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Introduetion

Possibilities of the analytical solution of dynamic problems related to
the flow of elastic liquids of assumed constant density in a pipeline are examined
in the following. For the sake of simplicity, the flow pipe is assumed to be hori-
zontal, of constant cross section and material characteristics, frictional losses
in flow are proportional to velocity. Under such conditions, relationships of a
general validity can be obtained in a closed form for flow characteristics, such
as pressure, velocity, at various points of the flow pipe. Thereby, in view of
determination, dynamic response functions are obtained for the given input
parameter arbitrarily varying in time. Approximating input parameters and
response function e.g. by a broken line function composed of straight sections,
the general relatonship takes the form of a matrix equation. Matrices do not
depend on flow velocity and pressure, thus they represent the linear operator
characteristic of the given flow pipe.

(L. Stating the problem
Survey of known solutions. Objectives

1.1. The problem

In the case of practical problems, — e.g. oil pipelines, — pressure and
velocity values are recorded at fixed points of the pipe, where disturbances
are to be expected, and where also interventions take place. Thus, let us sepa-
rate a pipe of length L from the rest of the flow system, with pressure and veloe-
ity parameters at both ends representing the effect of the omitted parts
(Fig. 1).

The four characteristic parameters are obtained from boundary values
of pressure and velocity:

P1o(t) = poft, 0)
vio(t) = vy(t, 0)
Paolt) = polt, L)
vao(t) = vo(ts L)
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Let us determine the relationship between the above parameters, ie. of the
function f;:

Fi(P1o(8)s v10(t)s Pao(t)s vao()) = 0O (2)

Among parameter values (1) there are known ones, these are named the bound-

ary conditions. Eq. (2) serves for determining the other unknown parameters.
1.2. Known solutions

After having separated the examined system let us survey the known
solutions fitting the problem. A fairly good survey is found in [5].

si
di
0 X L 8
Polt) Btx) P ll)
vig(l) o (LX) vao ()

Fig. 1

a) NNumerical methods

Numerical solution methods for the basic differential equation system
of the problem give the relationship between parameters in algorithm form.
Among these, the method of characteristies and the algebraic methods derived
from them are of basic importance [[1] [2] [5]. After transforming the system
of partial differential equations to total differential equations, these are
converted to finite differences. These equations permit to determine the pres-
sure and veloeity values from initial and boundary conditions from point to
point as a function of place and time. It is an advantage that actual friction
losses can be taken into consideration, the method does not require an excessive
sectioning, the calculation is easy to survey, and arbitrary initial and boundary
conditions are easy to handle. Its disadvantage is to require some experience
and inventiveness, and the use of a computer in any case.

b) Analytical solutions

After having linearized the friction force, the system of basic differential
equations yields a linear partial differential equation of the second order, the
so-called Telegraph Equation, of which various analytical sclutions are known,
the most important being the determination in a closed form of the transient
generated by the abrupt change of pressure or velocity [6], or of response func-
tions to the constant oscillation of disturbed variables (the so-called impedance
method) [5].
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The relationship f; between arbitrary boundary values can be determined
from the above mentioned by using Duhamel’s theorem, or by expanding to a
Fourier series,

1.3. Scope

In the present work the linearized partial differential equation is solved
for the generally given boundary conditions, to directly yield the functional
relationship. Since the result contains arbitrary time functions of the boundary
values, actual input parameters can closely be approximated, e.g. by a broken
line of straight sections. The problem is reduced to the so-called Cauchy prob-
lem of the basic equation, to be solved by the method of Riemann [7].

Let us suppose at the beginning an initial condition belonging to a previ-
ous steady state to prevail:

£ =0, pol0, %) = polw)
v4(0, x) = vo(x),

hence, the values assumed at the boundaries are
Por = Po(0): pos = polL)

Vo = Vo(0), vga = vo(L)

This problem can be reduced to homogeneous initial conditions, on
account of the linearity of the partial differential equation, by superposition.
Be the new initial conditions

p(0, %) =0
v(0,x) =0
replacing boundary Values‘(l) by the following
Pi(t) = P10 — P
vy(t) = vy — vy 3)
Pa(t) = Pao — Po2
vy(t) = v — voq

