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Introduction 

In the practical parameter estimation problems the question of suitahility 
or optimality of input signal for identification purposes are very often occurring. 
The input signal synthesis has been investigated by many authors and they 
pointed out that besides the persistently exciting condition other properties 
of input can also he demanded in order to fulfil some optimality criteria regard­
ing the goodness of the parameter estimation. The relation hetween the input 
synthesis and the sensitivity analysis 'was examined hy RAULT [11] and l;:"ouE 

[5]. Many authors have dealt with this problem, approaching it from statistical 
aspects. LEVADI [9] investigated continuous system: approximating the out­
put by linear series-expansion he set the minimization of the covariance matrix 
trace as an aim. NAHI [10] dealt with the maximization of information matrix 
trace, likewise for continuous systems. These works led to difficult computation 
methods (Fredholm equation, variation technique, and so on) "which cannot be 
easily performed. AOKI [1,2] called attention to the fact that the linear discrete­
time systems can easily be rewritten into the fonnhaving linearity in parameters 
and it is more advisable to use the optimum input synthesis there. He elaho­
rated a method for the maximization of trace of the information matrix 'when 
the equation error is white noise. This procedure minimizes asymptotically the 
Cramer-Rao lower bound, but its realization is getting ever more difficult con­
cerning the computation technique for many samplings. On the hasis of detailed 
analysis of experimental design methods we have pointed out that the methods 
of optimum input synthesis are different in case of static and dynamic identi­
fication and suggested the determinant of information matrix as a criterion 
[6]. In this paper procedures elahorated on the hasis of the mentioned principles 
are presented. 

In our investigations linear discrete-time system is used which can he 
descrihed hy stochastic difference equation 

A(Z-l)y(t) = B(Z-l)U(t) + i.C(z-l)e(t) (1) 
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where {y(t), u(t), e(t), t = 1,2, ... , N} are the measured output signal; the ap­
plied input signal and disturhance sequence (with normal distrihution, zero 
mean, variance one and it is independent of the input), respectively. Here t 
means the discrete-time of the system (natmal numher) taking sampling time 
unit. Furthermore in equation (1) 
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(2) 

where z-l is the hackward shift operator [3]. Using (2) the system equation 
(1) can he 'Hitten in the following form, as well: 

y(t) = £T(u, y, t)p + 1.C(z-l)e(t), (3) 

where T means the transposition and 

f(lt,)" t) = [u(t), u(t - 1), ... , u(t - m), - y(t - 1), ... , - y(t - n)Y = 

= [u(t), gT(t - I)Y (4) 

and 

(5) 

Assuming e(t) has a normal distrihution it can he deduced that the information 
matrix regarding the estimation of parameter vector p is, for N samplings 
[7, 8]: 

(6) 

where 

Here 

(8) 

and 

A(Z-l)X(t) = B(z-l)U(t) (9) 

(i.e. x(t) is the output without noise). 
Let the covariance matrix of the parameter estimate PN' ohtained from 

N samplings, he: 

(10) 



OPTIMUM INPUT SIGNAL 263 

",,-here E { ... } and /\ mean the expected and estimated value, respectively. 
The Cramer-Rao lo'wer bound gives a limit for KN according to which KN ~ 
> Jt,? where the inequality sign indicates that the difference matrix is a non­
negative definite. It is obvious that the strength of this equality is characterized 
in the same way by the determinant as a trace of these t-wo matrices. Moreover, 
since the maximization of trace of J N is also used for the minimization of trace 
of Jj\? which is only asymptotically efficient, it is more worth-'while to maximize 
the determinant of J N' since this directly minimizes the determinant of J NI, 
too. In the following the minimization of the determinant of the covariance 
matrix, for -white noise equation error, and of inverse of the information matrix 
for general noise, is presented. The input signalu(t) is assumed to be an ampli­
tude constrained signal: 

U min < u(t) u max • (11) 

Case of least-squares structure 

First, let us consider the case of least-squares (LS) structure when the 
equation error - the term ;.C(z-1)e(t) in (3) - is white noise, i.e. C(Z-1) = 1. 
In this case the well-known LS estimation coincides with the maximum likeli­
hood (ML) and gives an unbiased estimation. The -well-known recursive ver­
sion of the method is 

1) - fT(u,y, N + I)PN]f(u,y, N + 1) (12) 

