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Introduction 

To "tate the problem in gelll'raL !Pt us consider the idealized proccs,.: 
modd ill Fig. 1. There u, Zl' z:! are an (Ji 1) vcctor of control action, an (J1 xl) 
vector of disturbances in control action and (K X 1) vector of observable but 
uncontrollable input variables, respectively: Xo is an (.:" 1) vector of ideal 
input signals, (~" JI - K): E - is an oy Xl) vector of input noise: x . IS an 
(1V~-< 1) ·vector of the measured input signals: 1) --- is an (PX 1) vector of non­
observable disturbances: v is an (L xl) vector of "inner" state-yariables: 
)'0 is the ideal output signal: c - is the output noise: y - is the measured 
output signal. Let us assume that 

0: E{O} o aIlll 

wher!' E{ ... } is the expectt,d vallU'. 

E'"I 't C j 
(l (1) 

According to a recently generalized eonception, the inner strUeLure of 
process can he diyided to a linear dynalllic and a non-linear static part by 
means of state yariables v which can bc chose:n in several ways. Hel'(~ G(s) is an 
(L >< .cV) transfer function matrix of dynamics, }o(v) is a scalar-yector function 
assumed to he unimodal, describing the nonlinear characteristics. 

First, let us investigate the adaptiv(' optimal control of a quasistationary 
process. Then G(s) I (identity matrix), i.e. v equals x. The purpose of tll(' 
control is to determinc an effect u observing x and), ·whieh guarantees minimum 
expected valuc of y (case of thc cost pcrformance index). The strategy of the 
adaptive optimum control is realized according to the idca of dual control 
·where thc decision on the control is made hy mcans of an adapti,-e model 
cornputeu OIl the hasis of observed input and output values. The usual complete 
quadratic form is used for the quasistatiollary process ·with large-scale signal 
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Fig. 1. :'IIodel of process 

as an adaptiv(' Illodel. For sake of simplicity let us introduce notations 
z., z and 

(:2) 

\\'here T ref(~r" lo the lransposition and _,' 

our ~tatic adaptive model is 

Jf ~J(. Aecording to the above, 

(3) 

c [ T :f]T C ll , C: (4) 
and 

(5) 

According to Eq. (:2) c" and c: are (JI xI), (JI ,< I\') v('('tors, CU 'I' Co: and Cu: 
= C;;, are (JI JI), (K K) and (JI K) matrices, respeetively. The right sill!, 
of Eq. (3) means the linearized form of the quadratie eXln:.?ssion. The elements 
in the diagonal line and above the diagonal of matrix x'x" used to be assigned 
to the ve~toT of funetion eomponent; <p(x) row by row, where x' = [1, ;Tf. 
Aceordingly, there are q (~Y-1) (N-'-:2)f:2 elements in<p(x) and in veetor a. 
l;namhiguous relationships can be established between the left and right side 
of (3) that are simple to eonvert. 

The algorithm of optimal control 

COllsid('J'ing the adaptive optimal eontrol as a diserpte-time proeess 
aeeording to the proeess eontrol hy eomputer --- X[lL:1t] is n,plaeed h)' the 

simpler x[n] for the discrete-time signal", i.e. sampling time Lit is taken unit. 
As it W1l.5 mentioned the purpose of control is to provide for the condition 

E {y( H, Z, ..• )} = nun (6) 
u 
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in spite of disturhanees. The general form of rcleyant algorithm~ [1]: 

u[n -'- 1] = urn] (7) 

(Here \. means the gradient yeeto1'.) This expression can he considered as a 

general form of stoehastie approximation which may include otlH'r methods [5], 
too considered as classical - by suitably choosing RI [n]. 

Let us determine 

\uy(x[n], a[n ])~ \uY'(x[n], a[n]) (8) 

from the adaptiye modcl according to the idea of dual control. Difft~l'('ntiating 
(3) the optimal control IS: 

u[n -;-- 1] urn] (9; 

where RI [11] is an (Ji ~< !vI) , so called weighting or cOlrvergence matrix and more 
or less general conyergencc conditions are formulatf'd for it in [1], [3], [5]. 

