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Introduction

In multipolar direct current machines pole flux values are not equal
because of differences in pole excitation, of production and assembly inaccu-
racies resulting in different air gaps, and of other reasons. Consequently,
voltages induced in the parallel branches of lap type armature windings are
also different, resulting in compensating circulating currents to flow in the
windings, causing additional losses, increasing the current load on brushes,
impairing commutation. Use of equalizing eonnections, that is connecting the
theoretically equipotential points of the winding by a conductor of possibly
low resistance permits compensating currents to close inside the winding,
without loading the brushes. It follows from Lenz’s law that circulating cuz-
rents closed through the equalizing connections produce a magnetic field tend-
ing to reduce differences in pole fluxes, the asymmetry of the flux [1]. Of
course, compensating currents closed through the brushes in lack of equaliz-
ing connections behave similarly. In the following, a calculation method for
compensating currents flowing in the multipolar simple-lap windings without
equalizing connections will be described. The calculation method is based on
the symmetrical components transformation.

1. Symmetrical components transformation

Any quadratic matrix A of n order can be diagonalized by means of the
similitude transformation, if it has n linearly independent eigenvectors, i.e. it
is always possible to find a non-singular transformation matrix T where the
relationship

TAT = diag (Zg, Ao Ao o v v 5 Any) (1)

is valid. The elements 24, 4,, ..., A,_; of the diagonal mairix are the ecigen-
values of matrix A and the transformation matrix T can be formed of the eigen-
vectors s, 81, .« . . , 8, pertaining to these eigenvalues [3].

T=[s0,8,80+::,81_1] (2)
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The diagonalizing process, for which the ecigenvalues and eigenvectors are
sought for is considerably simplified, if the matrix to be diagonalized is cy-
clically symmetrical. Let C be a cyclically symmetrical matrix of n order,

The eigenvectors are independent of the elements of matrix € and they con-

tain the varions powers of the n-th unit root [4] [5]. To obtain the individual

compounents in the forms usual in electrical engineering, the conjugate of the

n-th root will be used, a unit root itself. The i-th eigenvector is found to be
)

se = @& ... 8 i=0,1,2,...,n—1 (3)

where

(4)
The relationship €s; = 4s; valid for the eigenvalue leads to:
bi=Co+Cg +Cogi + ...+ Co_ gt i=0,1,2,....,n--1 (5)
By inversion, we obtain:
-1 L4, (6)

n

The connection between the original quantities x,, x,,... %, and the new
g 1> ¥z

quantities xg, ¥, a3, ..., x5, introduced by the transformation is given by

matrix T:

x = Tx’ (7)
=T k. ' (8)

The new quantities introduced by the transformation are named the sym-
metrical components of order 0, 1, 2, ..., n—1. The component of the order
number 1 is usually named a component of positive order, while that of order
n—1 a component of negative order. Relationship (7) yields the original
quantities from the symmetrical components, while relationship (8) gives the
rule of decomposition to symmetrical components. By using (2), (3), (6), on

the basis of (7) and (8):

1

TN S Y o Lo 9
Xirq X T 81X T B2y e 7 X 8y ( )

; s 2 — . §
= I/n(x, 4 gixy + ging -+ ...+ gi7ix,) 1=90,1,2,..., n—-1. (10)
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Applying the transformation, equation e.g. y = Cx is transformed to

y = TICTY = diag (Jig Jqs Jras + « + 5 S )X .

This corresponds to n equations relating the symmetrical components of
various orders:

¥i= Aix; 1=20,1.2,...,n-—1.

