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Introduction 

In multipolar direct current machincs pole flux values are not equal 
because of differences in pole excitation, of production and assembly inaccu­
racies resulting in different air gaps, and of other reasons. Consequently, 
voltages induced in the parallel branches of lap type armature windings are 
also different, resulting in compensating circulating currents to flow in the 
windings, causing additional losses, increasing the current load on brushes, 
impairing commutation. Use of equalizing connections, that is connccting the 
theoretically equipotential points of the winding by a conductor of possibly 
lo·w resistance permits compensating currents to close inside the winding, 
"without loading the brushes. It follows from Lenz's law that circulating cur­
rents closed through the equalizing connections produce a magnetic field tend­
ing to reduce differences in pole fluxes, the asymmetry of the flux [1]. Of 
course, compensating currents closed through the hrushes in lack of equaliz­
ing connections hehave similarly. In the following, a calculation method for 
compensating currents flowing in the multipolar simple-lap "windings without 
equalizing connections will he descrihed. The calculation method is based on 
the symmetrical components transformation. 

I. Symmetrical components transformation 

Any quadratic matrix A of n order can be diagonalized by means of the 
similitude transformation, if it has n linearly indcpendent eigenvectors, i.e. it 
is always possihle to find a non-singular transformation matrix T where the 

relationship 
(1 ) 

is valid. The elements }.o' }'1' •.. , }'n-l of the diagonal matrix are the eigen­
values of matrix A and the transformation matrix T can be formed of the eigen­

vectors so' 8 1, ..• ,8"_1 pertaining to these eigenvalues [3]. 

(2) 
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The diagonalizing proccss, for which the eigenvalucs and eigenvectors arc 
sought for is considerably simplified, if thc matrix to be diagonalized is cy­
clicallv symmetrical. Let C bc a cyclically svnullctrical matrix of n ordcr . 

.; .. "' of': ' 

rC C C~ Cn - l 
-, 

() I 

C"_l Co Cl CIl_~ 

C C,,_~ Cn - l Co C"_:l 

L 
Cl C~ C3 Co 

...-I 

The eigenvectors are ~ndcpendent of the elements of matrix C and they con­
tain the various powers of the n-th unit root [4] [5]. To ohtain the individual 
components in the forms usual in electrical engineering, thc conjugate of the 
n-th root will he used, a unit root itself. The i-th eigenvector is found to he 

where 

a. 
<::::-1 

i 

_; :!:r i 
e . 11 

0,1,2, ... ,n 1 (3) 

(4) 

The relationship CS i = i'iSi valid for the eigenvalue leads to: 

By inversion, wc obtain: 

1 ' 
T'-I=-Tt • 

1l 

i 0,1,2, ... ,n·l (5) 

(6) 

The eonneelion between the original quantities Xl' x~, ... Xn and the new 
quantities x~, xi, x~, ... , introduced by the transformation is given hy 
matrix T: 

x Tx' (7) 

(8) 

The ncw quantities introduced by the transformation arc named the sym­
metrical components of o:rder 0, 1, 2, ... ,n 1. The component of the order 
numher 1 is usually named a component of positive order, while that of order 
n-1 a component of negative order. Relationship (7) yirlds the original 
quantities from the symmetrical components, while relationship (8) gives the 
rule of decomposition to symmetrical components. By using (2), (3), (6), on 
thc hasis of (7) and (8): 

(9) 

xi 0, 1, 2, ... , n·l. (10) 
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Applying the transformation, equation e.g. y ex is transformed to 

y' = T-ICTx' 

This corresponds to n equations relating the symmctrical components of 
yarious orders: 

i = 0, I, 2, ... , n --1. 

In the following let us suppose that quantities Xl' X~, ••• , Xn are all real and 
n = 2p, i.e. 1l is even number. Thus on the basis of (4.): 

.:-r • 
A -)-1. 
gi = e P (ll) 

By using relationship (10) we find that thc O-th and p-th components are real, 
while the othcrs arc complex: 

;'C~ = I (Xl + X 2 
2p 

X~ = _1_ (Xl - X 2 
2p 

On the basis of (ll) the relationship 

g~P-I g? i = 1,2, ... , p - 1. 

(12) 

(13) 

(14) 

18 seen to be valid for any k value. By using this, it follows from (10) that 

.t - -:.t • - I ') I x~p_i - Xi L - ,~, ••• ,p - . (15) 

According to this relationship, the couplcs of symmetrical components 
1 and 2p I, 2 and 2p - 2, ete. are eonjugatcs of cach othpr. 

