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Introduction

The algorithms, named in the title, converge asymptotically in the sto-
chastic case — if the convergence criteria are satisfied — with unity probability
in an infinite number of steps. In the real-time case and a finite time interval
the expected value of the quality criterion characterizing the convergence
speed, i.e. the time behaviour of the convergence probability is questionable.
In the following a possible evaluation of this time function is presented.

Convergence Probability Versus Time
The successive approximation algorithms of the type
c[n] = ¢[n — 1] + dcln — 1] 1)

— where ¢[n] is the unknown parameter vector in the n-th step and dc[n — 1]
is the calculation increment of the vector in the n-th step, — solve the following
task in the stochastic case:
P{lim ¢[n] = ¢*} = 1. 2)
Ti—teo
In the unimodal case ¢* is the required value of the parameter vector for an
infinite number of the steps and then the algorithm is convergent with a proba-
bility of 1, if the conditions of convergence are satisfied.
Let the F[c] be a scalar function; then

lim M{F(c[n] — ¢*)} = min (3)

s co
and with the expected value of the quality criterion in place of the minimum
respectively, we obtain:

° lim M{F(c[n] — c*)} = 0. (4)

Oc[n] n—=




286 I. BENCSIK

On examining the convergence speed the meaning of the quality criterion
F[c] mostly involves the variation in the scattering of some quantity, accord-
ing to the investigations of Cypxin [1]. Be it in the real-time sampled case

T = const., so
¢[N] = c¢[ty] and ¢t = NT,
where N =1, 2 ... is a series of natural numbers. If it is # > ¢y, then the

form of (2) is:
P'{F(C[t‘,\r] — C*) = mln} = DN . (5)

By increasing IV in the infinite, py approaches asymptotically 1. The conver-
gence criterion in the real-time case is:

| — c¥ ]l En
f Gc[tN iVI{ ( [tN] )f; g N (6)

with the error ey being: exy > 0.

Here the numerical value of ey is greatly problem-dependent: the error
limit is determined by the order of magnitude of the signals and the para-
meters, and the noise.

Let the algorithms A, A,, ..., A; be given and each used frequently in
the statistical sense for solving some typical tasks. Then for solving real-time
tasks the algorithms for which

pnEpni X1 (7)

holds, are suitable, where py;is the expected value of the convergence probabil-
ity in IV steps.

The algorithm which is optimum for solving a typical task is the one,
for which (6) is the minimum. In the real-time case we cannot speak of an algo-
rithm having a generally optimum convergence speed, due to the task-depend-
ence but the statistically optimum convergence speed — with the task-
dependence but the statistically optimum convergence speed — with the task-
dependence disregarded, — may be determined as follows:

Let us denote — for the simulation of py of a stochastic convergence
probability, — by &y the probability variable equalling 1, when the N-th step
was optimum with respect to direction and magnitude and equals zero in the
opposite case; then the number of the optimum steps is:

N
Nopt = &y ®)
N=1
where N=1,2, ... N.
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The relative frequency of the optimum steps: Nopi/Nis also a probability
variable. Let us now apply the error finding procedure of the MonTE-CARLO
methods to this probability variable [2]; then under very general conditions:

pn-d?

where d =1 — py/px is the relative error, when pyIV 1,1i.e. N >1000 (> 30).
We shall look for the error probability of Nope/IV = 1, so

- 9PN
Nope — 2PN (10)
I —pw
Therefore,
4 ] | ]

I 0.9 | 0.95 099 | 0997
(1)

N o8l 170 [ 891 - ~3000
If the successive steps are independent, — which condition is approxi-

mately satisfied in the stochastic case, — then Table 1 contains the minimum
number of steps necessary for the required convergence probability. On inves-
tigating the number of steps occurring in some typical tasks, we have found
that the values given by the table may be used, e.g. in the case of the SARIDIS
algorithm [2].

The number of steps is a characteristic, and generally the most important
one, of the convergence speed, but finally the calculation time of the operations
required in one step must also be taken into account for the realistic evaluation
of the convergence speed.

The exact mathematical treatment of the expected number of operations
of the algorithmizable tasks is given by FREY in ref. [4].

Let 4,, A, ... A; be the algorithms selected for solving a given task.
From among these algorithms the one by which the convergence probability
is obtained in a minimum time, is regarded as optimum. For selving the task
given in [4] the exrror is proportional with F(c[N] — ¢*), and accordingly the
estimated scattering of the i-th algorithm is:

N; '
o=t SF(e[N] — o*) (12)
.Z\li — 1 N=1

Let 7; be the calculation time of the operations required in one step; then by
forming the products (N; — 1)7,67 the algorithm offering the minimum value
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of this product is optimum for solving the selected task. This implies that the
algorithm must be made sensitive for the quantity

SF([N] - o) (13)

N=1

but then 7} > 1, if 7{is the calculation time of the operations required in one
step with the sensitized algorithm.
On the other hand ¢¥ << o7 and N{opt << Ny opt 50 the correct solution is:

(.Z\'Ti opt = l)T[ > (-/\-'/ opt — l)'(f N (14)

The expression (14) is suitable for evaluating the convergence acceleration by
real-time algorithms, but it says nothing about the error probability ey. As
the real-time T, time division is T, = const., the accelerated version of the i-th
algorithm may be applied, if

T, > (Nl opt — 1)1i (14a)

is satisfied with a high relative frequency, while the specified convergence prob-
ability py is constant. When this condition is not satisfied, the usefulness of
the result is determined by the evaluation of (13) and (0), respectively. So the
evaluation by (14) gives no reliable result.

If the convergence acceleration is characterized by the expression

(—Niopt - 1)0‘%75’ > (—/ i opt — 1)7;0% (15)

instead of by (14), then this problem is to be avoided.
Let us write the expression (14) in the following form:

~ 5 , Ni apt NS _
e, > (Nlop — Vit =7 3 Fle[n] — c*)2. (152)

N=1

The expression (15) defines the accumulated error ey;. Be K;=1{/T,, which
is constant for the given computer and algorithm; with this the new form of
(15a) is:
N
2eni =T > Fle[n] — ¢*). (16)

N=1

Now the optimum from among the number i of the algorithms is the one, for
which the accumulated error ey; is minimum and in this way the task-depend-
ence may be taken into account. As the required parameter vector is c, this
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cannot be formed recurrently during the calculations, therefore, it is usually
substituted by the instantaneous value of the gradient figuring direcily, or
indirectly in de[n — 1]. So the steps for selecting an algorithm are:

a) the selection of T,,

b) the selection of py. the convergence probability giving Nopt,

¢) only algorithms for which

applies, may be considered, by which a group of the algorithms was selected
with the end of the calculation time of one step,

d) the selection of the algorithm having minimum probability of the
accumulated error, according to (16), for the actual task.

Conclusions

For deciding the applicability of the real-time, or evaluating the conver-
gence speed and aeccuracy of an algorithm, is solved only for specific cases.
An algorithm nearly optimal for solving a task can hardly be used for solving
other tasks.

As the procedure used for examining error probability in the MonTE-
CarrLo methods applies to the case of any arbitrary signal distribution, so the
described calculation simulating the convergence speed of the successive ap-
proximation-type algorithms is generally valid — see table 1, — not regard-
ing the task-dependence,.

Summary

It is difficult to ensure convergence for asymptotically optimum algorithms in case
of real time. This paper shows how the convergence rate is possible to be numerically determined
in time.
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