In the following let us suppose that quantities x, x,, . . . , ¥, are all real and
n = 2p, i.e. n is even number. Thus on the basis of (4):

s 7T,
— =1

=e " P (11

O

By using relationship (10) we find that the 0-th and p-th components are real,
while the others are complex:

, 1 , ,
Xy == —9—-(3:1 S 2 SIS x?p) (12)
=p
, 1 ‘ ]
xp—__-_.;;(xl_xz”l"xs_xé—r--.—Z\Zp). (13)

On the basis of (11) the relationship

=g i=1,2,...,p—1. (14)

is seen to be valid for any k value. By using this, it follows from (10) that
N I ¢ -
Xpp=2x; 1=1,2,....,p—1. (15)
According to this relationship, the couples of symmetrical components
1 and 2p — 1, 2 and 2p — 2, ete. are conjugates of each other,

2. The caleulation method

a) Asymmetrical pole excitation

Fig. 1 shows a part of the scheme of a direct current machine of 2p poles,
as developed into the plane. The ideal pole arch is b, the pole pitch 7, the
ideal length I. The air gaps 0 below the poles are identical. A number of =
conductors are arranged along the circumference of the armature.

Fig. 2 is the schematic drawing of the winding. There are 2p parallel
branches formed, accordingly the resistance of one branch of the winding is
R =R, - 2p, where R, denotes the armature resistance. Contact resistance
of the brushes is neglected. The magnetic circuit is considered as linear. Both
figures are indicating the directions of excitations, fluxes, currents and voltages
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assumed as positive. Let us determine the distribution of armature current
I, for different pole excitations @, @,,...,0,, Only the steady-state is
examined. To solve the problem, the excitation law will be written for the
magnetic circuit, and the voltage equation for the winding.

Let us take e.g. the magnetic circuit closed through the poles 1 and 2.
Neglecting the magnetic resistance of the iron, the excitation law for the
closed loop at a distance x from the axis of the poles is:

- 24~
0, + 6, + (I, I) [1 — 25— s, + )
8p T
Integrating for the complete pole arch b:
01+92+ 8;(11—13) :—/1;11(@1"1"@2) (16)
P

where /,, denotes the magnetic conductivity

Lobl

Am =
]

(1)
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Writing the excitation law also for the other magnetic circuits relationships
similar to (16) are obtained. Or, in matrix form:

110 0...0][0, 1 0 —1 0 0...00]1I, |
01 10...0/06, 0 1 0—1 0...0||1,
001 1...0/[0; |=2)0 0 1 o0—1...0{I |_
100 0...11/0, 0—1 0 0 0...1]|I,

‘110 0...01 @,

011 0...0( 2,

:‘/1m1 0 0 1 1 O QD& (18)
100 0...1] 0,
L_ i § B I

By summarizing the voltages induced in the conductors belonging to e.g.
winding branch 1, and adding to this the ohmic voltage drop, we obtain:

~ zn
Ul = T(@l+®?p) +IlR

By summing up the voltage equations in matrix form:

[ U, ] 1 0 0...0 1i[o ] 1 0 0...0] I, |

U, 1 1 0...0 0}] &, 01 0...0|| 1,

U, :% 0 1 1...0 0& |Lpg|0 0 1...01|1I, (19)
| U, | 000 0...1 1|, 00 0.1 11

Quadratic matrices in (18) and (19) are cyclic matrices of 2p order. Introducing
cyclic matrices C;, C,, C; the two matrix equations are:

€0+ -2 ¢I=dA;¢® (20)
8p
U =2"¢,® -+ REI (21)

4

By symmetrical component transformation, that is, introducing the sym-
metrical component vectors @, U; I} @  according to (7), by means of trans-
formation matrx T:
C,TO' -+ = C,TI' = 4;'C,T®’
8p

ETU' = Z2.C,T®’' -+ RETI

-
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Multiplying both equations by T~! in front, and using relationship (1), we

obtain:
2Ot + ggz(z)i Ii= A;}/‘.(l)i@; (22a)
Uj = =% 2y®; +RI; (22b)
i=0,1,2,...,2p —1 (22b)

The eigenvalues of matrices C;, C,, C;, on the basis of (5) are:

;.(1),' =1 + gi
7-(-3)1‘:1_{2% i:0,1,2,...,2p~1 (23)
Mg =1+ gi" 2

The problem can be solved by equations (22a) and (22b) instead of the original
matrix equations (18) and (19). The resulting symmetrical components lead
to the solution by using Eq. (7).

Let us examine each equation obtained for the individual components.
Let i = 0. From (11) and (23):

}-(1)0 = ;-(3)0 = 2, }-(2)0 =0.

