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Introduction 

Two basic tTends can be observed in science histoTY, specialization and 
integration. With the advent of cybernetics and digital computer applications 
some similitudes of various systems have come to light. We often speak of 
systems theory. One aim of the latteT is to exploit such similitudes in the field 
of economics, biology, psychology, sociology, tactics, engineeTing and so on. 
The application possibility of similaT investigation methods in quite diffeTent 
fields contribute to the integration trend. 

In the last two decades the analysis and synthesis methods of dynamic 
systems made a Tadical alteTation. This change has some connection with the 
geneTal use of optimization methods and nonlineaT techniques. 

The common differential and difference equation methods, as well as 
the Laplaee, FOluier and z-tTansfol'ln methods in linear systems were over
shadowed hy the recent state-space methods. The lattcT, like the differential 
and difference equation methods, also Tefer to the time domain. State-space 
methods can he applied to linear time-invaTiant and time-vaTiahle systems 
as well as to nonlinear systems. "With the complexity of systems, the state
space method, as any other method, ho·wever, loses its simplicity. In any case, 
the state-space method furnishes a concise description of the scrutinized 
system, and, at the same time gives a deep insight into the main character
istics of systems and/or theiT parts. For example, applying the state-space 
method, single-variahle (single-input single-output) and multivariable (multi
input multi-output) systcms can he descrihed hy the same form of equations, 
not speaking of minor deviations or differences. 

The widespread use of digital computers and the state-space method 
have a close mutual effect. This interaction can he clarificd hy the fact that, 
on the one hand, digital computations often demanded the application of 
state-space methods for the study of dynamic systems, and on the other hand, 
state-space equations require the employment of digital computers III com
plicated cases. Therefore, modern cyhernetics and system theory may he 
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characterized by the widespread use of digital computers and the application 
of state-space methods. 

This paper has the intention to giYe a brief introduction to state-space 
methods through simple examples. 

Fundamental Prohlems in Connection "With Dynamic Systems 

As concerns dynamic systems, and especially the feedback control 
systems, the following problems can be mentioned. 

The first step is always the construction of an appropriate model for the 
dynamic system under study. This step is called model-building. A system is 
considered as a regularly interacting or interdependent group of items (such 
as bodies, organs, devices, organizations, etc.) forming a unified whole. The 
essential performance of a system can be described by an abstract model often 
called a mathematical model. This is, of course, an approach. The model is 
unable in every respect to replace the real system. A well chosen mathematical 
model may, however, to some extent express the most important performance 
characteristics of an actual system. 

The model building is closely related to parameter identification. The task 
of the latter is to determine the yalue of parameters (constants, factors, gains, 
time constants, transportation lags). If the structure of the system itself is 
altered for some reason, then, the parameter yalues will change, too. Oftcn 
the requirement arises how to approach a complicated system by a model 
of simpler structure. Nonlinear systems are, for example, often replaced by 
linear models at least in the vicinity of a certain point of operation. 

In the knowledge of model structure and parameter yalues the next step 
is to choose an appropriate controller and adjust their parameters, for example, 
gains, rate and reset time constants or state-yariable feedback coefficients. 
This task is called synthesis in contrast to the preyious steps which are, in 
essence, the parts of analysis. 

The fourth problem in connection ·with dynamic systcms, and in partic
ular, with feedback control systems is optimization. The task of dynamic 
optimization is to choose the free parameters, e.g. the parameters of the con
troller, in such a manner as to obtain the most favourable transient process. 
(Insertion of appropriate nonlinear deYices, such as relays, is also admissible.) 
What is meant by the most favourablc process depends on the criterion of 
optimality. A system optimal in accordance ,,-ith some chosen criterion is far 
from being optimal from the point of view of another criterion. One of the 
most difficult questions is just the choice of the proper criterion. Often the 
capacity of digital computers is an obstacle or hindrance to the application 
of more complex, but at the same time more realistic, criteria. 
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In model building and in optimization some a priori knowledge is neces
sary. Unfortunately, a full knowledge of facts is rarely at our disposal. In such 
cases simulation hecomes more and more important. The essence of the latter 
is that we construct a certain model, adjust their parameters, and perform 
somc ('xperiments on the model. A comparison with the reality gives us 
a measure as to ho"w "well we haye chosen the structure of the model and the 
yalues of their parameters. In case of significant deyiations we make due 
changes and perform the experiments over again. 

