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Introduction

In the practical parameter estimation problems the question of suitability
or optimality of input signal for identification purposes are very often occurring.
The input signal synthesis has been investigated by many authors and they
pointed out that besides the persistently exciting condition other properties
of input can also be demanded in order to fulfil some optimality criteria regard-
ing the goodness of the parameter estimation. The relation between the input
synthesis and the sensitivity analysis was examined by Ravrr [11] and INovE
[5]. Many authors have dealt with this problem, approaching it from statistical
aspects. LEvaDI [9] investigated continuous system: approximating the out-
put by linear series-expansion he set the minimization of the covariance matrix
trace as an aim. NAHI [10] dealt with the maximization of information matrix
trace, likewise for continuous systems. These works led to difficult computation
methods (Fredholm equation, variation technique, and so on) which cannot be
easily performed. Aoxi [1, 2] called attention to the fact that the linear discrete-
time systems can easily berewritten into the formhaving linearity inparameters
and it is more advisable to use the optimum input synthesis there. He elabo-
rated a method for the maximization of trace of the information matrix when
the equation error is white noise. This procedure minimizes asymptotically the
Cramer-Rao lower bound, but its realization is getting ever more difficult con-
cerning the computation technique for many samplings. On the basis of detailed
analysis of experimental design methods we have pointed out that the methods
of optimum input synthesis are different in case of static and dynamic identi-
fication and suggested the determinant of information matrix as a criterion
[6]. In this paper procedures elaborated on the basis of the mentioned principles
are presented.

In our investigations linear discrete-time system is used which can be
described by stochastic difference equation

AGy(0) = B(z=Yult) + 20("e(?) )
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where {y(:), u(t), e(t),t=1,2, ..., N} are the measured output signal; the ap-
plied input signal and disturbance sequence (with normal distribution, zero
mean, variance one and it is independent of the input), respectively. Here ¢
means the discrete-time of the system (natural number) taking sampling time
unit. Furthermore in equation (1)

A =14 a3zt 4+ ...+ ap™" l
Bz-Y)=b,+ bz +...4+bz™™ m<n (2)
CxY) =1+ ¢z~ 14 ...+ gz E<n J

where z~1 is the backward shift operator [3]. Using (2) the system equation
(1) can be written in the following form, as well:

y(t) = £7(u, 3, )p + 2C(=~Ye(r), (3)

where T means the transposition and

fu, y,0) = [u@),u@t—1),...,u@t—m), —yt—1),..., —y(t —n)]" = ,
= [u(®), g"(t — D" (4)

and
p=[bpby- s bman...,a]" (5)

Assuming e(t) has a normal distribution it can be deduced that the information
matrix regarding the estimation of parameter vector p is, for IV samplings

[7, 8]:

1 ¥ <F. V€T (uF. xF
‘72321‘ LI (uf, 27, 1) 6)
where
fuf, xF, ) = [uF@),....uf @), —2F@¢—1),...,—aF@¢—n)]T. (7)
Here
CEuF() = w()s Ol () — «(0) (®)
and
A(z"Ya(t) = Blz—YHuls) 9

(i.e. x(z) is the output without noise).
Let the covariance matrix of the parameter estimate py, obtained from
N samplings, be:
Ky =E{(py — P~y — D"} (10)
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where E { . } and /\ mean the expected and estimated value, respectively.
The Cramer-Rao lower bound gives a limit for Ky according to which Ky >
> J5t where the inequality sign indicates that the difference matrix is a non-
negative definite. It is obvious that the strength of this equality is characterized
in the same way by the determinant as a trace of these two matrices. Moreover,
since the maximization of trace of J is also used for the minimization of trace
of J5* which is only asymptotically efficient, it is more worth-while to maximize
the determinant of Jy, since this directly minimizes the determinant of J31,
too. In the following the minimization of the determinant of the covariance
matrix, for white noise equation error, and of inverse of the information matrix
for general noise, is presented. The input signal u(t) is assumed to be an ampli-
tude constrained signal:

u(t) < ugay - 1y

IN

Case of least-squares structure

First, let us consider the case of least-squares (LS) structure when the
equation error — the term AC(z~%)e(t) in (3) — is white noise, i.e. C(z~1) = 1.
In this case the well-known LS estimation coincides with the maximum likeli-
hood (ML) and gives an unbiased estimation. The well-known recursive ver-
sion of the method is

n+1 = By + Rysaly(V + 1) — 7w, 3, N+ Dpplf(u. 5. N+ 1) (12)