2. The calculation method 

a) Asymmetrical pole excitation 

Fig. I sho·ws a part of thc schcmc of a direct currcnt machine of 2p polcs, 
as dcyeloped into thc plane. The ideal pole arch is b, the pole pitch T, thc 
ideal length I. The air gaps IJ below the poles are identical. A numbcr of ::; 
conductors are arranged along the circumference of the armaturc. 

Fig. 2 is the schematic drawing of the ·winding. There arc 2p parallel 
branches formed, accordingly the resistance of one branch of the winding is 
R = Ra . 2p, ·where Ra dcnotes the armature resistance. Contact resistanee 
of the brushes is negleeted. The magnetic circuit is considered as linear. Both 
±'igm'es are indicating the directions of excitations, fluxes, currents and voltages 
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assumed as posltrve. Let us determine the distribution of armature current 

la for different pole excitations el' e2, ... ,e2p' Only the steady-state is 
examined. To solvc the problem, the excitation law will be written for the 
magnetic circuit, and the voltage equation for the winding. 

Let us take e.g. the magnetic circuit closed through the poles 1 and 2. 
Ncglecting the magnetic resistance of the iron, the excitation law for the 
closed loop at a distance x from the axis of the poles is: 

Integrating for the complete pole arch b: 

(16) 

where .1m denotes the magnetic conductivity 

A = !lobl 
m 0 (17) 
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Writing the excitation law also for the other magnetic circuits relationships 
similar to (16) are obtained. Or, in matrix form: 

1 1 0 0 ... 0' 8 'I 0 -1 0 0 ... 0' 11 
, 

1 
0 1 1 0 ... 0 8 2 0 1 0 1 0 ... 0 12 
0 0 1 1. .. 0 8 z 0 0 1 0 -1 ... 0 13 3 +-

1 0 0 O ... 1 8.)p 
8p 10 

-1 0 0 0 ... 1 I.,p 
L .-I - .-I L L - .-I 

'1 1 0 "([> , 

11 ~ 
0 ... 0 I 1 

1 1 0 ... 0 ([>2 

=.:lm 0 1 1 ... 0 ([>3 (18) 

1 0 0 o ... 1 ([>"P 
L .-IL -.-I' 

By summanzmg the voltages induced in the conductors belonging to e.g. 
winding branch 1, and adding to this the ohmic voltage drop, 'we obtain: 

U1 = z; (([>1 + ([>zp) + IIR 

By summing up the voltage equations in matrix form: 

'u ' '1 0 0 ... 0 1"([> , '1 0 " 1 1 O ... 0 11 
U2 1 1 0 ... 0 0 ([>2 0 1 0 ... 0 12 
U zn 0 1 1 ... 0 0 ([>3 0 0 1 ... 0 13 3 R (19) 

2 

U"P 0 0 0 ... 1 1 ([> 2P .-I 0 0 o ... 1 Lp 
L - L _I L .-IL -.-I' 

Quadratic matrices in (18) and (19) are cyclic matrices of 2p order. Introducing 
cyclic matrices Cl' C2, C3 the two matrix equations are: 

C10 + 8~ C2I = .d;;;lCI 4> 

U = zn C3 <P + REI 
2 

(20) 

(21) 

By symmetrical component transformation, that IS, introducing the sym­
metrical component vectors 0; U; I; 4>' according to (7), by means of trans­
formation matrx T: 

C1T0' +.~ CoTI' .!1;;;lC1T4>' 
8p -

ETU' = zn C T4>' ...L RETI' 2 3 I 
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Multiplying both equations by T-1 in front, and using relationship (1), we 
obtain: 

U' zn. rr. I RI' ; = 2 /'(3);'lo'i -;- ; 

i = 0, 1, 2, ... , 2p - 1 

The eigenvalues of matrices Cl' C2, C3, on the basis of (5) are: 

i = 0, 1, 2, ... , 2p - 1 

1 1 I A2P-1 
/'(3)i = -;- gi 

(22a) 

(22b) 

(22b) 

(23) 

The problem can be solved by equations (22 a) and (22b) instead of the original 
matrix equations (18) and (19). The resulting symmetrical components lead 
to the solution by using Eq. (7). 