Equations for the quantities of order 0 are
Of = A7'P;
Uy = zn®; + LR

The obtained equations correspond to those valid in normal state of operation.
Current I; dees not react on flux @, this latter is determined by excitation
©); alone. There is no armature reaction. On the basis of Fig. 2, if all the brushes
are conducting current,

I=I+I,+...+1, (24a)
Uy=U,=Uy,=...=U,, (24b)

From relationship (12), Uy = U, Ij = 1,/2p.

Let i = p. The eigenvalues are iy, = A5)p = Agp = 0. From (24b)
and (13), U; = 0.

Accordingly, relationship (22a) does not determine the magnitude of
@, while from (22b) it follows that I, = 0. If the fluxes have only p order
components, then on the basis of (9) @, , = §,P;, = (—1)'®,, where @; is
seen to be real. Accordingly, the pole fluxes are @, = —@, =Py = —D, =
=...= —Dyp = @, i.e. the flux is passing below each pole in the same
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direction. The axial homopolar fluxes can be closed only through the bearings
and end-shields, their intensity being determined by the magnetic resistance
of this circuit. The homopolar fluxes do not produce compensating currents.

Let i=1,2,3,...,p—1. The i-th and (2p—i)-th components were
seen to be conjugates and the same is true for their equations (22a) and (22b).
consequently it is sufficient to discuss the equations for the components of
order 1, 2, 3, ..., p—1. Dividing Eq. (22a) by (1), and multiplying Eq. (22b)
by Ai/Aq> we obtain:

O+ 2 (1 — g\ = AP} (25a)
8p
UKl — &) = jzn sin (51 i Jq);. LRI — &) (25b)
p

t=12,...,p—1

The equations are further simplified by introducing the reduced currents and
voltages I, and Uj, respectively:

I = (1 — ) (26a)
Up = (1 — g)U, (26b)
0+ . I, = A;'®; (27a)
8p
Ul — jzn sin [i i) @, + RI, (27h)
p
i=1,2,....,p—1 (27b)

Eliminating @] from Eq. (27a), and making use of (27b):
U, = 220X, + (R + jX)I, (27¢)
where X; denotes rotation reactance,

2

X, =n— 5‘—1:] : (28)
8p P ‘
If relationship (24b) is valid, then on the basis of (10):

A, sin

L1 . :
Ui=—=Ul+g+g.. .+ )=0i+0.

Using relationship U; = Uj, = 0, Egs. (27a) and (27¢) simplify to:
1

-0, —
1+ jé;

(29a)
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H

. 8p &
T it S 5 LA 2
r,=-—j—_9 1o (29b)

where & = X;/R. Current and flux loci plotted from (29a) and (29b) respec-
tively are shown in Fig. 3. The loci descriptively show the course of @} and

o

Ii.. The parameter is §;. Eq. (25a) demonstrates the examined current com-
ponents to react on the formation of the flux. From relationship (27a) those
symmetrical component systems with identical Ij, appear to exert an equal

armature reaction. On the basis of relationship (27¢), in turn, it can be stated

o _ fi:’ P
70 ,

: I

Ui'r=0 f;((] ir
i=12,..p=1

-958
By |\

Fig. 3

that the reduced current I}, is limited not only by the ohmic resistance but
also by rotation reactance X;. Accordingly, systems with identical X; values
behave identically with respect to armature reaction. In the table below, the
sin (r/p)i values occurring in the expression for X; are compiled up to p = 10.
In the case of an e.g. 10 pole machine not only the systems 1 and 9, but also
the systems 1, 9, 4, 6 and 2, 8, 3, 7 are seen to bhehave identically.

Accordingly, for a given value of @}, flux @7 is diminishing with the
increase of &, i.e. of the speed of rotation. If the armature is standing, no
compensating current is flowing, while the compensating current tends to a
constant value with increasing speed of rotation. For n — o<, @7 and the excita-
tion of currents I/, are in equilibrium and @; = 0. The &;, value pertaining to
the rated speed of rotation n, can be estimated. The rated pole excitation
and the armature excitation for the rated armature current are

O, = 0,410, = —%1;:— R
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sin (%;) i=1,2,3,...p—1.