e =B

where

, 7ol T A IN L
R‘N-:—l — RIV . RNf(u,_’V,l T 1)f (u,} ,:\/ 7 ?‘)RM . } K_j\y+1 (13)
1+ £T(u,y, N+ DR (u,y, N+ 1) A2

and the covariance matrix

N1 ~1
Ky = [ > f(u,y,0)f7 (u,y,t)} yE (14)

t=1

It can be deduced that the increasing rate of determinant of Ky is

KL
-I—‘l:l—! =1+ fT(u,y, N+ 1) Ruyf(u,y, N + 1) (13)
| K&

if the sampling number IV is changed to N -+ 1 [8]. Here |...| means the

determinant of a matrix. A locally optimum strategy can be formed for the

maximization of | K—1| (which is equivalent to the minimization of | X |)
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if the quadratic form on the right side of (15) is maximized by w(IN -+ 1) in
every step. (This is a so- called locally optimum strategy because only the
next step-is optimized each time.) Partitionate Ry according to (4):

] T
Ry = [n\, dN] - 1 K, . (16)
dy Qu 2=

By this designation we obtain for (15):

| K5t . N
b 2 ) T ~
—“‘_1‘1 =uw' (N + Dry 4 2u(N + g’ (M dy + 8" (V) Qug(V) 1 (17)
| K&
i.e. this means a parabola as a function of u(IN -+ 1) having its vertex down-
wards (since ry is absolutely positive). It can easily be seen that the following
expression gives the optimum value of u®(INV <~ 1) — on a constrained region

given by (11) — ensuring the global maximum of (17):

TN
Umin T~ Umax -] (-"-\ Yy
;

Umax > Lf >0
O(N -1 : & (18)
u (V1) =
) min T Ymax | gT(AT)dN
l min » Lf 2 T - < 0.
i N

Determination of the global maximum can be seen in Fig. 1. Here u*(N) =
= — (g7(N)dy)/ry is the vertex of the parabola. In this way the optimal input
signal can be generated by the on-line connection with the process for identifi-
cation purposes. u°(t) depends only on y(t — 1), ..., y(t — n), consequently,

Urnax* Urnin
u* << %

u

Umin u U =Umax

Ymax *min

Fig. 1
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on values e(t — 1), . . ., e(t — n) and the independence of input signal and the
measurement noise is valid in this case, too. The algorithm (18) can easily be
realized because only the data applied so far are needed to generate the new
u%(t). Scheme of algorithm generating optimum input signal is shown on Fig. 2.
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Instead of the local minimization of the determinant of the covariance
matrix, the local minimization of its trace can also be chosen, since
fT(u,y, N - DRyRAf(u,y, N + 1)
1+ £T(u,y, N + DHRyF(u,y, N 4 1)

tr(Ryyq) = tr(Ry) — (19)

and the second term of (19) right side is a second order rational fractional func-
tion of u®(IN + 1). (Here er(. . .) means the trace of a matrix.) Thus, to generate
optimum input (i.e. to minimize tr(R) or tr(K), namely, tr(K) is proportional
to ir(R)) the global maximum of a far more difficult function than (17) has to
be determined, therefore, it is reasonable to use (18).

It can be established from the comparison of equations (6) and (14) that
the same algorithm can be used for the minimization of the determinant of
J-1 (i.e. for the maximization of | J |) as what was used in (18) for the minimi-
zation of | K |. Since C(x~%) =1, uF(t) = u(t) and sF(t) = x(). So f(u,y,1)
must be replaced by f(u, x, t). Here x(¢) is unknown and can be produced by

prediction:
R m n R
()= Fbult —i) — Sax(t—1) . (20)
=5 iz
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Obviously, now g(u, &, N) is in (18) instead of g(N) = g(u, v, N). The local
maximization of the determinant of the information matrix does not need the
knowledge of output but needs #(z), i.e. the parameter estimates a;, b;. Thus,
this strategy can be performed by an on-line way (simultaneously with the
identification) but it can be done in off-line way, too, in the apriori knowledge
of parameter estimates. This means the optimum input sequences (so-called
D-optimum) can be generated in advance to the identification. Unfortunately,
we have to know far more for the synthesis (the parameter estimates themselves)
and this strategy can only be realized by the successiveapplication of the off-line
identification methods.