Let us examine each equation obtained for the individual components. 
Let i = 0. From (11) and (23): 

;'(1)0 = ;'(3)0 = 2, ).(2)0 = ° . 
Equations for the quantities of order ° are 

e~ = ./1;;1<p~ 

U~ = zn<P~ + I~R 
The obtained equations correspond to those valid in normal state of operation. 
Current I~ does not react on flux <P~, this latter is determined by excitation 
e~ alone. There is no armature reaction. On the basis of Fig. 2, if all the brushes 
are conducting current, 

I a = Il + I2 + ... + I 2P 

From relationship (12), U~ = Ua, I~ = I a/2p. 

(24a) 

(24b) 

Let i = p. The eigenvalues are ;'(l)P = ).(2)P = ;'(3)P = O. From (24b) 
and (13), U~ = 0. 

Accordingly, relationship (22a) does not determine the magnitude of 
<P~, while from (22b) it follows that I~ = 0. If the fluxes have only p order 
components, then on the basis of (9) <Pi+ 1 = g;<P~ = ( l)i<P~, where <P~ is 
seen to be real. Accordingly, the pole fluxes are <PI = -<P2 = <P3 = -<P4 = 

= ... = -<P 2P = <p~, i.e. the flux is passing belo'w each pole in the same 
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direction. The axial homopolar fluxes can be closed only through the bearings 
and end-shields, their intensity being determined by the magnetic resistance 
of this circuit. The homopolar fluxes do not produce compensating currents. 

Let i = 1,2,3, ... ,p-l. The i-th and (2p-i)-th components were 
seen to be conjugates and the same is true for their equations (22a) and (22b)~ 
consequently it is sufficient to discuss the equations for the components of 
order I, 2, 3, ... ,p-l. Dividing Eq. (22a) by )'(l)i, and multiplying Eq. (22b} 
by )'(2)ij).(1)i' we obtain: 

et + Z (I - gi)I; = /1;;;1<1>; 
8p 

Uj(I gi) = jzn sin (; i )<1>; + RI;(I - gi) 

i = I, 2, ... , p - l. 

(25a} 

(25bJ 

The equations are further simplified by introducing the reduced currents and 
volt ages Iir and Ui" respectively: 

r.>' r Z I' _ i-1m' 
CJ'i I - ir - / m ""'i 

8p 

U-' . . (7[.) m' r RI' ir = Jzn SIn p L ""'i I ir 

i = I, 2, ... , p - l. 

Eliminating <1>i from Eq. (27a), and making use of (27b): 

U-' - . 8p r.>'X r (R r ·X )I' ir -] - CJ'i i I 1]- i ir 
Z 

where Xi denotes rotation reactance, 
.) 

X z~ A . 
- i = n- m SIn 

8p 

If relationship (24b) is valid, then on the basis of (10): 

U' - I U (I r .L 2 .L un-I) - 0 . -I- 0 i - - a I gi r gi . .. r bi - L -r . 
n 

Using relationship Ui = Uir = 0, Eqs. (27a) and (27c) simplify to: 

<1>~ = e~/l I 
1 1 m I r '" I]"i 

(26a) 

(26b) 

(27a) 

(27b) 

(27b) 

(27c) 

(28) 

(29a) 
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(29b) 

where ~i = XdR. Current and flux loci plotted from (29a) and (29b) respec­
tively are shown in Fig. 3. The loci descriptively show the course of C/Ji and 
Iir. The parameter is ~i' Eq. (25a) demonstrates the examined current com­
ponents to react on the formation of the flux. From relationship (27 a) those 
symmetrical component systems with identical Iir appear to exert an equal 
armature reaction. On the basis of relationship (27 c), in turn, it can be stated 

8,' 
/i=g -
" " " f"\f[>O 

+ 

/ ~\8}Am 
Ji<O/ " 

I 
f 
r 
I 
I 
\ 

1 " f Qf;=1 
1 \ 

li=1\ 
\ , , 

"­
'-, 

U/r=O 
i:1,2, ... ,p-l. 

I"". I 
1'1'1 J 
1 f 
1 I 
1 I 
f I 

f / 
/ 

-' 

Fig. 3 

that the reduced current Iir is limited not only by the ohmic resistance but 
also by rotation reactance Xi. Accordingly, systems with identical Xi values 
behave identically 'with respect to armature reaction. In the table belo'w, the 
sin (n/p)i values occurring in the expression for )( are compiled up to p = 10. 
In the case of an e.g. 10 pole machine not only the systems 1 and 9, but also 
the systems 1, 9, 4, 6 and 2, 8, 3, 7 are seen to behave identically. 

