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Recently, as the problems of the computeraided process control have come
to the foreground, the identification of the discrete time (sampled) systems
and algorithms of the optimal control strategies based on the identification
have great importance in the control engineering.

At present several identification methods are known that can be success-
fully applied to the solution of the parameter estimation of the linear discrete
time systems [1]. These methods have proved their applicability and excellent
filtering properties in practical use, and the identification of those sort of models
can be considered to be solved. The models are suitable for designing optimal
digital controller to a process (controlled plant) by some criteria. The function
of the digital controller is performed by the process control computer.

One of the most important functions of the direct digital control (DDC)
is to substitute the classical analogue (PI, PID etc.) constant value (and other)
controllers by digital computer. The latest results clearly show that the discrete
versions of the classical controllers are not sufficient toreach the theoretically best
control for constant value, if the system is influenced not only by deterministic
disturbances. If the purpose of the control is to minimize the oscillation of the
controlled signal around the desired value, then a more complicated signal
formation is needed than by the classical controllers, but this complicated sig-
nal formation can simply be performed by a digital computer. The oscillation
" of the controlled signal due to the various disturbances can be reduced by the
minimal variance control. By this control strategy the expectable value of the
square of the control error will be minimal in a stationary case.

First of all, in this paper the algorithm of the minimal variance control
is discussed on the basis of K. J. AsTROM’s works [1], when the identification
of the controlled plant is previously made and so the system parameters can be
assumed to be known for the design of the controller.

In the next section the adaptive control algorithm of V. PETERKA is
considered [7], namely, a “self-tuning” control strategy can be established by
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the least squares method, in which the apriori knowledge of the process para-
meters is not necessary.

Then it is shown how the self-tuning (adaptive) control can be realized
by the generalized least squares method.

Finally expressive simulation examples are presented in order to compare
the various control strategies.

1. Minimal variance control of a constant and known system

Let the system, restricted to single-input single-output discrete time sys-
tems, be deseribed by a linear time-invariant difference equation. It is assumed
that the aaditive disturbances reduced to the output can be characterized by
stochastic process with a rational spectral density [1]:

BET L aya S

Y= 4G

e(t); (1 =0,1,2,...) (1)

where B(z~')/A4(z~1) is the pulse transfer function of the process, iC(z~1)/
/A(z77) is the pulse transfer function of the disturbance referred to the process
output, u(t) is the control signal, y(¢) is the output of the noisy system, e(t) is a
sequence of independent normal variables with zero mean value and variance
1 (svhite noise). Further

[1(3_1) =1 _T a‘lz—l —' e '_ (1,35_”7 l
B(z=1) = by + bzt + ...+ bz~ ™, ¢ (2)
C(Z_l) s ] _‘- Clz—l _\, R C};Z-k. l

where n 2> m and n > k for physically realizable systems. It is assumed that
the pol}/nomlals A(z‘l) and C(z~1) have all their zeros inside the unit circle
(in the z plain). According to the interpretation of the backward shift operator
z~! the difference equation of the system is:

y(&) = bou(t — d) + bu(t —d — 1)+ ... L bput —d —m) —a;y(i — 1) —
— ayy(t —2) — ... — apy(t —n) -+ e(t) - ce(t — 1) - ... = et — E). (3)
It can be seen that the process has a time delay d. The problem is to determine

a sequence of the control signal u() on the basis of the knowledge of the system
parameters and the observations y(t), in such a way that

E{y’(1)} )
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would be as small as possible. E{. ..} denotes mathematical expectation. Let
us write the earliest value of y influenced by u(r) on the basis of Eq. (1):

B(:Y) C
vt 4= d) = u(t) -2 -+ d). 5
Yook dy= 2 ) 2 e ) (%)
The second term of the right side is a linear function of e(t + d), . . ., e(t -+ 1),
e(t), e(t — 1), .. .. Since e(t), e(t — 1), ... can be computed exactly from the

observations b}, (1), but e(t - d), . .., e(t - 1) are independent of the observa-
tions, it is expedient to make this separation as follows:

. BT Y G(z"Y)
"'T'd—‘ u,—-‘—.|FZ T" ,d, 6
e d) = ZE 0 + 2 pey H]( (5
where

FzY) =1+ fiz= 4+ ...+ fooz @7, | )
=1 J (7)