The new variables at an arbitrary place of the space part are:

Pt x) = po(t, x) — po(x)

(2, %) = vo(t, x) — vo(x)

Since (3) can be calculated from (1) in a mutually unambiguous way, in
the following the solution of the last mentioned boundary value problem will
be discussed. v

5%
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2. The system of differential equations

2.1. In a horizontal pipe of constant cross-section the flow equation [1]
is given by

3 ov
18 + s (4)
o Ox Ot
where S = Ay sing v
2d

I tlc case of a linearized friction resistance S will be expressed as:
=k-v+35, (5)
Iu lamizar flow, for Re <7 2300, the pipe friction coefficient can be calculated
by the following known formula [3].
, 64 ‘ v-d
A= ——_ where Re = - .

Re Y

Substituting transforms the expression of S:

Similarly, for turbulent flow in a smooth surface pipe, for 2300 < Re < 103,
from

. 0,316
A= ,

s
V Re
0,316-914 | p |98

S :
945/4

v (6)

k and S, values to be considered in the following as constant, can be deter-
mined on the basis of the expectable set of values for v, depending on the
character of the problem (Fig. 2). In the case of v < vy, relationship (6) can
be linearized by line a. Now, comparing (5) and (6)

S, =10

0,316 -9y, |3
- 2d5/4

k

(6/a)
The approximation by a line b is advisable if v does not change its sign during
the examinations, and it is changing in a narrow range,

v € dv

From the equation of the straight line b, k and S, can be determined.
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Fig. 2

2.2. The equation expressing the continuity of flow is the following:

ot 224 2 —¢ @
Ox o S
where
W=
0
E, = 1
1 0 1
e
E; d E,

E
From the system of differential equations (4) and (7), substituting Eq. (5), a
linear partial differential equation of second order is obtained. To this end
Eqs (4) and (7) will be partially differentiated with respect to ¢ and x, respec-
tively. Supposing that the mixed derivatives are identical, arranging yields:

oy ., O , 0%

i =0, 8
B2 ot Bx ®

Similarly, by differentiating Eqs (4) and (7) with respect to x and ¢, respectively
and arranging:- : : . :
62 8 8° '
R e N )
or ot O '
Egs (8) and (9) are formally identical with the known basic equation for electric
transmission lines.
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3. Reduction of the general relationship f, by introducing new
boundary values

The differential opefators for Eqs (8) and (9) are identical, hence:

F-ot,x)y=0
F-p{t,x) =10
where
F = o -}—k—a—~—102 &
or® Gl: Bx?

The symmetry of pressure and velocity with respect to the above differential
equation will find an important application, permitting to replace”relationship
(2) by a function of three variables without impairing generality.

This is obvious from writing relationship (9) with variable ¢(t, x) repre-
senting p or v.

Fop(t,z) =0 (10)

To the above equation the boundary values should also be given in terms of
the new variable.

@.(t) = (2, 0)

() = 12| (1)

Initial conditions

It is evident that equation
So(pa(0)s @2(2)s u(8)) = O (12)

relating boundary conditions (11) can produce solution of the original Eq. (2),
with any boundary condition.

As the first step we shall prove that differential equations (4) and (7)
can bring boundary values (3) and (11) into a mutually unambiguous relation-
ship.

To prove this, first consider Eq. (4). Upon considering Eq. (11) too, this
can be written in the following form.
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Forg,=psi=1,2

= — S(vy(8)). (13)

That is, () can be calculated from v,(t), and vice versa. Similarly Eq. (7)
yields:
Forg,=v,;i=1,2

dp() _
dt

that is, ,(¢) can be calculated from p,(t) and vice versa. In the above Eqgs (13)
and (14) time is the only variable, therefore differentiation is indicated with
respect to one variable. Now it is obvious that suitably interpreting g, boundary
values (3) and (11) can be calculated one from another by means of Eqs (13)
and (14).

Let us now suppose relationship (12) to exist and to be known, and also
that it can produce solutions of Eq. (2) for all boundary conditions possible.