Simulation becomes ineyitahle in such cases "when experimenting in 
reality, are not at all, or hardly performahle. This is the case, for example, 
in space research, in economics or in physiology. Simulation enable us to 
replace obscryation by experimentation. Although such experiments are some
"what restricted and restrained, they considerably help us in the recognition 
of reality. 

The yalue of simulation rises if instcad of time-inyariant linear system 
"we haye to study time-yariable and or nonlincar systems. For such purposes 
analog, digital or hyhrid computers can he applied. 

Here we haye no possibility of going into the details of analog simulation. 
All the less so as we hope that the principles of analog computers are well
known enough. For digital simulation of continuous-time processes special 
programming languages has been deyeloped. We may mention lVIIlVIIC which 
is applied on computers IBM 7090, CDC 3300, U~IYAC 1107, 1108; DSL 
(Digital Simulation Language) on computers IBM 7090, IBl\! 1800, IBM 
system 360; CSlVIP (Continuous System Modelling Language) and CSSL (Con
tinuous System Simulation Language) on IBM System 360 and system 370 
computers. The knO"wledge of FORTRAl\" is also advisable. 

Although digital simulation giyes more exact results, analog simulation 
is often sati5factory being, at the same timc, cheapcr and quicker. Sometimes 
hyhrid simulation "ould he the hest, hut for this purpose special computers 
are necessary which are relatiyely expensiye. 

System analysis, model huilding, parameter identification, system syn
thesis, optimization and simulation constitute the foundation of modern system 
theory. 

In all these topics, state-space methods can giye an inyaluahle help in 
the solution of more or less complicated prohlems. 

First Introductory Example. Unforced System 

The simplest lineal' difference equation only inyolyes first diffcrences 

V Xi: = Xi; - Xi:-1 or \j XI: = X/:-'-l - ;l-/i of a yariahle Xi:' ~ eyertheless, it is of 
considerahle importance, since it represent;:: the way In "which many system 
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variables grow or decay. Consider, for example, the growth of capital fund 
Xo which is bearing compound interest. If the interest rate is denoted by p 
(i.e. 100 p % is the rate of interest ilL percentage) then at the end of the first 
year the fund increases to 

(1) 

and at the end of the second year to 

(2) 

and so on. The general rule can be expressed as 

(k = 0,1,2, ... ). (3) 

Introducing 1 + p = F, 

(k = 0, 1, 2, ... ) (4) 

and the solution of this simple problem can be given as 

(5) 

This is the well-known geometric sequence describing the increase of a deposit 
(p > 0, F > 1). If p = 1, F = 2, then 'we obtain the common chessboard 
rule of corn grains. If, on the other hand, -1 < p < 0, ° < F < 1, then the 
process decays describing, for example, the dying out of a population or the 
radiation effect of a nuclear material. 

The continuous counterpart of this problem can he formulated by the 
simple first-ordcr differential equation (-with ;'\; = dxldt): 

x = Ax (6) 

whose solution, subject to initial condition x(O) Xo at t = 0, is 

(7) 

The latter relationship can easily be verified hy differentiation. 
At first sight, there is a close relation between the difference and dif

ferential equations and their solutions, hut this is actually not too obvious. 
By expressing the differential quotient for Eq. (6) we may 'write 

lim x(t + T) - x(t) = Ax(t). (8) 
T~O T 
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Replacing the differential quotient by a difference quotient 

x(t + T) - X(t) = Ax(t) 
T 

which, after some algebraic manipulation yields 

x(t + T) = (1 + AT)x(t) . 

223 

(9) 

(10) 

Taking t = t" and t 

suggests 
T = t,,+ 1 into account comparison of Eqs (4) and (10) 

F = 1 + AT or 
1 

A = -(F -1) 
T 

(11) 

'which is, ho"wever, a rough approach and can only be considered as a first 
approximation. A comparison of the two solutions, Eqs (5) and (7), that is 
to say, an exact coincidence for t = t" kT yields 

from which we obtain 

1 
or A = -lnF. 