Th!' optimal conYt'rgpnc(' matrix in quadratic ~t'ns(' is: 

(10) 

where 

(11) 

is the Hessian-matrix of sccond order deriYatiyp" by 11, unfortunately RI [11] 
in (10) cannot he eomputed by iteration. The algorithm hf'COl11eS simple]" jf tIlt' 
control action int('rY(,Ilt's only after coefficients a[n] !"t'ache(l a ct'rtain accuracy. 
In this cast' 

1 I C;;An] 
2 

(12 ) 

is also suitablt>. This latter RI [n] has an ('xpressivc meaning, IHUllPly in this cast" 

1 
n[n -- 1] = -C;,-,l[n]{ . cu[n] 

" 
CllJ 11 ]z [n L: (13) 

which gives an estimation for tIlt' t'Xcrt'I1iUlll of quadratic surfac(' ulldt'r 

restriction z[n]. 
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Algorithm of adaptive identification 

The least-squares model is applied to identify the static characteristic 
of process, i.e. to rl~termine the adaptiye model. (This method giyes optimal, 
unbiased estimation for the model parameters in the case of independent 
output noise of normal distrihution and identical yariance if the input yariahles 
arc~ measured ,,-ithout (,ITor [-1].) In case of LS method, the expected ,-alne 
of performance index 

Q(x[n], a[n - 1]) ~ (y[n] - 5'[n])2 = ~ (y[n] 

is minimized. The general algorithm of stochastic approximation IS used for 
the minimization (see in [1]) similarly to (7), according to ,,-hich 

a[n] = a[n 1] R 2 [n] \aQ(x[n], a[n -- 1]). (15) 

COIlYCrgence conditions relating to (q X q) conycrg~nce matrix R~[n] can bc 
found in [I], [3]. [;'}]. Applying the rules of Hctor differentiation [6] the term 
\uQ(x[n].a[n I]) in (1.'5) IS: 

\ "Q(x[n], a[n---l]) 

. {<p(x[n])-:- Srn] 

(J[n] - aT[n I] <p(x[n])) 

d5-(X[1l], a[n - I]) -Jl 
du[n] 

wh('r(' tht, (q / J1) s('nsitiyity matrix [I] 

Srn] F(u[n], a[n - I]) 
duT[n] 

darn-I] 

(16 ) 

(17) 

is introrluced to cope with the fact that during the identification also the control 
is changing, in general caSt'. Hen' JT means the transpose of lacohian-matrix 
[6]. In control stragies \\-here the interyah of two control actions pcrmit the 
!lHHI('1 to become sufficiently accurate during which the control is constant. the 

Srn] is zero. From (15), (16) and (3): 

a[n] a[n - I] - R 2 [n] (y[n] 

I]z[n]]). (18) 

Thc conycrgence matrix of idcntification algorithm can he chosen in 

seyeral \vays. If RJn] is optimized in quadratic sense, thcn the result of 
stochastic approximation corresponds to the generally kno-wn rccursive soln-
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tion of LS method [3], [5]. In this case the optimal weighting matrix can be 
computed step by step, recursively: 

1] _ [Rz[n - 1] cp(x[n])] [Rz[n - 1] cp(x[n])Y . (19) 

1 cpT(x[n]) Rz[n - 1] cp(x[n]) 

In the recursive algorithm (19) RAO] can be chosen as a result of an off-line 
LS estimation 

(20) 

or as a diagonal matrix of a sufficiently large constant value. 
The suboptimal scalar convergence coefficient r[ n] needs less operations 

than (19), and it can also be used but it provides a lower conyergence speed. 
Determining the suboptimal value r[n] by the steepest-descent method we get 

1 
r[n] = -----------

y[n] aT[n - 1] cp(x[n]) 

cpT(x[n])[k[n] - G[n] a[n 1]] 

cpT(x[n]) G[n] cp(x[n]) 
(21) 

where 

k[n]=k[n 1] y[n] cp(x[n]); k[O] = 0 

G[n] = G[n - 1] + cp(x[n])cpT(x[n]): G[O] = O. 