Gz=1) =gy+gr~ 1+ ... g, 15

The coefficients of the polynomials F(z~1!) and G(z~1) can be computed from
the following equality by comparison of the coefficients:

Clz=Y) = A(==Y)F(z—) + 5~G(s~1) - ®)

Using the identity s %e(t - d) = e(t) the equation (6) can be written in the
following form:

BE) = CET) oy iR et 4 a). (9)

T R TR

Eliminating e(¢) from (1) and replacing it into (9), and taking into account (8),

we obtain:

! — F(z~1)B(:_1) u _L_%f:i)__ ANy z-—l e p L
Y(t"‘d)“_“‘_“_“c(z_l) (1) = = ¥(O) + 2F(E et +-d). (10)

In consequence of the separation discussed above the third term of the right
side is independent of the first and second term, hence

F(z~H)B(z—* G(z—1 2
T v + G0 |
€= c="
It can be seen that only the first term of the rlght 51de, which is a non-negative
expression, depends on u(t), thus the whole right side is minimal by u(f) only

]
h

E{y -+ d)} = E{[
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then, if the first term vanishes, from which the optimal control strategy is
[1, 2]:
G

= T B

¥(o). (12)
By such a control strategy the output is the following on the basis of (10):

y(t +d) = Fz=Ye(t + d) = ife(t + d) = fie(t - d — 1) +. ..+ fu_se(t = )]
(13)

On the basis of (13) we can say that the expectable value of the output is zero,
thus the expectable value of the square of the output, that is the minimal
value of the loss function, is equal to the variance of the output:

var {y(t + d)} = E{y(t + d)} = E{2[e(t - d)+ fre(t +d —1) + ...
St = D =221+ fi o fam), (14)

because the expectable value of the mixed terms vanishes, as e(t +d), .. .,
e(t -~ 1) are independent of ¥(z), y(¢t — 1), ... and u(t — 1), u(t — 2), ....

By taking into account the previous con51derati0ns it can be seen that the
parameters of the controller in (12) can be derived unanimously in the knowl-
edge of the system parameters. The output, which can be regarded to be an
error signal, is described by the moving average stochastic process by Eq. (13).

1.1. The minimal variance control strategy as a prediction problem

Make a prediction for y(t + d) based on the available observations at the
time ¢ in such a way that

E{[y(t +d) — 5(t + d | 9F} (15)

would be as small as possible, where 3( - | ) denotes the predicted value based
on the available observations at the time ¢. Let us use the expression of y(t + d)
in Eq. (10) to Eq. (15), where the values before and after time ¢ are well sepa-
rated:

E{[‘/(t d) —3(t+d 1‘)]} {[wu@ . (_1) NORE

(=) Ty

L JF 'f_le,—f— ~——1:—'— : == MF(Z-I)B(Z_l) u 4
= AF(z" et - d) — ¥(¢ ,dit)} } E{[ i) (1) 4

- C(;"l) Xe) -~y +d 1) T} + E[2[F(z et + d)]Jl} ) (16)
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Here it is used again as e(t + d), . . ., e(t - 1) are independent. The observa-
tions available at the time ¢ appear only in the first term, which is a non-
negative expression, thus it is minimal if it vanishes, from which follows that

_ FEHBEY
C(="1) ClzY

y+diy ¥(®)- (17)

The prediction error is given by the following moving average stochastic pro-
cess: '

At +d) =yt +d)—F(@+d 1) = 2F("Ye(t +d) =
= Ale(t + d) + fre(t +d — 1) - ... + fy_qse(t + 1)]. (18)

So the prediction error will be a white noise, if and only if, d = 1.
It follows from Eq. (17) that the predicted value of the output is a function of
u(t), thus with a proper choice of u(t) it can always be achieved that the pre-

dicted value of the output should be a value given in advance. To satisfy the
criterion

E{y¥t + d)} = min.
the desired value of the output must obviously be
yt-dit)=0. (19)
Substituting (19) into Eq. (17) we get again Eq. (12), and the control error

y{t + d) will be equal to the prediction error, as it is shown in Eq. (18).