-where 

R 7' = R r _ ~\'f(u'.'Y,N 
,\-,.1 ], 1 I fT( . i\T 

T 1l,),1\ 
(13) 

and the covariance matrix 

l N+1 J-1 

KNH = ~ f(ll,y, t)fT (ll,y, t) ;.2 
1=1 

(14) 

It can be deduced that the increasing rate of determinant of KN1 is 

i K- 1
1 , N 

fT (u,)', lV (15) 

if the sampling number N is changed to N 1 [8]. Here I ... I means the 
determinant of a matrix. A locally optimum strategy can be formed for the 
maximization of i K -1 I (which is equivalent to the minimization of I K i) 
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if the quadratic form on the right side of (15) is maximized by u(N 1) in 
every step. (This is a so-called locally optimum strategy because only the 
next step is optimized each time.) Partitionate RN according to (4): 

d:\r] -~K 
Q 

- '2 N 
N ). 

(16) 

By this designation we obtain for (15): 

I KN~l I = u2(lV -L I)r . 
IKN1J I 1'1 

2u(N (17) 

i.e. this means a parabola as a function of u(N 1) having its vertex down­
'wards (since rN is absolutely positive). It can easily be seen that the following 
expression gives the optimum value of uO(N 1) - on a constrained region 
given by (11) - cnsuring the global maximum of (17): 

I) ~ I u"'~, if Umin U max -L 
gT(N)dx 0 I 

2 r;y 
uOOV 

gT(N)d;y 
(18) 

llmin + U max t llmin , if <0. 
2 rN 

Determination of the global maximum can be seen in Fig. 1. Here u*(N) = 

(gT(N)dN);rN is the vertex of the parabola. In this 'way the optimal input 
signal can be generated hy the on-line connection with the process for identifi­
cation purposes. UO(t) depends only on y(t - 1), ... , y(t - n), consequently, 

U":::'Umin /) ~~ 

umox"'umin 
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Fig. 1 
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on values e(t - 1), ... , e(t - n) and the independence of input signal and the 
measurement noise is valid in this case, too. The algorithm (18) can easily be 
realized because only the data applied so far are needed to generate the new 
UO(t). Scheme of algorithm generating optimum input signal is show-u on Fig. 2. 

u(N) I y(N) 

u(N-1) 

Urn:l;:( .... umin 

PARTITION 

Fig. 2 

Instead of the local minimization of the determinant of the coval'iance 
matrL"",{, the local minimization of its trace can also be chosen, since 

tr(R,) _ fT(u,y,N + I)RNRNf(u,y,N + 1) 
N 1 + fT(u,)',N + I)RNf(u,y,N 1) 

(19) 

and the second term of (19) right side is a second order rational fractional func­
tion of uO(N + 1). (Here tr( . .. ) means the trace of a matrix.) Thus, to generate 
optimum input (i.e. to minimize tr(R) 01' tr(K), namely, tr(K) is propol·tional 
to tr(R)) the global maximum of a far more difficult function than (17) has to 
be determined, therefore, it is reasonable to use (18). 

It can be 0stablished from the comparison of equations (6) and (14) that 
the same algorithm can be used fol' the minimization of the determinant of 
J -1 (i.e. fOT the maximization of I J ,) as what "was used in (18) fol' the minimi­
zation of I Kt. Since C(z-1) = 1, uF(t) = u(t) and xF(t) = x(t). So f(u, y, t) 
must he l'eplaced hy f(u, x, t). Here x(t) is unknown and can he produced hy 
prediction: 

i) . (20) 

4 
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Obviously, now g(u, x, N) is in (18) instead of g(N) = g(u,)', N). The local 
maximization of the determinant of the information matrix does not need the 

kno'wledge of output but needs x(t), i.e. the parameter estimates ai, bi' Thus, 
this strategy can he performed hy an on-line "way (simultanf'onsly with the 
identification) but it can he done in off-line way, too, in the apriori kno'wledge 
of parameter estimates. This means the optimum input sequences (so-called 
D-optimum) can he generated in advance to the identification. Unfortunately, 
"we have to know far more for thc synthesis (the parameter estimates themselves) 
and this strategy can only he realized by the successi\-e application of the off-line 
identification methods. 