Accordingly, for a given value of el, flux C/Ji is diminishing with the 
increase of ~i' i.e. of the speed of rotation. If the armature is standing, no 
compensating current is flowing, while the compensating current tends to a 
constant value with increasing speed of rotation. For n -+ =, ei and the excita­
tion of currents lir are in equilibrium and C/Jj = O. The ~i" value pertaining to 
the rated speed of rotation 1Z" can be estimated. The rated pole excitation 
.and the armature excitation for the rated armature current are 

e - rfi 1-1 • e _ Ianz 
on - Y:-'11.1.. m' an - --
o 8p 2 
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. ('~ .). 1 0 3 sw - t t. = ~ _, ~ ... p - l. 
P , 

0.866 

·1, 0.707 0.707 

5 0.588 0.951 0.951 0.588 

6 0.5 0.866 1 0.866 0.5 

7 0.434 0.782 0.975 0.975 0.782 0.434 

8 0.383 0.707 0.924 1 0.924 0.707 0.383 

9 0.342 0.643 0.866 0.985 0.985 0.866 0.643 0.342 

10 0.309 0.588 0.809 0.951 1 0.951 0.809 0.588 0.309 

respectively. Supposing Ra ~ 0.05 Uan! lam and using (2S) we find: 

,t nnz2Am. (':r.) z zn/Pn . (:r :'1 ' "in = ----- SIn - ~ = SIn - L, ::.~ 

SpR ,p Sp A;;;It:J>n2pRa p) 

9 5 ean . (:r.) r-J , -- SIn - ~ • 

ean p 
b 

Since for direct current machines ean ~ egm at the rated speed of rotation 
;in r-J 9.5 sin (:r/p)i. Considering the values of sin (:rlp)i at the rated speed 
of rotation reactance Xi rather than the ohmic resistance of thc armature 
is seen to be the factor determining the current magnitude. 

These results permit to establish a physicalmoclel simulating the physical 
phenomena. Let us decompose each quantity xi to a real and an imaginary 

part, 
(30) 

In Eq. (27c), replace rotation reactance Xi by rotation inductivity Li = 

= X;jw = X;f2:rpn and decompose quantities Ut" eiro Iir using relationship 

(30). 
From the equality of the real and imaginary parts we obtain: 

TT' - Sp e' L L I' I RI' u Ird - - - IqV) I - co I irq T Ird (31a) 
Z 

V-' - Sp e' L I L [' I RI' Irq - - idCO i T CO I zrd T Irq' (31b) 
Z 
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From the equality of the real cwd imaginary parts we ohtain on the hasis 
of Eq. (27a): 

1Jid = cl", r eid + 8~- Ii'dj 

1Ji:7 = .lm I ei; + 8= riJ
J . p 

(32a) 

(32h) 

The voltage equation of the winding" dq of the four-winding (DQdq), :2p-pole, 
commutator primitive mac~lin:: (the current", heing direct eurrents, thus trans­
former voltages ne zero) is found to he [:2]: 

Flux relationships: 

. Ut! = -- coLnJ Q wLrlq RI , 

Uq = wLn,I D cilLr1d RI". 

1Pd = N r1Jd = Ln,I D + LrIcI 

1;'q = ~Yr1Jq = LnlQ LrIc 

(33a) 

(33b) 

(34a) 

(34h) 

Relating Eqs (31), (3:2), (33), (34) permits to draw the primitiY<:' machine 
sho","n in Fig. 4. The armature resistanCe of the machine is R, and the rota­
tion inductivitv 

1 L z~ I ' J:T
J 

1',') ~r = i = C ;]I SIll 
16:Tp~ 

Accordingly, the component couples of various order numhers can he simulated 
by means of four·winding commutator models having different rotation illcluc­
tivities L r • For U ir = 0, brushes are short-circuited in Fig. cl 

i=1,21""p-1. 
Uirq 

Fig. 4 

Uird 
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b) Examination of small excitation and air gap asymmetries 

Suppose excitation Gp and flux @p of each pole to be identical, then 
armature current la is uniformly distributed among the parallel branches, 
hence only quantities of 0 order exist. If the excitation of the poles differs 

from the value Gp by small ~G1' ~G2' ... , ~G2P values, and the air gap 
between the individual poles differs from 6 by the small values ~61' ~62" ... , 
J6 2P ' then this causes pole fluxes to differ from their operating point value 
by the small J@1' ~@2' ... ,.:1@2P values. Fluxes .:1@ cause compensating 
currents ~I l' .:1 I 2' ... , .:1 I 2P to flow in the armature. According to the excita­
tion law, the magnetic circuit closing through e.g. poles 1 and 2 is ruled by the 
foUo'wing relationship neglecting the small quantities of second order: 

where 

B"-. (Jb1 +- .:1(2) 
Po 

is the operating point slope of the characteristic curve @p (Gp) and Ba the 
magnitude of air gap induction at the operating point. In case of small changes 
the characteristic curve is well approximated by its tangent to the operating 
point. Using notations in (20), equations valid also for the other magnetic 
circuits lead to the matrix equation: 