1.2. Control to a constant value

Find the control strategy, which minimizes the following loss function:

E{[y() — R} = E{r*()}. (20)

In Eq. (20) R = const. denotes the desired value of the output and r(z) is the
error signal. By Eq. (17) we can write that

JU O Y
$e+dn=r=TEDBE ) S
C(="") C(=")

whereof the optimal control strategy is:

_ CEIR = 66yl
B=)F(")

u(?)
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2, Minimal variance control of constant but unknown
system using the least squares method

Previously we have seen that the parameters of the optimal controller
can be determined unanimously in the knowledge of the system parameters.
Since the system parameters are unknown the control step should be preceeded
by an identification step. In the following section a method will be discussed,
which determines the parameters of the controller directly and avoids the
complicated dual control.

Consider the following system equation:

A(z=Y)y(t) = Bz=Yu(t — d) - AC(z"Ye(z) . (23)

Since y(t — 1), ..., ¥(t — d + 1) can be expressed by means of y(¢t — d), . . .,
yt—d—n+ 1) ut—d—1),..,ut —2d —m -+ 1) et — 1), ..., e(t —
— d — k -+ 1), therefore, a linear transformation always exists, and (23) can

be written in the folloiving form:

¥(t) = T(E=Hy(E — d) + SE"Hut — d) + IR(z"Ye(t) , (24)
where
T(z=1) =ty ty5=t 4+ ... 1,577V l
S(E=1Y) =35, + sz 1+ ...+ s,,1+d_1:_("1+d"1) (25)
R =1-+rz"1+ ...+ r;i+d..lz—(l"":-d_1).

According to Eq. (24) the value of y(t + d) is given by
£ d) = T(-0y(0) + SG-2u(®) + FR("De(t - d) . (26)

To separate the values before and after time ¢, let us decompose the polynomial
R(z71) as follows:

R(1) = Ry(x=) + = Ry(=-1) . (27)
where
Ri(z1) =1+ rz=1 4 ... = gz 78,
(=71 1 d—1 | (28)
Ry(s™Y) = rg + rapazml 4 oo+ Tprags 00
Then

y(t + d) = T(s=Y)y(t) + SGE-Yu(t) + IRy(s-Ye(t) + IRy (z=Ve(t -~ d) . (29)

Expressing e(t) from Eq. (24) and substituting it inte Eq. (29), by means of
(27) we get:

S(z"1)R, (s~

TEORGE) + Ro=) ) () +

R(zY) R(=7%)
+ 2R (z"Ve(t + d). (30)

ye+d) =
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C ompare this with Eq. (10) and we obtain:

F(z=1) = Ry(z77) , (31)

and the optimal control strategy is given by

TEORGED + Ry (66T

u(t) = — — — YT
Sz Ry (z77) B(z"")F(z1)

¥@).  (32)

that is the optimal control sirategy is the quotient of the “coefficients” of
y(t) and u(f) in both cases. The other way around, by the feedback

P(z"1)
Y= — = L), 33
u(t) Q(z-1)9(t) (33)

taking again the prediction error AR;(z1)e(t + d) in the prediction equation
(30), choosing P(s~1) as the coefficient of y(t) and Q(z—%) as the coefficient of
u(t), we will show that Eq. (33) gives the minimal variance control strategy.
According to this:

y(t -+ d) = P(z=y(t) + Q=" Yult) +- IR (z~Ye(t + d) . (34)

Comparing this with Eq. (29) the following equation must hold:

T(y(0) + S(-u() + HRa(s~9e(t) = PE(0) + QG-u() . (35)
Taking into the consideration the feedback (33), as a limiting condition, Eq.
(35) has the following form:

_PETYH

01 ° (t)} + ARy(z7")e(t) = 0. (36)

TE)0 + 567
Eliminating e(¢) from (24) and writing it to (30), using (27) we obtain:
[(Ry(==T(z7Y) + Ry(=71))Q(z*) — Ry(z71)S(")P(="H]y(t) = 0. (37)
(37) holds only theu, if

P _ RGTHTEY + Re(=™h)
Q" R,(="1)S8(="7)

(38)