The given boundary conditions and the indices of the relationships for
the unknown boundary values are given in Table I.

owp (1) + (14)

Table 1
Gi‘;‘;g:ﬁgm Course of determining the unknown parameter
input (response function)
characteristics)
(1) L. p=g¢
pa(t) ) Po— lPo (12) = 3, (13) — wy(2)
' On the basis of p;, (14) — v,
2) wr @y == v4t)
210 L p=gq
v,(t) On the basis of v, (13)— y,,
(12) — @2 = p«()
2. vy, = ¢,
On the basis of p;, (14)— y,.
(12)—» Pa = Ug(t)
j 20 1. o=
vy (1) , P:= <P~ (12) — @, = py(t)
. ovp =
On the basis of p,. (14) — vy,
(12) — o= vsft)
v, (t) L vy,=¢
va{t) vy = @a (12) = v, (14) — p,(t)
2.p=m
On the basis of v, (13)— vy,
(12) — g2 == p:))
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The number of given values is always two, to be explained in solving dif-
ferential equation (10).

Combinations obtained from data by index change were not regarded as
different, therefore these are omitted.

Table I serves as directive in an actual problem, on the other hand it
proves the generality of Eq. (12).

4. Solution of the differential equation
4.1. Setting the Cauchy problem

Considering differential equation (10) and the first two parameters from
Eq.(11) as given, we obtain the so-called Cauchy problem for (10). This typical
initial value problem is applied in our case for atypical boundary value prob-
lem,

For the sake of solution g,(t) is supposed to be continuously differentiable
in sections, and y,(¢) to be continuous. At the same time, these are important
sufficient conditions for the mutual unambiguity problems discussed in con-
nection with Eqs (13) and (14).

The problem will be solved by the method of Riemann. The theory of
the solution is discussed in [7]. As the first step, Eq. (10) is to be transformed
to the characteristic canonic form. :

4.2, Transformations

The characteristic canonic form is obtained from the canonic form (10)
by the following transformations of independent and dependent variables.
New independent variables [, y are introduced in place of ¢, x, such as:

= wi -+ x _
(15)
y o= wt— x
The above co-ordinate transformation images a new variable from gz, x), i.e.:
ACKIR

Hereafter new dependent variable z(l, y) is introduced in place of y(I, ¥),
such as:

k J
+(Ly) = 1(ly)erw (16)
4.2.1. Transformation of the differential equation

By transformations (15) and (16), — omitting details, — differential

equation (10) becomes:
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8%
8lgy

- faf

— Bz=0 (17)

where

4.2.2. Transformation of the boundary conditions

For the solution the value of z(I, y) should be known on the original time
axis (now the line y = I), as well as the difference of its partial derivatives, of
course expressed in terms of ¢, v,.

Fig. 3

Making use of transformation equations (15) and (16), and omitting
details, these will be:

f (1 &
d(ly) =Ll =p (-— o (18)
=i w
Oz Oz [y kL
= L) — = () =y |—| e 19
o D o) yl[w} (19)

Differential equation (17) has to be solved on the basis of boundary conditions
(18) and (19).

On account of assumptions the set problem can be stated to have an
unambiguous solution in the range limited by lines drawn from the terminal
points of the examined time interval parallel to axes y and [, and the ¢ axis [7]
(Fig. 3). We shall use only the values of the solution, assumed on the line
x=1Lie y=1—2L.

4.3. Solution by the method of Riemann

The Riemann function of Eq. (17) is known.

R(&n,Ly) = L2V (& — D1 — ) (20)
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where I is the zero order Bessel function of the first kind with pure imaginary
variables.
The expression of the Riemann function suited for calculations is

R, 1,y) = &i 2 [B(é——l ! ))]rn

e ml2

3

In Eq. (20) & and 7 are the auxiliary integration variables for [ and y, respec-
tively.
0

0<n<y

)

I/\
!/\

The solution of the homogeneous differential equation can be written directly
by means of Riemann’s formula [7]. At an arbitrary point X(/, y) (Fig. 4):

[\V]
o
Ry

z(X)=§[z<X1)R(X1,X> A(X)R(X, X)] — J (Pdy — Qds),  (:

XX
where

129 9R
Pz__[_z_(g,n).3~z. ]
2 [ oy an

17 oz oR
= |— ‘R — —.
z[ag(fm . GE]

