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Introduction 

The exact study of conyergence rate is due to CIPKI:\" [1] proying that 
no successiye approximation algorithm giying better result than the least 
squares method can he conceiyed. In the literature great many yarious approxi­
mation algorithms based on learning principles are found. Thc algorithm of 
SARIDIS [3] is one of the most outstanding. The conyergence of these types 
of algorithms is usually proyed for an infinite number of steps with unit proba­
bility. In the case of real-time applications a relationship bet"ween the expected 
numher of step" and a COllyergellce prohability less than one is necessar;-, 
based on the error calculation procedure of the "YloC\"TECARLo [2] methods. 

In this paper an unusual learning principle is prescnted, The question is 
whether in rcal-time applications the cxpected numbcr of steps ohtained in [2] 
may he ensured in thc case of stochastic signals. 

The learning principle 

The relationship bctween the less than 1 conyergcnce prohability and thc 
expected number of steps is giyen by [1] for yery general conditions, as 

i\"opl = ~--
I-p 

(1) 

E. g. in the case of p = 0.95, N op! 170 and this is also a function of the 
"arresting conditions". Be the conycrgence probability of the sUCCeSSlye 

approximation algorithm 

c [n ] c[n 1] - hC[1l - 1] 

where n is the number of steps and c the Yector approximating c* in an infinite 
number of steps and in the unimodal casp 

7* 
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P = flim (c[n] 
In-= 

and in a finite number of steps: 

c*) = 0) 
J 

1 

P {lV1[F(c[Nop.] - c*) = O]} = p 

(3) 

(4) 

where F denotes the scalar function, the quality criterion and 1\;1 the forma­

tion of the expected value. 
Be r the time of the calculations needed in one step; then the total 

calculation time in the convergent case is: 

T = ~oP! • r. (5) 

The problem variablcs are assumed to be slightly non-stationary stochastic 
signals with 0 centre and a noise load of finite scatter. According to the experi­
ences the convergence rate much depends on the number and order of magnitude 
of the variables; for eliminating this dependence, in every case the follo'wing 
normalization procedure was applied: 

-x 
(6) 

where the upper stroke denotes the formation of the expected value, Xm the 
vector of the measured variables and (J x the scatter. Vie have used as algorithm 
a version of the stochastic approximation developed by us, possessing good 
convergence properties even in the case of high gradient values: 

bc[n] = R[n 
a 

1] arsh f[c[n] , x[n + 1]] 
'Bc[n] 

(7) 

where R[ n] is the matrix of the convergence ccefficient. The derivations 
concerning the convergence and the applicability of algorithms of the type (7) 
are found in [1]. The convergence is especially sensitive for the selection of 
R[n] by the usual hyperbolic selection. A more complex selection of R[ n] 
leads to the increase of r, the calculation time and on the other hand, accord­
ing to the experiences of running the algorithm, convergence problems 
arise even so in the real-time case. The hyperbolic selection is intended to 
ensure the Ijn-type course of the approximation. The basic idea of the developed 
algorithm is that we demand the l/n-type course of the quantity ! be [n] and 
calculate from it in each step the convergence coefficient R[n] and refrain from 
all other constraints applying to the convergence coefficient. This means the 
reversal of the problem as regards the convergence coefficient: if in the lIn-
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type course the quantity I be [n] [ is decreasing faster, then the coefficient 
R[n+I] decreases 'while in the opposite case it increase. The evaluation is 
easily possible, as the data of the preceding step are always available, but 
an immediate question is the selection of the initial value R[I] and the manner 
of varying R[n]. 

The learning strategy 

It is obvious, - e. g. in the case of divergence, '- that the variation of 
R[ n] must be faster than Iln for ensuring the Iln-type course of the quantity 
I be [n] I. We have chosen arbitrarily the base number of the extreme and 
mean ratio according to (3): 

R[n] = R[n - 1] . 1.62:r. l (8) 

'where the sign applies for the "slow" and the sign - for the "fast" case. 
For the initial value R[I] we have: 

(9) 

if 

and 

respectively, if 

and in the case of ru.[I] > 1.62 we demand that ruJI] 1.62 applies. In 
deterministic problems, - e. g. finding extreme values, this algorithm 
showed the expected behaviour, but in stochastic cases it slowed do'wn due 
to the variability of the signals: consequently it is advised to specify a minimum 
for the elements of R[ n]. W-e have performed this in the following manner: 

1 10 

Tile min = --;-~ rilc[n] , 
;) n=6 

(10) 

i.e. in the first five steps 'we calculate a "good" initial value, but as according 
to the experiences the descent from the fifth step on is not Iin-type anymore, 
the demand of the minimum may be abandoned at higher step numbers. 

One more condition may be built in against the deceleration of the algo­
rithm, namely: 

I oe[n - 1] : - I be[n] i < ;.[ be[n - 1] : (11) 
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to be satisfied by 

;. = 1 
arc tg 5rik mill 

1.57 
(12) 

The constant 1.57 is uscd for the radian COllyeri'ion to make i.mm: = 1. If (11) is 
not satisfied, then 

R[n] = 1.6:2R[n - 1] (13) 

and in the opposite case 

R[n] = 1.62 -1 R[n - 1] . (14) 

The relationship (1-1-) IS applied also in thc case of diYergence, when 

he[n - 1]< rSe[n] 

as well as when the cours(' IS faster than the 1 n-type behayiour, I.e. when 

be [71 ] be [n - 1] 
1 

n 

Conclusions 

In the algorithm obtained in this way we haye utilized in the first step 
a scalar coefficient instead of the conyergence coefficient matrix R [n] and we 
haye examined, instead of the yector-yector function e [11 ] the 1 l1-typc course 

of the error -'Y Y",easured - Ycalwlated of a scalar Yector function of the forDl 

)'s: = cTu(x) 

for the problems giyen by SARIDIS in [3] and for a multiyariable half-quadratic 
formation. The number of steps according to (1) and the conyergence probabil­
ity calculated by the multiple runs for each problem were supplied by the 
described algorithm. 

It is to be noted that on the basis of condition (11) an algorithm assigning 
a specified number of steps to the decrement Jy of one order of magnitude 
may also be prepared. The problem contains generally Jy decrements of 4-5 
orders of magnitude resulting in i. =co 0.3 -- 0.8 on the basis of the step numbers 

calculated by (1) (for p = 0.95). 
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Summary 

Some of the results of the study of non-asymptotically optimum procedures are reported. 
In this case the optimum of convergence rate is formulated by the author in [3]. This paper 
shows an unusual principle of study for cases of stochastic and real time. 
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