The case of maximum likelihood structure

Such an algorithm which locally minimizes the determinant of the covar-
iance matrix for the general form of system equation (3) cannot be constructed
similarly to (18) but the algorithm suggested for the local maximization of
the determinant of information matrix in LS structure can be generalized for
this case. Comparing (6) and (14) it can be seen that f(u”, x©
f(u, y, t), formally. Since x(t) is unknown f(u”, 2¥, ) can be determined from
the predicted value #(z). By the filtering equations (8):

, I) corresponds to

f(u.F, £F, N+ 1) = [u(N+ 1) —q, gT(uF, #F, N7 21
where
k
q= Z cuf(t —1). (22)
=1

Now the optimum u(N + 1) is computed according to

Umaxs Lf Yrmin ‘—7 Umax + gT(_N)d‘,\,« =
' - rN
(N +1) = i (23)
| T(N
iumin p Zf}ﬁn é Ymax L g (—’-\ )d_,\r — ¢
T~

(It is to be mentioned here that now ry and dy issue from the partitionation of
R, = (73] y)~1) Since there is no good on-line method to estimate the coeffi-
cients of A(z—1), B(z~1) and C(z~?) the off-line input signal synthesis — sug-
gested for the LS structure, as well — should be applied.

In a special case, when C(z~1) = 1/H(z~1), HasTines’ on-line method can
be used to estimate the parameters of H(z—1) = 1 4+ hyz=' + ... + hz"° [4].
The formula (23) is also valid taking into account that

g=— Nhault —i). (24)

i=1
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Simulation results

The effectiveness of the elaborated methods has been proved by several
simulation examples [7, 8]. Here only some of them are presented. The process
was simulated for several structures according to equation (1). In theseexamples
results of identification obtained by pseudo-random-binary-sequences (PRBS)
and D-optimal sequences as inputs are compared. In both cases the input signal
was an amplitude constrained signal: —1 < u(t) < 1. The following measure
was used to compare the identification results obtained by PRBS and D-opti-
mum input:

. (by— )" (By — 1)
w(N) = w(t) = .
) = = s —)

Let us consider the following numerical examples:

1. Example
The equation of simulated process is
(I — 0.82-)y(r) = (0.6 + 0.2z Y)u(t) L Ze(?)
and 4= 0.2
In Fig. 3 the values w(t) are shown for the cases of PRBS input and D-

optimum input synthetised on-line by equation (18) when the identification
was performed by on-line LS method.
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2. Example
The equation of process is
(1 — 0.7z=1 4+ 0.12-2)y(t) = (0.6 - 0.2z Vu(r) + Je(r)

and A = 0.2. The values w(f) can be seen in Fig. 4.
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3. Example
The simulated equation is
(L — L5271 4 0.66z=2 — 0.08z=3)y(s) = (1 4+ =~ — 0.5z 2)u(r) -+ Zefs)
and 2 = 0.3. The values w(t) are presented in Fig. 5 for both input signals,
4, Example
In order to identify the parameters of system equation
(1 — 15271+ 0.7272)y(t) = (L1.0z-1 + 0.5 2)u(r) - A1 — 1.8271 -~ 0.92-2)e(z)

an off-line ML estimation was performed. The following table contains the
determinant of covariance matrix of parameter estimates and the variances of
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case of PRBS input and D-optimum input synthetised

by (23).

PRBS D-opt.
var (d,) 0.0058 0.0029
var (d,) 0.0042 0.0021 N =500
var (5) 0.0369 0.0193 A=10
var (by) 0.0516 0.6271
Kyl 2.57 - 10-18 4.35 - 10-2

Conclusions

In this paper a locally optimum algorithm is suggested for the input sig-
nal synthesis by means of which computationally very simple method can be
given to minimize the determinant of covariance matrix if the equation error
is white noise, and in another case to maximize the determinant of information
matrix. The local optimality is actually an analogous concept of the ““one-stage



270 L. KEVICZKY

control” of stochastic control theory. Realization of the global optimality
which corresponds to the “N-stage control” means computationally a far more
difficult problem. (But it can be solved on the basis of this paper by dynamic
programming.)

The suggested algorithms can be employed profitably in the off-line
input synthesis to improve the result of identification step by step.

Summary

In this paper it was investigated how to generate optimal input signal series for the
identification of linear discrete-time system in order to improve the accuracy of estimate.
The determinant of the covariance matrix or the inverse of information matrix are considered
as a measure of the error in the parameter estimate. We suggest very simple methods for the
minimization of these criteria in case of amplitude constrained input signal.
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