Substituting ¥ = [ — 2L into (22), on account of the fixed flow pipe length,
from (21:)
R(X, X) = R(y.5,Ly) =1

R(X,, X) = R, 1,1,y) =1,

we find:
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(1 — 2L) = _f_ [2(0 — 20,1 — 2L) + =(I, )] — J (Pdy — QdE)

P
XX,

Substituting the P and @ values into the above equation, taking Eqs (18), (19).
(20) into consideration, transforming the line integral along the path X X,
to a common integral, further retransforming z on the basis of Eqs (15) and (16),
arranging and substituting § = wt, I = w7, leads as final result to:

1 kT 1 _ k-T
Pt = T) = -qalt)e 2 + @t —2T)e > +
1 - -Iit-%- ET t« YT Ly — l
fye T {wl(-c)zo(zl BE—D1—y) -
t—2T -
i k
o o1 | a

where the substitution 4, has the following meaning:
A ={l=wné=n=w 1y = wt — 2wT'}

Eq. (23) is seen from the argument —, () or from the lower limit of the integral
to be interpreted for the time variable —t > 27T, that is
2
1> ——Ii .
w
This result is in good agreement with the physical course of the wave
phenomenon,
For t < 2T, the change generated at 1 by y,(f) and y,(¢) do not fill out
the range @, shown in Fig. 5. Thus, no ¢,(t) interpreted at the place x = L
can be obtained from (23).

t
2T 4
5
wilt) i \
vilt) 1 | @alt)
oL | |
a1
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Eq. (23) canbe made valid also for the condition ¢t <C ==, — for a range of
w

type — 2, — if the L value is chosen to correspond to the pipe length where
@,(t) and py(z)

determine unambiguous conditions in the given range of interpretation of t.

t
This condition is expressed by the equality T'= e
Substituting this into (23), and remembering of the existence of an undis-
turbed initial value, namely 0 at x < L in the left-hand side of Eq. (23), further

of ¢,(0) = 0, we obtain:

1
k-t -
0=gs(0)e T + e j {wl(r LEABE 6 —y) -
As
8, 8l kot
- (T . e 3 dr 24
p1(T) Y & } (24)
2
for < 2L = 2T,
w

where 4, = {l =wi; =N = wr,y = O}.

Integral equations (23) and (24) altogether give the required implicit functional
relationship (12) for any time range. The expression of any of parameters
@1(t), y4(t) from Eqs (23) and (24), respectively, means the solution of the inte-
gral equation: The solution requires no further restrictions beyond the quoted
assumptions. '

Approximative solution of the integral equations

Completing the previous assumptions for functions ¢(t) and y(t) by sup-
posing w(t) to be differentiable, it is evident that functions ¢(t) and p(t) can be
given with any required accuracy as the linear combination of their values
assumed at discrete points of time.

Accuracy depends on the density of the discrete points of time, depending
also on the linear combination.

In the fixed time intervals, ¢(f) and y(f) are given by some, arbitrarily
chosen, interpolation which can be expressed by linear combination.

Linearizing ¢(t) and y(t), integral equations (23) and (24) can be written
in the linear operator form. By fixing the operator basis, i.e. the system of
discrete times, the linear operator matrix can be determined. In this way
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Egs (23) and (24) assume the form of matrix equations. A single equation is
obtained since Eq. (23) is the “continuation” in time of Eq. (24). Our equation
will be approximative since @(t) and y(¢) are approximated by previously
chosen function forms.

5.1. Choosing the approximating function form (i) and w(t)

With respect to the wave character of the examined phenomenon it is
advisable to allow a break in ¢(f) and y(t). Therefore the approximating function
form will be a broken line function (Fig. 6).

@1 Ho \
¥t

o

e W

{1

¢ ol o b I lther... tn= 2T '

et ez - INemM

@
|
2

| w3/ | t
:“0:“7— L fN“T... tNY"M"T

The functions start from a homogeneous initial condition, from 0.
Let the examined time interval at x = 0 be [0, ty.,]. Denote the end
of the time interval belonging to the range Q,, by t,:

ty=2T.