(22) 

(23) 

The adaptiye.model can be inyestigated for adequacy by a dynamic quadratic 
sum of residuals 

n 

(y[i] j-[i])2 
dHn] = ---'----------------, k /q 

k-q 
(24) 

where q is the number of model parameters. For k = n, i.e. every measurement 

is taken into account, dr~[ n] = d2 [n] can be computed by iteration: 

d2 [n] = d2 [n - 1] + 1 [-d2 [n - 1] 
n-q 

(y[n] - aT[n - 1] cp(x[n]))2 1 
1 +cpT(x[n]) Rz[n - l]cp(x[n])j" 

(25) 

In adequacy testing either we consider whether d2 [ n] is become constant enough 
or one of the statistical tests is applied to compare d2 [ n] -with the variance of y. 
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Determination of sensithity model 

In the general case of dual control the control action is changing during 
identification, therefore as it was shown in (18) ~~ the sensitiyity matrix 
S [n] appears in the algorithm of identification. The sensitivity model - which 
produces the recursive computation of sensitiyity matrix Srn] ~~ is obtained by 
differentiating uT[n] by a[n 1]: 

Srn] = Srn 1] - {J (cp(x[n - 1]), u[n-l])--i-2S[n 1] Cuu[n - In R][n -1]. 

(26) 

Here J(cp(x[n 1]), u[n~~I]) is a (qxl\l) Jacobiall matrix ofcp(x[n-1]) with 
respect to urn 1] easy to compute on the basis of (3) [1], [8]. 

Remind that if RI [n] is chosen according to (12) and there is no obsen-­
able, uncontrollable input then the sensitivity matrix S [n] is oln-iously irrele­
nnt for (18). 

Utilization of input signal synthesis 

In ease of control strategies -where the control is delayed until a certain 
accuracy of identification, the conyergence rate of identificatioll is vcry 
important. The convergence speed and information about the process can hc 
maximized by the input signal synthesis. In case of R~[n] in (19) the optimiz­
ation of identification can only be ensured by x [n]. The global maximum of 
quadratic form cpT (x [n ])Rz [n-l ]cp(x [11]) is ensured by z] [n] in a giyen confined 
environment of the actual u [n] as working point. In this -way the determinant 
of RJn] (R~[n] is proportional to coyariance matrix of estimation a[n]) can 
be ensured to decrease at a maximum rate in eyery step [9]. This method can 
also be applied when the control is changing in every step but then the situ­
ation of so-called triple control is hrought about. Thus, after all, the optimiz­
ation of perturbing test signals, entering the system from outside, is due to 
the triple control method. 

Consideration of restrictions 

Let us suppose that the control problem (6) has to be solved under 
restrictions 

E{g(x)} = 0 (27) 

'where g(x) is an (F XI) vector. Assuming the 5'(x) and g(x) to be continuously 
differentiable, furthermore g(x) to satisfy the Slaterian regularity condition, 
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the optimal control can be obtained by local Kuhll-Tucker·:5 theory soh-ed by 
stochastic approximation as [1]: 

u[n -;- 1] u[rz] 

-L 2C"Jn]z[n] 

R J [n]{c ll [n] -L 2Cuu [1l]u[n] -

F(g(x[rz]), u[rz])1..[n]} 

1..[11 -'- 1] = max {O; 1..[rz] R3 [n]g(x[n])} ; 1..[0] > O. 

(28) 

(29) 

Here the note "max" relates to each component, J means as mentioned 
ahoye the J acobian-matrix (deriyatiyes of gT with respect to u). (10) and (12) 
can be chosen for RI [n] but for R3[n] the scalar conyergence coefficient 
r[n] li(n'-Lj-J) proyed to he the hest one. 