T 
(12) 

It can l"eadily be seen that the first approximation in Eq. (11) contains 
only the first two terms in the Taylor sel"ies expansion of the exponential or 
logarithm in Eq. (12). It must he emphasizcd that we obtained the exact 
l"elationship het"ween F and A by the solutions. (If the lattel" are not known, 
a conversion from a differential equation to a difference equation, or vice 
versa, is far from heing trivial.) 

Some relationships hetween differential and difference opcrators can he 
found in Tahle 1. 

Second Introductory Example. Forced System 

Let us look at a second simple economic example, that of redemption, 
which is a common prohlem in private life or in connection with investments. 
Let us assume, that a loan L is l"aised which is to be amOl"tized in n equal 
instalmcnts, u" = U = const. (k = 0,1,2, ... ,n- 1). Each instalment u" 
has to be paid within the fil"st, second, ... n-th yeal", but not latel" than the 
end of that year, that is, in the (k l)-th intel"val. Thus, U o is the first and 
Un-l is the last payment. Let us denote the debt 01' liability by x" referring 
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Tahle 1 

Relationships between Operators 

Denoting the differential operator D = d/dt and using the shifting operator E, and 
the forward and backward difference operator V 1 E-1 and D. = E - 1, respectively, 
Taylor series expansion yields 

[ 
T2 

Ef(t) = 1":'" TD ..:... -. D2 
, '2 ~ 

that is 

E = eTD : V = 1 - e-TD ; D. 

1 
D =TlnE; D = 

1 1 
In (1 - V): D = In (1 -r- D.); 

Taylor series expansions and raising to power will result in 

and 

I 2 

... ) 2 3 

'7
2 

_ ~3 -r- ... ) 

11 .:.:..-1 ... ) 
2 

. 3 

~3 11 7 4 ••• ) 

to the beginning of the (k l)-th interval, that is, at the k-th instant, 
(k = 0, 1, ... , n 1). Assuming an interest rate p, the amortization process 
can he visualized hy the difference equation 

(13) 

or 

(14) 
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subject to the initial condition Xo = L. The liability decreases and at the very 
end vanishes, Xn = O. The final solution can be expressed as 

Fie -1 ---u 
F 1 

(15) 

(Thc latter can easily he ohtained by using Table 3.) Condition XI! = 0 results 
III 

U = Fn _F __ l_ L 
Fn 1 

-which yields the value of the instalments. Choosing n 
redemption schedule is shown in Tahle 2. 

Table 2 

Amortization Schedule 

Time Year Liability Redemption 

" " 1 Xl; Ill: 

Interest 
redemption 

px;; 

-~-----~--

0 I 100.00 23.10 5.00 

I 2 81.90 23.10 4.10 

2 3 62.90 23.10 3.H 

3 ~I 42.94 23.10 2.15 

4 :) 21.99 23.10 1.10 

5 6 0.00 

(16) 

5 and p = 0.05 a 

Loan 
redemption 

Ul:-P·"9: 

18.10 

19.00 

19.96 

20.95 

22.00 

SUIll total 115.50 15.49 100.01 

Simple' State Difference Equations 

After some generalization of Eq. (14) 'we may ~write 

(17) 

where F and G are appropriate constants. This IS the common form of the 
simplest state difference equation. \Ve often have an algehraic auxiliary equation 
as ~well 

(13) 

with Hand K constants. 
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Here Uli is the input, x" is the state variable, YIi is the output. Subscript 
k refers to the start of the (k l)-th interval, that is, to the k-th instant. 
Because the solution of algebraic equations is simple we concentrate our 
attention to the solution of the state difference equation in Eq. (17). Applying 
the initial conditions x O' U o we may '\Tite down the follo'\ing recurrence 
relations: 

These lead us to the general form 

Ii-I 

Xli = Fkxo + .::E FI: j-l GUj . 
j=O 

(19) 

(20) 

It can readily be seen that the state difference equation in its original form, 
Eq. (17), assigns a solution algorithm facilitating the program preparation for 
a digital computer. Owing to these circumstances we often endeavour to con
vert state differential equations into state difference equations when studying 
dynamic systems. 

For some special cases which often occur thc solutions of state difference 
equations are summarized in Table 3. Samples of discrete-time processes are 
outlined in Fig. 1 for the case llli = 1. 