Intervals [0, ty] and [ty, ty.,] are divided to N and M partial intervals, re-
spectively.
The range of interpretation for ¢,(t) is the time interval [ty - T, ty.
~— T, to be formally extended to the interval [—T, ty.,, — T], such as:
for t€(— T, tny — T),

@s(t) = 0.
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Thereby ¢,(t,) can be achieved to figure with as many values as ¢,(¢,) and ,(¢,)
The values at point ¢, of broken line functions approximating the func-
tions ¢4(t), p,(t), ¢,(t) are marked with a subsecript.
01ltn) = g1 ¢oltn — T) = g3, wulta) = 1

In this way the boundary values can be given by the following vectors.

~ - r - — -
— — I 1
¥ = o Fa = 0 Py = Py
0
2% : By
: 0
N N+1 Y
%1 2 1
N+ N N+M
71 2 1
L _ L 3 [ .

In the interval [1,,, ¢

For ¢ E [tm n+1]

.+1] the functions are substituted by a straight line.

L gt
() = ¢ + -—————-—‘i fl (t — t.).
‘n+1 " *n

p4(t) and ¢,(¢) can be written similarly to the above relationship.

Calculating the integrals in the right-hand side of integral equations (24)
and (23) at times t = t,, . . ., [y ., substituting the above values, and making
use of the theorem of the additivity of integrals, replacing (21) for the Riemann
function, applying the binomial theorem relative to the raising to power, fur-
ther the theorem relative to partial integration, the integral equation can be
written in the following form. ‘

(f_zzgjjﬁl'L@(f_l (25)

where p and @ are (N + M) x (N -+ M) matrices of elements to be caleulated

¥ = [a;]: i, je[1, N + M]

k-i; ~

j:e 4 Dl(z‘i'ﬁ ti?j — 1)

J<i ay=e * [Dl(tivtiﬂj — ) + Cy(t;s tiej)]
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_ k-t; n k-T
j:i ;al‘j: e 2 ' 2 Dl(tf’z ‘T,j e 1)

k-t; kT

i—N<j<iiay=e 2 72 [Dtn2-T,j—1)+Cytn2 - T.j)]

k-t k-T

j=1i— N a;=e 2 32 G 2T, §)

J<i—DNya;=0
D = [b;]s 1, je[L, N 4+ M]

for j>1i; b; =0

for1<<i<<N

1 kt; _ kY
j=1i bij=7e e * Dy(tntng—1)
k-t;

J<is by=e = [Dyftypt,j — 1) + Cofty 1 )]
for N<<i<< N+ M

k-t;  k-T k-T

j=i by=e T2 Di(tiﬂz'T’j—l)+%e

lf-t,"—li
1“1\T<]<l sz:e_ e [Dz(zz':zT-]_1)+C2(t1'2T-])]
1 kT ki | kT
j=1-—N bu——o-e 2 obe 2 2 Gy, 2T, )

j<i—DN;b;=0

The three variable functions C,, C,, D, D, in the above relationship can be
calculated as follows. '

t 1
Cytyr 1) = {1 + ..—-_J Gyltyrtm) — ———— Hy(tet,m)
t‘n—]—l — iy tn—f—l T tn
t, 1
Coltstyn) = |1 4t | Golts 1y, 1) — —————— Hy(tss2,510)
‘n+1 7 fn n+1 7 Iy
t
Dl(tsv Iys n) + Hl(tsv tys TL) — e Gl(ts, [ "«)
n+1 " L% tn-!—l — tn
1 t,
Dy(ts,t,,n) = — Hy(ts, ty,n) — Gy(ts, tyy 1)

lniy — Iy they — I
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where
Gy(ts, 1y n) =
§ B p2m=1 % ) 2m—i (I l] i ( 1) 2m—”z;—j 1
P A( . ( s AT e
moo 2-m! i=g \ 1] j=0 J )

(7"1 -1 —J) I — 1\r[ k; (sz-iﬁ'—r)}t"“

r tn
) H(t5, 15, n) =
1'% Bm u,'zm-i—l moim\ . 2m—i om — 2m— z—_/ 1 1
- > e s [ s
m=0 ="M o T j=0 L ]

r=0 _]f_
2

9 T k- L tnsy
. ["m t J 1) r! ( _— 1)r |:e 2 (T?_m—z—J—r+l):’
tn
Gy(ts ty,n) =

v BMmw?™ M- [m — IJ m_i-2
R t S
q .