1 2 3 4 5 6 7 8 E’ 9
2 |1
3 | 0866  0.866
400707 |1 0.707
5 0588 | 0.951 | 0.951 | 0.588
6 05 | 0866 | 1 0.866 | 0.5
T 043¢ | 0782 | 0975 | 0975 | 0782 | 0.434
§ | 0383 | 0707 | 0924 | 1 0924 | 0.707 | 0.383
9 | 0342 | 0643 | 0.866 | 0.985 ; 0.985 | 0.866 | 0.643 | 0.342
10 | 0309 | 0588 | 0.809 | 0.951 | 1 0.951 | 0.809 | 0.588 | 0.309

respectively. Supposing R, < 0.05 Uyy/I4n, and using (28) we {ind:

5T

p )

2
n,z%1 .
Ein [ Codiiat LR sin

8pR

e — SIn
8p A,'D.2pR,

—1

P

(ot ] z zn, D,

29,5 Oun sin {-7—6— i) .
D

gn

Since for direct current machines Oy, ~s Oy, at the rated speed of rotation
£, =2 9.5 sin (7/p)i. Considering the values of sin (z/p)i at the rated speed
of rotation reactance X; rather than the ohmic resistance of the armature
is seen to be the factor determining the current magnitude.

These results permit to establish a physical model simulating the physical
phenomena. Let us decompose each quantity x} to a real and an imaginary
part, .

xf = xig + jxig. (30)
In Eq. (27¢), replace rotation reactance X; by rotation inductivity L; =
= X;/o = X;/2mpn and decompose quantities Uj,, @, I}, using relationship
(30).

From the equality of the real and imaginary parts we obtain:
T 8P t ’ | 1
ird = T T OoLl; — oL}, + Rl (31a)

% OwL; + oL 4 + R (31b)

oo
irg —
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From the equality of the real and imaginary parts we obtain on the basis

of Eq. (27a):

QY);'d == "’1172,7 ;'d “:_ _:“ I;r(J (3 23)
_ 8p

@, = A, l@ NI | ,1 (32h)
, 8p 'l

The voltage equation of the windings dg of the four-winding (DQdg), 2p-pole.
commutator primitive machine (the currents being direct currents, thus trans-
former voltages are zero) is found to be [2]:

U, = — oL, I, — oL, + Ri; (33a)
U,=oL,I,+ oLl,+RI, (33b)
Flux relationships:
Yy == I\'Trq)d = LmID "’:- LrId (343)
y,=N®@, =L, I, LI, (34b)

Relating Eqs (31), (32), (33), (34) permits to draw the primitive machine
shown in Fig. 4. The armature resistance of the machine is R, and the rota-
tion inductivity

L, =L;,= —— 1, sin

167p? P

i

Accordingly, the component couples of various order numbers can be simulated
by means of four-winding commutator models having different rotation induec-
tivities L,. For U;, = 0, brushes are short-circuited in Fig. 4

kidia |
i
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b) Examination of small excitation and air gap asymmetries

Suppose excitation O, and flux @, of each pole to be identical, then
armature current I, is uniformly distributed among the parallel branches,
hence only quantities of 0 order exist. If the excitation of the poles differs
from the value O, by small 40, 40,,..., 40,, values, and the air gap
between the individual poles differs from ¢ by the small values 46,, 4d,.. ..,
ljé.lp, then this causes pole fluxes to differ from their operating point value
by the small AP, AD,, ..., 4D,, values. Fluxes /AP cause compensating
currents AI,, AI,, ..., 41,, to flow in the armature. According to the excita-
tion law, the magnetic circuit closing throughe.g. poles 1 and 2 is ruled by the
following relationship neglecting the small quantities of second order:

(40, + 46,) + Q (UL, — AL) = A=3(AB, — AB,) — Do (15, — 18))

mp
Ho

where

, AD 7
zlmp = "'—J
[AO 0,

is the operating point slope of the characteristic curve @, (0,) and B, the
magnitude of air gap induction at the operating point. In case of small changes
the characteristic curve is well approximated by its tangent to the operating
point, Using notations in (20), equations valid also for the other magnetic
circuits lead to the matrix equation:

CA0 = - CAT = 471,08 + D ¢,
8p o
Rearranging:
( B(S ; z A4 -1 -~
C, |20 — — A8 | + — CAL = A;,CAD. (35)
\ Ho / 8p
The voltage equation:
AU = =% ¢,A® + REAL (36)
From Eq. (35) air gap asymmetries 48,, 49,, 485, ..., 40,, are seen to be

reducible to fictitious excitation asymmetries. The vector of the fictitious
- excitation is —(Bs/u)AS. Thereby, Eqs (35) and (36) valid for small changes,
are formally quite identical with Eqs (20) and (21), thus the results obtained
in the previous item can be used directly. In the case of higher asymmetries
the obtained results can only be regarded as first approximations.
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3. -Application of this method for a four-pole machine

K. NEMETH

For the sake of simplicity, the application of the method is illustrated

on a four-pole machine.

The four-pole machine will be examined by the four phase sy mmetncal

components. For 2p = 4, on the basis of (11) §; = (—j)".

Using relationships

(2), (3) and (6), the transformation matrix T and its inverse can be written.
Hence according to (7) and (8), the transformation rules for arbitrary quantities
X, X, Xy, Xy, either excitations, fluxes, voltages, or currents, are:

x, 1 1 1 17 fxg
.l 11 -5 —1 REEA -
Gl 1 -1 1 —1]]x (37)
x4 I +j =1 —jllx
g 1 1 1 17 [,
2 — l 1 Jj -1 —j Xo
Xy 411 —1 1 1)), (38)
x5 1 —5 -1 IRREA

Let us examine now the case where there are only components of 1 and 3 order,
that is, components of 0 and 2 order are missing from each quantity. From
Eq. (38), since xg = 1, = 0,

1 . o
%1 = Y (%1 1 jxa) = %3 (39)
X, == — Xy (40a)
Xy = — X (40b)
From Eq. (37), using also Eq. (39) we obtain
x; = %1 + x5 = 2 Re (x7) (41a)
v, = j(xg — x1) = 2Im(xy) (41b)

If all the brushes are conducting current, then, as it was seen, U] = 0. On the
basis of (29a) and (29b) the loci for the component of i = 1 order are shown
in Fig. 5. From (28) the parameter is found to be:

X,  n#

£ = =
R 16R

m

Component Ij of current I, is furnished by relationship (26a):

BB b g (42)
1+57 V2
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Fig. 5

The current locus for current component I is again a circle, obtained from

the locus of I, by rotating by 45° and reducting by }/2. It follows from (42)
and (39) that

, wp_ Li—4 L+

Ilr:(1+])11: 19 “-:~] 12

b~
(]

(43)

According to relationship (41), the real parts in the locus of @] and I] show
the course of @, and I;, while the imaginary parts the course of @,, and I,,
respectively. On the basis of Eq. (43) the course of the currents (I; + I,) and
(I; — I,) can be read off the locus of Ij,, just equal to the currents flowing
on the positive and negative brush couples, respectively. In Fig. 6 these
quantities are plotted as function of &, for O, = 0. &, ~~ 10 is assigned to
the nominal speed of rotation,

The physical model which can be drawn in the present case is shown
;n Fig. 7. Assuming O, = 0, the course of the individual quantities shown
;n Fig. 6 can also be followed on the basis of the model.
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Summary

In multipolar lap windings compensating currents are flowing on account of the asym-
metry of pole excitations and air gap dimensions. Air gap asymmetry can be reduced to
a fictitious excitation asymmetry. Compensating currents flowing upon the effect of asym-
metrical excitations can be calculated by the method of decomposing to symmetrical com-
ponents. Compensating currents generated by the individual symmetrical component excita-
tion systems can be examined separately. Flux asymmetry existing in the steady state is
reduced during rotation by the reaction of compensating currents in the armature. to be taken
into consideration when calculating compensating currents. The degree of reaction is different
in the case of systems of various orders.
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