The case of maximum likelihood structure 

Such an algorithm which locally minimizes the determinant of the covar­
iance matrix for the general form of system equation (3) cannot he constructed 
similarly to (18) but the algorithm suggcsted for the local maximization of 
the determinant of information matrix in LS structure can he generalized for 
this case. Comparing (6) and (14) it canhe secn that f( u F

, XF, t) corresponds to 
f(u,)" t), formally. Since x(t) is unknown f(u F, xF, t) can he determined from 
the predicted value x(t). By the filtering equations (8): 

(21 ) 

where 

(22) 

~ow the optimum llO(.2Y - 1) is computed according to 

I 

if Umin ~ U max 

2 
q 

(23) 

(It is to he mentioned here that no"w rN and dN issue from the partitionation of 
RN = (/.2JN) -1.) Since there is no good on-line method to estimate the coeffi­
cients of A(Z-l), B(Z-l) and C(Z-l) the off-line input signal synthesis - sug­
gested for the LS structure, as well - should he applied. 

In a special case, when C(Z-l) = I/H(z-l), HASTIl\"GS' on-line method can 
he used to estimate the parameters of H(z-l) = 1 h1z- 1 hsz-s [4]. 
The formula (23) is also valid taking into account that 

s 

q= ~ hiu(t - i) . (24) 
i=1 
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Simulation results 

The effectiyeness of the elaborated methods has been proved by several 
simulation examples [7, 8]. Here only some of them are presented. The process 
was simulated for several structures according to equation (1). In these examples 
results of identification obtained by pseudo-random-hinary-sequences (PRBS) 
and D-optimal sequences as inputs are compared. In hoth cases the input signal 
'was an amplitude constrained signal: 1 u(t) 1. The following measure 
'was used to compare the identification results obtained by PRBS and D-opti­
mum input: 

Let us consider the fono'wing numerical examples: 

1. Example 

The equation of simulated process IS 

(1 - 0.8z- 1)y(t) = (0.6 + 0.2z- 1)u(t) ;.e(t) 

and }. = 0.2. 
In Fig. 3 the values w(t) are shown for the cases of PRBS input and D­

optimum input synthetised on-line by equation (18) when the identification 
was performed by on-line LS method. 

4* 

O-D-OPtimUm}. , 
Input 

x-PRBS 

o 50 100 150 ~ 

Fig. 3 
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2. Example 

The equation of process is 

(1 - 0.7z-1 + 0.1z-2)y(t) = (0.6 + 0.2z- 1)u(t) + ).e(t) 

and A = 0.2. The values w(t) can be seen in Fig. 4. 

o-O-optimum r ' 
x _ PRBS lnpu. 
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0 0 0 
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0 
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Fig. 4 

3. Example 

The simulated equation is 

(1 1.5z-1 0.66z- 2 0.08z- 3)y(t) = (1 Z-l - 0.5z-2)u(t) i.e(t) 

and ). = 0.3. The values w(t) are presented in Fig. 5 for both input signals, 

4. Example 

In order to identify the parameters of system equation 

(1 1.5z-1 0.7z-2)y(t) = (1.0z- 1 + 0.5z-2)u(t) + }'(1 - 1.8z- 1 + 0.9z-Z)e(t) 

an off-line ML estimation "was performed. The folIo'wing table contains the 
determinant of covariance matrix of parameter estimates and the variances of 
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the estimated values in case of PRBS input and D-optimum input synthetised 
hy (23). 

PRBS D.opt. 

var (a1) 0.0058 0.0029 

var (a 2) 0.0042 0.0021 N= 500 

var (b1) 0.0369 0.0193 ;. = 1.0 

var (b 2) 0.0516 0.0271 

IK i N, 2.57 . 10-18 4.35 . 10-21 

Conclusions 

In this paper a locally optimum algorithm is suggested for the iuput sig­
nal synthesis by means of which computationally very simple method can be 
given to minimize the determinant of coval'iance matl'ix if the equation error 
is white noise, and in another case to maximize the determinant of information 
matrix. The local optimality is actually an analogous concept of the "one-stage 
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control" of stochastic control theory. Realization of the global optimality 
which corresponds to the "N-stage control" means eomputationally a far more 
difficult prohlem. (But it can he solved on the hasis of this paper hy dynamic 
programming. ) 

The suggested algorithms can he employed profitahly in the off-line 
input synthesis to improve the result of identification step hy step. 

Summary 

In this paper it ,ms investigated how to generate optimal input signal series for the 
identification of linear di;;crete-time system in order to improve the accuracy of estimate. 
The determinant of the covariance matrix or the inverse of information matrix are considered 
as a measnre of the error in the parameter estima te. We suggest very simple methods for the 
minimization of these criteria in case of amplitude constrained input signal. 
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