According to Eq. (32) the right side is really an optimal controller. So we have
shown that the minimal variance controller can be searched by means of such

6
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a prediction equation as (34). Moreover, it can be seen from Eq. (34) that the
least squares estimation for the coefficients of the polynomials P(z-1) and
Q(z~') will be unbiased, since the residual is independent of the first two
terms of the right side [3]. Comparing (38) with (32) it can be seen that the
polynomials P(z~%) and Q(z™!) must be of order (n — 1) and (m — 1 - d),
respectively. Normalizing the controller based on Eq. (33):

P(z—1) = Po+ Pt .0+ Pn—lz-(n—l) (39)
Q") =14 gzt + oL+ guoggz T |
Introduce the parameter vector
PT = [P()-, pl'; LR | pn—le q1', qgv AR ] anfd—l]' (40)
and the observation vector
() = [y, y(t — 1)y oyt — 0 == 1), u(t — 1), u(t — 2), ...,
u(t —d —m -+ 1)]. 41)
By Eq. (34) we can write that
¥t 4 d) = p'x(t) + ult) + e(t + d), (42)
where
e(t = d) = AR (s~ Ye(t + d) (43)
is the independent residual. The loss function to be minimized
E{yt +d)} = E{[p'x(t) + u(t) + (t + d)]2} = )
= E{[p'x(t) ~ u()]} - E{(t + d)}
is minimal if
u(t) = — p'x(1), ' (45)

which is equivalent to Eq. (33).
Introduce the following notations for the least squares estimation of the para-
meter vector p:

T=1-+d ] )
(46)

s(z) = y(r) — u(r — d). j
By these notations Eq. (42) takes the following form:

s(t) = p'x(7 — d) + &(1). (47)
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Determine the parameter vector p in such a way that

¢ t
2 0T = 2w TPl — pix(e — )T (48)
=0 T

will be minimal. By means of value | w | = const. < 1 appeared in the weighted

least squares solution above, a so-called exponential forgetting strategy can be
realized. It means that the observations referring to the old adjustment of the
controller play a smaller role in the sum, than the observations referring to the
new adjustment of the controller. Consider the following (¢t + 1) equations:

s(t) =p'x(t —d) =~ e(r); 7=0,1,2,...,¢. (49)
Writing (49) in a vector form we get

s; = X, _4p = &. (50)

where

| <0 —d) |
Introducing the weighting matrix
W, = diag[wi WL . 1] (53)
the loss function (48) can be written as
[W,e] [W.&] — min. (54)
Substituting (50) into (54) we obtain

[We(s: — Xeeap)]' [Wi(s; — Xi—p)] — min. (55)
p

whereof the place of the minimum is by differentiation:
b= [(WiXi—a) (W X)W X, s, . (56)
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Using the relations of the recursive least squares estimation [3,5,7] p; can be
derived from p,_; by a recursive relation:

pe = Pros - Hix(t — d)[s(t) — x"(t — d)pr—1], (57)
where
m, - L { S LY [ ) 58)
w? w? - x7(t — d)H,_;x(t — d)

If d = 1 then the expression of p; is more simple. By (45) and (57) we
can write that

Br = Peos -+ Hx(t — D[y(0) — ut — 1) — x"(t — D] = pros —
+ Hox(t — Dy() — u(t — 1) + u(t — 1)] = pioy + Hxlt — 1)y(1) . (57)

Thus in the knowledge of p; the equation of the controller is [7]:

3. Minimal variance control of constant but unknown
system using the generalized least squares method

Studying the literature of system identification we can ever more often
meet such kinds of identification methods, which estimate the disturbance
model besides the process model. Such a method is the CLARKE’s generalized
least squares method. Now we will investigate how to control a system desecribed
by equation

A"Ny() = B("Yul — d) + AC(z=Ye(s) (60)

in order to minimize the variance of output, if the identification is made by
the generalized least squares method.