The influence of process dynamics 

As far as the transfer functions (or impulse responses) of "channels" 
referred to the input yariables of process are a priori known, the algorithms 
in the preyiOllS section can be simply modified for the dynamic case. Then the 
transfer function matrix G(s) = diag[WJ(s), ... Jl7,,(s)] for Yector v is assumed 
to he a diagonal matrix. In this ease the discrete cOllYolutioIl model for compo­
nents of state Yector is: 

n 

>' IC i [7Il]x i [rz - m] , 
-==< • I = 1, ... , ",' 

rn=,o 

where le i is the impulse response of the ith "channel". Accordingly 

_~~~}l] = D(n'[I]) = diag [lc][l], ... , IcJl]] 
du[n 1] 

(30) 

(31) 

'where Vu contains only the part relating to u of Yector v, since similarly to x 

v = [v[, v~y. (32) 

Taking into account expressions (30), (31) and (32), Eqs. (9), (18) and (26) are 
modified as: 

u[n ~ 1] = u[n] 

a[n] = a[n - 1] R2[n](y[n] - aT[n l]cp(v[n])) 

{cp(v[n]) S[n]D(lc[I]) [cll [n - 1] 2Cw1 [n-1]vu [rz] 2Cu:[1l -l]vJn]]} (34) 



92 L. KEVICZKY et "I. 

Srn] = Srn - 1] {J(cp(v[n - 1]), u[n - 1]) 

+ 2S[n I]D(w[I])Cuu [n I]}D(u;[I])RI[n 1] (35) 

since now v . ' x and 

(36) 

It is obvious also in the dynamic case, that use of R1[n] in (12) eliminates the 
sensitivity model, makes it irrelevant for the identification. 

Simulation results 

A simulator PCSP (Process Control Simulator Program) has been con­
structed for investigating ideas and algorithms worked out for adaptive optimal 
control. Our results given by this program will be briefly reviewed. 

The static characteristic is represented by a positive quadratic form; for 
sake of simplicity, the dynamics of process in every "channel" is chosen as 
first-order lag, hence the state-variables v are produced by the following 
equation [7]: 

(37) 
where 

m = JilT. (38) 

Here T means the time constant of first order lag (for sake of simplicity, it is 
identical for every "channel"). 

Let us first investigate thc case where the identification &t certain work­
ing points determined by the control occurs in time t i , i.e. 0 /' n ./ tdlt in (18). 
The necessary condition of this strategy is the existence of vector Zl in Fig. 1, 
the perturbation part of control signal. X ow let us consider the case where 
m -+ =, i.e. that of quasistationary control (S[n] 0; D(IV[l]) _ I). The 
influence of variance of the output noise on control is shown in Fig. 2 for 
cases of optimal convergence matrix (19) and suboptimal convergence coeffi­
cient (21) controlled by (9), R1[n] corresponds to (12). The optimal identifi­
cation algorithm is presented in Fig. 2ja and the suboptimal one in Fig. 2/b. 
For sake of comparability, the identification time is fixed at tj = 30Llt. The 
variance of output error has been referred to constant term a o of static character­
istics (meanwhile dispersion of Zl is constant). Possibilities of choosing initial 
values R 2 [O], G[O] and k[O] differently have no great influence on the conver­
gence rate of identification. It can be established from the figure that the vari­
ance of output noise does not influence significantly the convergence rate of 
control. Accordingly further on the optimal convergence matrix will be used 
also for identification. 
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The case where the algorithms suppose a quasistationary process, while 
in fact it has dynamics, has been investigated. The results are surprising: the 
control did make the system to tend to optimum, if not in the suboptimal (21) 
case by using the optimal convergence matrix (19) even in the case of m = 0.5 

Uz 

I 1 

1 U2 

I 
I 

i/ 

@ 

var{!!) 
0% 

aD 
t; =30tJI 

m=4 

var[y) = 5% 
00 

t; =30 tJI 

m=!; 

U7 

vac!!!) = 20% 
aD 

t; =30M 
m=4 

r2 var!!!) = 0% 
aD 

t; =30~t 
I m=4 I 

U2 var!y)= 5% 
00 

t; =30tJI 

r var!!!)= 20% 
00 

t; =30M 

m=4 

@ 

Fig. 2. Comparison of optimal and suboptimal strategies for identification 
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(see Fig. 3). Obviously, the result can he improved by increasing the identif­
ication time even for m = 0.5, Fig. 4. Figs 3 and 4· lead to the conclusion that 
the convergence rate of control. depends slightly on the variance of output 
noise. Omitting the process dynamics in the algorithms acts as if a "dynamic 
noise" would appear inside the process, equivalent to input variables measured 
with error. 