If C = I, uk = I, then 

Table 3 

Solutions of Special Cases 

I 
k. , 1- Fk 

. _ F x o "" I F G, 
xl{ -

Xo + kG, 

for F;:6 C 

for F = C. 

for F,,= I 

for F = I. 

Introducing X = Gj(C-F), for C ;:6 I and X = Gi(l-F), for C = I, respectively, we obtain 

{ 
Fk(xo X) + CkX, 

Xli k k 1 F'xo -1- kF'- G, 

and 

for F,,= C,,= I 

for F = C,,= I 

for F,,= C = I 

for F = C = I. 
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If I FI < 1, then the processes are asymptotically stable, that is, decay!! 
ing; if I FI = 1, then the processes are stable but not asymptotically stable, 
that is, they are constant or oscillatory, in short, hounded; if ! FI > 1, then 
-the processes are unstable, that is, unbounded. 

x, 
a) 

Xo 

"I bJ 

I Fo l.Go OI J~ 
~ 

° 
X,t d) 

~ 
XI ~ 
~ 
o 2 !.; 6 k 

1~~ 
! ! I j I 

o 2 4 6 k 

, , , 
4 5 k o 2 4 6 k 

X:~e) 

'L 
o 4 5 k 

x 

o '-+ 6 k 

x, 

X 
Xo 

Fig. 1 

f) 

I F>ll 

~ , , 
0 2 4 6 k 

o 4 6 k 

An Application Example: Forecasting 

Xd -

:ot~~ 
I,~. 
o 2 6 K 

o 2 4 6 k 

The state difference equations can also be applied to forecasting. Any 
quantitative forecasting method serves to smooth out fluctuations in a process. 
In this case F 1 Cl and G = x, where 0 < Cl < 1 is the so-called smooth
ing factor, and, x,,+ 1 is the forecast for the next period, x" the forecast for thc 
present period, u" the actual value for the present period. As 

(21) 

can also be written in the form 

(22) 

the smoothed forecast is equal to the present smoothed forecast plus some frac
tion Cl of the difference hetween the forecasted and actual values during the 
present period. The selection of Cl seems to be of crucial importance, in general, 
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er. is some yalue between 0 and 1, often between 0.1 and 0.3. A response to 
a rapidly changing process improyes with higher smoothing constant. If 
er. 0, no data except the original forecast are included. When er. = 1, the next 
forecast is the same as the present actual value. 

Taking the general solution formula, Eq. (20), into consideration and 
assuming the initial historical value U 0 equiyalent to the starting forecast x 0' 

that is, by U o = x o' we can easily obtain 

1<-1 
XI; = (1 - 7.)I:u o + ~ (1 - 7.),,-j I cr.Uj 

j=O 

(23) 

Let us investigate, for example, a time scquenee Xo = U o 216, UI = 238, 
U 2 = 220, u 3 = 244·, u.! = 260. Linear regression by least squares fitting would 

suggest X5 = 264. 
Setting the smoothing constant to cr. = 0.8 the ahove forecasting formula 

in Eq. (23) yields X5 256. Taking on the other hand er. = 0.2 -we ohtain 

X5 = 232. 
As any extrapolation is loaded with errors EO is the forecast (and also 

the regression) technique. 
Thus far we tacitly assumed that the processes can be descrihed hy 

a state difference equation containing only first-order differences. This is, 
however, a serious limitation. What to do if 'we have a higher-oTCler process 

then is shown in the next paragraph. 

Third Introductory Example 

Let us start out from the simultaneous set of homogeneous difference 

equations 

P!:71 (1 - cr.)Pk ....L 0 pqli ; 

(1 /3)ql< • 
(24) 

qic 7 1 XPk -

l\Iany applications of such equations can he mentioned. Let us first see a neuron 
network in the nerve system. \\1 e shall confine ourselyes to two nenrons. If the 
first neuron gets an impulse, then after a certain synaptic lag, the second 
neuron also gets the stimulus. Let us assume that the first neuron has a feed
hack, so after a period, the first neuron hecomes reexcited. The second impulse 
also arrives to the other neuron. Thus, an impulse sequence is produced. 

