). Using ry[n] = 1/n, the control is shown in Fig. 6
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Fig. 5. Comparison of quasistationary and dynamic control algorithms

for convergence matrices R [n] = 1/n 1, R [n] = 5/(4+n) I and R [n] chosen
according to {(12). The control is rather efficient (though the convergence rate
depends considerably on R;) but the restrictions are contravened during the
intermediate steps, as expected from theoretical consideration. Thus this algo-
rithm can be applied only in knowledge of g(x), by introducing another iter-
ation cycle where first the conditional extremum must be computed on the
model to determine the actual control.



96 L. KEVICZKY et al.

Fig. 6. Control under restrictions by different strategies

Conclusions

In this paper some adaptive optimal control algorithms elaborated for
quadratic cost function are presented for quasistationary and dynamic cases
where the dynamics in every “‘channel” is a priori known. The importance
of optimally choosing convergence matrices has been established and illustrated

. by simulation examples. In case of optimal convergence matrix, the sensitivity
model becomes unnecessary. We have shown the influence of process dynamics
on the control that can be eliminated by the developed algorithms. The adaptive
control is applied in case of explicit restrictions, too, and we have shown that
it can be used only by the extremum-seeking performed on the model under
restriction. '

In most problems of adaptive optimal process control the quadratic form
used in this paper is sufficient to define a system in its operation range. It is
advantageous by requiring the least of necessary parameters — of importance
in case of great many variables — and by lending the algorithms of adaptive
optimal control and they have a simple easy to handle form in case of this
simple, fixed structure.

The simulator PCSP has been constructed on the basis of these algorithms
providing a multitude of useful experiences helping to form practical process
control software.

Summary

Tsypkin has shown an algorithm based on dual control for the adaptive control of a
dynamic non-linear single input — single output system [1] — with known dynamic lag series,
connected with the input and quadratic performance index (loss function). This method has
been generalized for adaptive control of multiple input — single output system [2]. Since then
this idea has been developed and investigated in detail. In this paper the problems of choosing
convergence matrices of dual control with two perceptrons (identification and control) and
sensitivity model, furthermore the influence of a priori knowledge of dynamics on adaptive
control have been considered. By means of the developed PCSP (Process Control Simulator
Program), the issue of adaptive control has been simulated in several cases of different stra-
tegies. These experiences can be used in the development of process control software.
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