2m — 1 — 2

) t(— 1)

moo 2m!? i=0 i i=0 J
2m—i—j-2 1 k-r Y tny
A e Y
S e @y |
re=() o tn
[ 2 ]
Hy(ts, tgo n) =
V Bmu®m m=1im 1), %mzi=2 90 7.2y .
- - P 6> d(— 1y
—— ) 12 9 s . 9 = . 5
m=o «"M: i=0 J j=0 J
Im—i—j-1 i . B Kt T
. 5‘ —1 2m L J 1 TI( o 1)1’ e (flm—i-j——r«-l) n
ot r
r=0 L in
[ 2 ]
The function in square brackets is meant as the difference between the indicated
limits.
Matrices ¥ and @ can only be computer determined. The rather time-
consuming calculation is worth while if a given pipeline — liquid system is

examined, to find the response functions of various disturbances.* Namely

* A part of the present paper was prepared, in connection with the research work
entitled “New type of pressure control system” [4], under the leadership of Dr. Imre SzaB6,
for the control problems of the oil pipeline “Friendship II”.
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matrices depend on y on the known constant parameters of pipe flow, but do

not depend on y and ¢, i.e. the values of pressure and velocity at both ends of
the flow pipe. '

The data necessary for determining matrices @ and ¥ are
Ew, T ot 65 ... tyey

There are 7 terms in the series of the Riemann functions taken into consider-
ation. Concrete calculations proved the accuracy of matrices obtained for J7 =

10 to be sufficient.
6. Dimension analysis

Divide Eq. (28) throughout by the dimension of ¢ and write the dimen-
sions obtained in this way. Consider that

B
T
dx

¢2[1] — O[1]gi[1] + P[length]y, [m }

Examine the data determining matrices @ and .

o4 :f(k, w, {t,&‘f”‘)
Since k = [ _1 ], w= [}f_n—gﬂl—] , b= [time] .
time time

thus [Iength} =2,

w
Factoring out—k—from matrix ¥, multiplying all the elements of the

matrix by —, and designating the new matrix by ¥”, we obtain;
w
w o,
=0 ¢+ — ¥y (26)
- - k
r_ |k .
where V' = | —ay 20
w

Matrices @ and ¥” in Eq. (26) are relatively dimensionless.
To eliminate the dimension of time, let us express t,, ..., t

n * EN-M
as the relation of a real set of numbers, {a)n}, and of k.

6 Periodica Polytechnica EL. 18/2.
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In place of time the dimensionless w, can be given. It is important to note that
fort, =2T= %I-V— actually Eq. (24) is converted to (23). This appears in matrices

@ and ¥. N is the number of non-zero elements in the first column of the ma-
trices.
As a conclusion it can be stated, that it is sufficient to replace @, ¥, k, w,

{tn}f+ﬂ by
D, ¥, w77

nfi
For an arbitrary group of data k, w, {tn}‘l\?'TM, Eq. (26) is valid, the dividing
points of the examined time interval can be calculated from Eq. (28).
N can be read off some of the matrices, and evident from the range of
interpretation of Eq. (24) that the relationship

ON

2k

L=WT=

is valid for the length of the examined pipe section.

7. Example

This method will be illustrated on computer determined matrices @
and ¥, belonging to a time interval and {wn} Matrix elements are given in
Table II. The pertaining {w,} is the following.

{w,} ={0.81.62.43.244.85.6 64 7.2 8}
Evidently, N =10, M = 0.

The above will be applied for determining the shutting off of a liquid flow.
Data: d = 0.6 [m]

w = 1000 [m/s]

L = 10° [m]

o = 880 [kg/m?]

y = 0.41 - 107 [m?s]

Initial velocity before the final control element, at the end of the pipeline
is v =2 [m/s].

Velocity has to drop to 0 during 40 [s]. This problem is calculated by
superposition, as a veloecity reduction from 0 to 2 [m/s] (Fig. 7).