This memory network may, however, have some faults. Let us assume 
that the transition from the excited state to the unexcited one can he charac
terized hy the prohability 7., whereas to the reverse transition belongs a 
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probability /3. The endurance probabilities of thc excited and unexcited states 
are, then, 1 a and 1 r3, respectively. Obviously 0 a 1, 0 P l. 

The probability of the excited and unexcited states are denoted by p 
and q, respectively, where q = 1 - p. At the next interval the system will be 
in the excited state if at present the system is in excited state and the latter 
survive, or the system is in the unexcited state and the state changes. This 
statement is expressed by the first relation of Eq. (24). The second relation 
can similarly be explained. 

The same equations also express a certain model of behaviour. During 
public opinion poll a series of questions are posed. Let the probability of the 
endurance of reply "yes" be 1 - a, that of the response "not" 1 - p. Transi
tion from "yes" to "not" and vice versa have probabilities a and /3, respectively. 
The first difference equation in Eq. (24) exprcsses the probability of affirma
tive answers. whereas the second that of the negative answers. 

The same equations are also valid for some teaching or learning pro
cesses. 

Such proeesses are called l\L~RKov processes. The probabilities at t;,+ 1 

or k + 1, do depend only on the probabilities of time t/i or k. JVIARKov pro
cesses are important in many random systems. Thev are easily describable 
by state-space methods. 

N[atrix Notations 

Let us introduce the so-called svstem matrix by 

(25) 

If "we introduce state vectors by column matrices, 

and (26) 

then the simultaneous set of state difference equations III Eq. (24) can be 
expressed by one matrix equation 

(27) 

The latter is also called a state-vector difference equation. The solution of 
Eq. (27) subject to initial condition 

(28) 
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can be expressed as 

(29) 

A comparison of Eq. (5) and Eq. (29) is a clear explanation for the advantage 
of matrix notations. The k-th po\~-er of matrix F can be written in the form 

F" I p. [fJ f31 + (I IX - (3)" [ IX 

/) IX IX IX f3 _ -. IX 

- f3] f3 . (30) 

Taking qo = (I - Po) and Eq. (30) into consideration we obtain: 

Plc = ~ + (I - IX - (3)" (po - ~) 
IX+f3 IX+f3 

(31) 

7. f3 

(k = 0, I, 2, ... ) 

for a detailed final solution. 

If ° < IX < 1, ° < /3 < I, then for k -)- = 

(32) 

If 7. = 0, /3 0, then the process remains eonstant: 

0, 1,2, ... ). (33) 

If 7. = I, (3 = I, the process is altel'nating: 

(34) 

State Equations of Discrete Systems 

\Vith the aid of matrix notation the state equations of lineal', time
inYariant, lumped parameter systems can be expressed as 

(3S) 

where G, H, K are matrices, lil, is the input Yector, Xl, the state ...-eetol' and 
y" the output ...-ectoL By matrix notation the form of higher order processes 



[?;TRODUCTION TO STATE-SPACE METHODS 231 

becomes similar to that of the first order processes, compare Eqs (17), (18) 

and (35). 
If the system is time-variahle but invariahly linear then the only dif

ference manifest itself in the fact that variable matrices Fi;, G", HI" K" must 
be employed instead of the constant matrices F, G, H, K. 

The solution of the state difference equation (hy reiterated substitutions) 
can h c given in the general form 

"-1 
X" = lJFixo 

i=O 

For the time-invariant case the latter reduces to 

(36) 

(37) 

-which has a elose resemhlance to the scalar case, compare Eqs (20) and (37). 
If the system is nonlinear (and time-variahle) then the state equation 

can he expressed in the form 

Xk+l = f*(XI" lil" k); 
(38) 

We draw the attention to the fact that discrete state difference equations 
immcdiately furnish a recurrence relationship for the solution, thus, step-hy
step we ohtain 

Xl f*(x o, llO' 0) , 

X~ = f*(x l , Ill' 1), (39) 

and 80 OIL The latte1" circumstance puts into relief the great advantage of 
discrete systems ovcr continuous systems. This is the reason ,,,-hy we attempt 
to conycrse continuous-time equations into discrete-time equivalents. As we 
have seen earlier, the conversion procedure is not so evident. 

In many applications, hO'wever, 'we have to manipulate with continuous
time equation. So, for the sake of completeness we shall summarize here also 
the forms of state differential equations. 