Rearranging: 

C (il0 - Bo 6S) 
1 l ,LlO, 

(35) 

The voltage equation: 

(36) 

From Eq. (35) air gap asymmetries ~61' J6 2, j63, ••• , .:16 2P are seen to be 
reducible to fictitious excitation asymmetries. The vector of the fictitious 
excitation is -(Bo!,Llo)6S. Thereby, Eqs (35) and (36) valid for small changes, 
are formally quite identical with Eqs (20) and (21), thus the results obtained 
in the previous item can be used directly. In the case of higher asymmetries 
the obtained results can only be regarded as first approximations. 
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3. ·Application of this method for a four-pole machine 

For the sake of simplicity, the application of the method is illustrated 
on a four-pole machine. 

The four-pole machine will be examined by the four phase symmetrical 
components. For 2p = 4, on the basis of (ll) gi = (_j)i. Using relationships 
(2), (3) and (6), the transformation matrix T and its inverse can be ·written. 
Hence according to (7) and (8), the transformation rules for arbitrary quantities 
Xl' X 2' X 3' x'i ' either excitations, fluxes, voltages, or currents, are: 

l:} [: 1 1 Ijn ] -- 1 j x{ 
1 1 ~ '~~ 

Xo! 1 +j 1 -] X3 

(37) 

n [I 1 1 Iln ~ ~ :: ] 1 -] x 2 

-1 1 1 x3 
-] 1 j x 4 

(38) 

Let us examine now the case 'where there are only components of 1 and 3 order, 
that is, components of 0 and 2 order are missing from each quantity. From 
Eq. (38), since x~ = x~ = 0, 

From Eg. (37), using also Eq. (39) we obtain: 

Xl = x{ x~ = 2 Re (x{) 

X z = j('1:~ - x{) = 2Im(x~). 

(39) 

(40a) 

(40b) 

(41a) 

(41b) 

If all the brushes are conducting current, then, as it was seen, U{ = O. On the 
basis of (29a) and (29b) the loci for the component of i = 1 order are shown 
in Fig. 5. From (28) the parameter is found to be: 

Xl nz2 

gl = -- = --·,;im 
R 16R 

Component I{ of current I{r is furnished by relationship (26a): 

I ' I{r _ 1 I' -J"45 8 
=------ le 

1 1 I' 1[-,) r 
.,] ~/-

(42) 
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The current locus for current component I{ is again a circle, obtained from 
the locus of I{r by rotating by 45° and reducting by 1'"2. It follows from (42) 
and (39) that 

I f -. (1 -L ')I' _ II - I2 -L . --=-_-=-
Ir - I ] 1 - 2 I ] 2 (43) 

According to relationship (4.1), the real parts in the locus of <P{ and I{ show 
the course of <PI and I 1, while the imaginary parts the course of <P z, and I 2, 
respectively. On the basis of Eq. (43) the course of the currents (II + I 2 ) and 
(Il - I 2 ) can be read off the locus of I{n just equal to the currents flowing 
on the positive and negative brush couples, respectively. In Fig. 6 these 
quantities are plotted as function of ~1' for O 2 = 0. ~In?0 10 is assigned to 
the nominal speed of rotation. 

The physical model which can be dra'wn in the present case IS shown 
in Fig. 7. Assuming O 2 = 0, the course of the indh-idual quantities shown 
.n Fig. 6 can also be followed on the basis of the model. 
I 
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Summary 

In multipolar lap windings compensating currents are flowing on account of the a;;ym­
metry of pole excitations and air gap dimensions. Air gap asymmetry can he reduced to 
a fictitious excitation asymmetry. Compensating currents flowing upon the effect of asym­
metrical excitations can be calculated by the method of decomposing to symmetrical com­
ponents. Compensating currents generated by the individual symmetrical component excita­
tion systems can be examined separately. Flux asymmetry existing in the steady state is 
reduced during rotation by the reaction of compensating currents in the armature. to be taken 
into consideration when calculating compensating currents. The degree of reaction is different 
in the case of systems of various orders. 
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