(6/a) yields k = 0.04 [1/s]. The time interval calculated with the matrices
with the above data (N = 10, M = 0) is

Iy = ‘?T-—.—(%I-\—'— — 200 [s].
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Accordingly the length of pipe that can be examined is L = wT = 10°
[m] at the maximum. Time division is seen from {wn} to be uniform, one divi-
sion corresponds to 20 [s].

Denoting the end of the pipeline by subseript 1, and taking into consider-
ation that M = 0 causes the examined time interval to be [0.2 T] hence v,,
P are known, and identical with the unchanged homogeneous initial condition,
the substitution v; = p, can be selected from Table 1.

v [mfs]

7] 20 40 t[s]

Fig. 7

From Eq. (13), substituting Eq. (5) for S, our data lead to the following
vector y; approximating the velocity function in Fig. T7:

di — -1
Pr=—0 —@‘{‘TH ~| 158.4
o 70.4
70.4
70.4
.. . |

i, can be expressed from Eq. (26). Since ¢, = 0, further, since x, and thus also
de,
dx

== Y, are negative, the pipe end being denoted by 1, we may write:
¢ = }-—z— s LTI

Performing the operations, we obtain the following values for ¢, = p,
in intervals of 20 [s]. -

¢, =p =105 | 14.06 [ N }
-~ 28.63 m?
32.95

37.02
40.83
44.38
47.71
51.29
53.83
56.66

6%
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Table II
v Matrix
LIT47400 <+ .0000/--00 . .0000/<00 - .0000/+-00 - .0000/~ 00
+ .2628/--00 +.1725/400 = .0000/-00 4+.0000/-00 | -+ .0000/+ 00
4+ .1686/+00 - .2529/-00 . — 1703/ 00 +.0000/+-00 = .0000/-- 00
+.1081/-+00 1533/ 00 ~ .2433/-00 — .1682/+00 | - .0000/+00
-+ .6922/—01 4 .9496/—01 — . 1425/+00C £ .2338/--00 = —.1661/= 00
4+ .4429/—01 4 .5780/—01 L .8263/—01 - .1303(+-00 | +.2246/4-00
4 .2831/—01 + .3499/—01 ~ .4730/—01 4. T107/—01 | + 1186/ 00
+.1807/—01 -+ .2105/—01 ~ .2663/—01 4.3767/—01 | - .6023/—01
+.1153/—01  +.1258/—01 +.1468/—01°  -=.1916/)—01 | - .2887/—01
+.7341/—02 4. T448/—02 — . T866/— 02 ~.9131/—02 | = .1250/—01
& Matrix
-+ .4912/-+ 00 + 0000/ 00 — . 6000/ v0 4 .0000/--00 - .0000/--00
—.2672/—01 | - .4826/-00 £ .0000/=-00 - .0000/-00 - .0000/+ 00
—.2630/—01 | — .3934/—01 = .4740/-00 = .0000/-00 -+ .0000/-+ 00
— .2300/—01 —.3371/—01 — .5147/—01 1 < .4636/+-00 - .0000/-- 00
—.1886/—01 —.2706/—01 —.4049/—01 | —.6313/—01 - .4573/--00
— .1484/—01 — .2085/—01 —.3053/—01 | —.4666/—01 | —.7433/—01
—.1135/—01  —.1560/—01 —.2235/—01 = —.3344/—01 = —.5225/—01
— .8509/—02 = — .1143/—01 — . 1600/—01 —.2341)—01  —.3583/—01
— .6276/—02 — 8239/—02 —.1126/—01 ©  —.1608/—01 = —.2407/—01
— .4571/—02 — .5860/— 02 —.7810/—02 = —.1088/—01 = —.1589/—01

In Fig. 8 the obtained curve a of pressure change has been plotted, and so has
been the pressure change curve b obtained by the method of characteristics
[4], for the same data, taking into consideration a quadratic attenuation. The
linear attenuation is seen to ““over-attenuate” in the range of low velocities,
but for relatively short time interval, at the beginning of the transient, the
error is low.