State Equations of Continuous Systems 

There is some similarity het,,-een the state equations of discrete-time 
and continuous-time systems, hut instead of difference equations differential 
equations play a part. \Ve shall restrict ourselves to higher-order system 
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because the vector equations are more general and scalar equations can easily 
be obtained by reduction. 

The state differential equations of the linear, time-invariant, lumped
parameter, continuous-time system is expressed in the form 

x = A.x + Bu (40) 

whereas the auxiliary equation is 

y = Cx + Du. (41) 

Here x = dXidt, that is, the dot denotes a derivation. 
If the linear system is time-variable then variable matrices A(t), B(t), 

C(t), D(t) replace the constant matrices A, B, C, D. Nonlinear (and time
variable) systems may be represented by state equations 

x = f(x, u, t) ; 

y = g(x, u, t) . 
(42) 

The solutions of the latter can generally be obtained only by numerical 
methods, that is, by the discretization of the problem. 

The solution of time-variable linear systems can be expressed in the form 

t 

\' cI>(t, T)B('I-)U(T)ch . 
I, 

(43) 

Here, cI>(t, to) is called fundamental matrix or state-transition matrix and plays 
a similar role to that of F of 1 .•• F"-l in a discrete system, [compare Eq. (36) 
and (43)]. The determination ofcI>(t, to) is, however, principally and practically 
far more complicated than the computa tion of F of 1 ••• F h - I • 

If the scrutinized system is time-invariant as in Eq. (40), then, the state
transition matrix beeomes a simple exponential matrix 

cI>(t, 0) = etA = eAt = cI>(t) (44,) 

where for the sake of simplicity to = 0 has been set. The determination of 
cI>(t) is relatively easy. The solution of the state differential equation can be 

given in the form 

t J eA(t-r)Bu(T)dT. 
o 

(45) 
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Some Applications of State-Space Methods 

Without aiming at completeness we shall mention here some applications 

of state-space methods. 
The dynamic processes of electrical, mechanical, chemical, social, menage

ment, economic, physiological, biological or even austronautical systems are 

often described by state-space equations. 
The stability theory of nonlinear systems is based on LJAPUNOY'S in

direct and direct investigation methods which both apply state"space tech
niques for continuous and discrete systems as "well. The same can be said 
about perturbation methods. 

The dynamic optimization methods, such as LAGRANGE-EuLER methods 
in calculus of Yariations, BELL~IAN'S dynamic programming, PONTRYAGIN'S 
maximum and minimum principles, functional analysis methods are also based 
on state-space principles. 

Model building and parameter identification techniques are also making 
the best of state-space methods. 

Analog, hyhrid and digital simulation of continuous, discrete or mixed 
systems yery often also apply state-space techniques. 

One of the greatest application fields of state-spacc methods manifests 
itself in feedback control systems. 

We only enumerate here these application possihilities and for details 
'we refer to the special literature. This may he done so much the more as the 
author delivered at the JUREMA conference a lecture ahout these problems 
two years ago [17]. 

Conclusions 

The "wide-spread use of state-space methods undoubtedly contributed 
to thc integration tendency of yarious hranches of science, such as economics, 
biology, psychology, sociology, engineering, etc., and thus serye as a basis 
for a unified system theory. State-space methods enahle us to descrihe rela
tiyely easily the dynamic processcs of yarious systems, facilitating their study, 
that is, the analysis and synthesis of such systems. State-space methods pro
moted and 'will promote to the dcyelopmcnt of a unified system theory. 

The state-space method is, however, no philosopher's stone and it does 
not giye a solution for eyery prohlem. There are a lot of prohlems where it is 
not at all or only hardly applicahle. Sometimes other methods, for example, 
frequency domain methods Ol' transfer function methods, especially for linear 
systems, may proye equivalent or even nlOre advantageous. 

2 
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Summary 

In recent system theory, especially in the analysis and synthesis of dynamic systems, 
state-space methods play ever more an important role. State-space methods often serve as 
a basis in model building, parameter identification, simulation, optimization. In this paper 
we introduce discrete-time state equations. and we show the continuous-time counterparts. 
Some possibilities of application are outlined as well. 
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