Fig. 3. Influence of proce,5 dynamics on the control 

vor(y) = 20% 
00 

1/ = 100 tJ! 
m= 0,5 

Fig. 4. Influence of identification time on the control 

Uz var{y}= 20% 
00 

i,= 30fJI 
m= 0,5 

In case of small time constants the quasistationary control is still admis­
sible but for higher values th(' identification becomes so unreliable that thc 
control is completely bad. In case of large time constants of a priori knrnfn 
values the algorithms (33), (34.), (35) can be used. The influeIice of a priori 
knowledge of time constants (m values) on the control is presented in Fig. 5. 
On the left side of Fig. 5, m ~-'" rh ->- =, OIl the right OIle m = rh (hcre rh is all 

a priori known value). Control by the algorithms relating to the dynamic case 
is seen to -work -well. 
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In the classical case of dual control, i.e. for t; = LIt, the experiences are 
equivalent to the previous ones but the control is more sensitive to the process 

dynamics. 
The control under restriction has also been investigated by PCSP on 

the basis of algorithm (28). Using r3[n] = l/n, the control is shown in Fig. 6 

y 

50 

y 

50 

Y 

50 
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50 
m=m=0,5 

!jmin - - - - - _ - --.-.:::-~-o-:> __ >-

50 100 150 n=I/M 

Y 

50 

50 100 150 n=I/M 

Fig. 5. Comparison of quasistationary and dynamic control algorithms 

for convergence matrices R1[n] = Iln I, R 1 [n] = 5/(4 n) I and R1[n] chosen 
according to (12). The control is rather efficient (though the convergence rate 
depends considerably on R l ) but the restrictions are contravened during the 
intermediate steps, as expected from theoretical consideration. Thus this algo­
rithm can be applied only in knowledge of g(x), by introducing another iter­
ation cycle where first the conditional extremum must be computed on the 
model to determine the actual control. 
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Fig. 6. Control under restrictions by different strategies 

Conclusions 

In this paper some adaptive optimal control algorithms elaborated for 
quadratic cost function are presented for quasistationary and dynamic cases 
where the dynamics in every "channel" is a priori known. The importance 
of optimally choosing convergence matrices has been established and illustrated 

. by simulation examples. In case of optimal convergence matrix, the sensitivity 
model becomes unnecessary. We have shown the influence of process dynamics 
on the control that can be eliminated by the developed algorithms. The adaptive 
control is applied in ease of explicit restrictions, too, and we have shown that 
it can be used only by the extremum-seeking performed on the model under 
restriction. 

In most problems of adaptive optimal process control the quadratic form 
used in this paper is sufficient to define a system in its operation range. It is 
advantageous by requiring the least of necessary parameters of importance 
in case of great many variables and by lending the algorithms of adaptive 
optimal control and they have a simple easy to handle form in case of this 
simple, fixed structure. 

The simulator PCSP has heen constructed on the hasis of these algorithms 
providing a multitude of useful experiences helping to form practical process 
control software. 

Summary 

Tsypkin has shown an algorithm based on dual control for the adaptive control of a 
dynamic non-linear single input - single output system [1] with known dynamic lag series, 
connected with the input and quadratic performance index (loss function). This method has 
been generalized for adaptive control of multiple input - single output system [2]. Since then 
this idea has been developed and investigated in detail. In this paper the problems of choosing 
convergence matrices of dual control with two perceptrons (identification and control) and 
sensitivity model, furthermore the influence of a priori knowledge of dynamics on adaptive 
control have been considered. By means of the developed PCSP (Process Control Simulator 
Program), the issue of adaptive control has been simulated in several cases of different stra­
tegies. These experiences can be used in the development of process control software. 
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