Summary

For the determination of pressure and velocity transients arising during the flow of
incompressible media in a pipeline a general implicit integral equation can be obtained by
linearizing the basic differential equation. Approximating the transients by a broken-line
funetion transforms the integral equation into a matrix equation. Coefficient matrices can
be calculated from the previously known constant parameters of the flow and are constant
for a liquid-pipeline system. The matrices are not singular, thus by considering also the deter-
mination, dynamic response functions can be established for any disturbance.
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©.0000/4+-00 | +.0000/--00 | --.0000/+00 | --.0000/4+00 | -+ .0000/+00
+.0000/+00 | 4+.0000/+-00 | --.0000/-00 | - .0000/+00 | --.0000/--00
+.0000/+00 | +.0000/+-00 | --.0000/-00 | --.0000/+-00 | --.0000/-00
+.0000/-00 | +.0000/4+-00 | --.0000/-00 | --.0000/+00 | - .0000/--00
+.0000/+00 | +.0000/4-00 | .0000/4+-00 | -.0000/-00 | - .0000/--00
+.1640/-00 | +.0000/+-00 | .0000/400 | --.0000/-00 | - .0000/--00
+.2156/4-00 | +.1619/-00 | +.0000/-00 | .0000/4-00 | --.0000/+00
+.1073/4-00 | +.2068/-00 | +.1599/-00 | £ .0000/4-00 | -4 .0000/--00
+.5009/—01 | +.9657/—01 | -.1982/-00 | -.1579/4-00 | --.0000/--00
+.2084/—01 | 4 .4063/—01 | .8628/—01 | --.1898/4-00 | -+ .1558/--00
+.0000/+00 | +.0000/+-00 | 4.0000/--00 | 4.0000/+00 | -+ .0000/+00
+.0000/+00 | +.0000/+00 | 4.0000/+-00 | --.0000/+00 | --.0000/-00
+.0000/4-00 | .0000/+-00 | +.0000/-00 | -4 .0000/+00 | -+ .0000/+00
+.0000/-00 | +.0000/+-00 | 4.0000/4-00 | --.0000/+00 | -+ .0000/+-00
+.0000/4-00 | +.0000/-00 | 4.0000/-00 | -.0000/+00 | +.0000/-00
+.4490/400 | 4-.0000/4-00 | --.0000/--00 | --.0000/+00 | --.0000/--00
—.8507/—01 | -.4409/-00 | --.0000/--00 | --.0000/+00 | --.0000/--00
—.5728/—01 | —.9538/—01 | -.4319/4-00 | -+.0000/-+-00 | --.0000/+00
—.3773/—01 | —.6178/—01 | —.1053/-00 | -+.4250/4+-00 | -+ .0000/+ 00
—.2436/—01 | —.3017/—01 | —.6578/—01 | —.1147/--00 | -+ .4172/+00
p 05| L, b
50t
I
0}
100 200 1 [s]

Fig. 8
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Symbols

— pressure
— flow velocity affected by a sign

— time variable

— place variable

— pressure drop of the liquid of unit density flowing in a pipe of unit length
Reynolds’ number

— Young’s modulus

— pipe diameter

— length of the pipe section

— differential operator

symbol of a functional relationship

— attenuation factor

— transformed pressure or velocity

constant characterizing the flow

transformed independent variable

A — symbel of a point

r. s, ¢, n, m, i, j — subscript variables

Bessel’s function

— Riemann’s fanction

line integral arguments

— set symbolizing the substitution value

wave propagation velocity

the limit of subscript variable m — the number of terms in the series of
Bessel’s function

ettogme ~ o
o
|

A ey
|

3}

RIS L Ty
) -
! | bl

|

-
|

— auxiliary functions

mOSO

unit of length, meter

unit of time, second

unit of mass, kilogramm

unit of force, newton

— designates the elements of matrix ¥
— designates the elements of matrix @

=5
B
N

5
=
!

o T
i
[ha

N, M — number of the partial intervals of time

T — time of propagation of an effect in the pipe section
0 — density

o — pipe wall thickness

A — pipe friction coefficient

@ — general boundary value

0 — partial derivative of ¢ with respect to x

7 — transformed pressure or velocity

&, 15, T - auxiliary integration variables

02 — the examined place-time range

g } " matrices

@ — column vector formed of the general boundary value

column vector formed of function y
element 'of the set of real numbers

el
P
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