In the previous section it could be seen that the system described by Eq.
(60) could always be transformed into the following form:

¥t + d) = T(=2)y(0) + SEHu(t) + IR(=-Yelt + d) . (61)

Introduce the parameter vector p and observation vector x(t) as follows:

T
P o= [fgs B v v o fnets Sgn S1a « « + 5 Smrdet] ]

. | (62)
(1) = (@ 3t — 1s ooyt — 1) u(®)su(t — 1o u(t—m —d = 1)1,
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On the basis of Eq. (61) we can write:

y(t) = <" (t — d)p + »(t) , (63)
where the residual

v(t) = JR(s=Ve(t) (64)

contains components before time ¢ which are in correlation with observation.
For N measurements Eq. (63) has the following vector form:

yi = Xi—ap + Vi » (65)

where
vo= D@yt = 1. ot — W,
X s=x(t—d),x(t—d—1),...,x(t —d— N, (66)
v/ = [o(t), o(t — 1), ..., o(t — N)].
The least squares estimation of p
pe = [X_oXra] X gy, (67)

will be biased, because ©(t) is not independent of the observations. Approximate
2/R(z=1) with a polynomial H(z-?) of finite order:
Y3
R(z"1)

e H(xzY) =1+ hzt+. ..+ hz". (68)

By Eq. (64) we can write that

JOE AP o s . P ; J— ~

H40(0) = vlt) + 3 vlt — i)hy = ey(t) e et (69)
=1

where e,(7) is not exactly a white noise, because of the approximation of finite

order, but the least squares estimation, which minimizes the loss function

ﬂ_\oﬂ =

1(2) (70)

t=1

i

will have a small bias. Substitute (69) into (61):

1
H(z")

) =TE )yt —d) + S Hu(t—d) + ex(1). (11)
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Multiplying by H(z~!) and using the commutativity of the shift operation we
obtain:

[H"Yy(@)] = T(=")[H(E="Yy({t — d)] + S(z=Y[H(z"Yult — d)] + ey(t). (72)

Thus, the terms in angular brackets can be generated by an autoregressive
smoothing. Denote the filtered values with superseript F:

Y0 = HEe9y(0: 57 — d) = HYy(t — d):

_ 73
(1 — d) = Hz"Yu(t — d) . 73)

The residual vector v, can be computed by means of p, deriving from the
biased estimation according to Eq. (67):

v =y — Xi—ap; - (74)
Let :
) =[—e(t—1), —v(t —2)s ..., — ot — 1)]
and (75)
h' = [h, by, ..., h],
then
v(t) = £ (t)h 4+ e,(t) . A (76)

Thus, the least squares estimation for h based on N measurements is:

b, = [FTF]-'Flv,, (77)
where
F/ = [f@), f(t — 1), ..., ft — N)]. (78)

According to the CLARKE’s generalized least squares iterative method, which
gradually decreases the estimation error, the next step starts with the smooth-
ing by (73) and the estimation of the system parameters is repeated on the basis
of the filtered observation vectors:

() = HEzY=(t); ¢=1,2,...,N. (79)

The estimation of the system parameters and the filter H(z~1) can be written
in a recursive form as are Eq. (57) and Eq. (58):

P = pors + 67t — )y (1) — =Tt — d)pi—i] » (80)




MINIMAL VARIANCE CONTROL STRATEGIES 303

where
_ 1 6 xT(t — D][6,_x"(t — d)]”
G = 1w} {Gi—l wi 4+ xFT7(t — d)G,_;xF(t — d) l (81)
and

b, = h._, + DA@[v(e) — £7(0)h,_,] . (82)

where
b _ 1 {D_l D SO)D ST | )

wi | w} -+~ £7(0)D,_,£(2)

Here w, and w, are forgetting factors. Determine u(t) based on p, and h, in
such a way that

E{yt + d)} (84)
should be minimal. Introduce the notation
H(z"Y = hz 1+ hpz=2 4+ ...+ hz™". (85)
According to Eq. (72) and (73) y(t + d) is given by

y(t 4+ d) = TNy () + SE-Hul(t) — HE-2y(t + d) + eyt — d) . (86)
Investigate the third term more precisely:

HiEYy( +d) = hy(t=d — 1) + ...+ hy_qy(t = 1) = hyy(t) = . ..
Ryt d—71). (87)
Let us express y(t + 1), ..., y(t +d — 1) by (86):
Yo +1) =Tyt —d+ 1)+ SEHu(t—d+ 1) —hy(t) — ..
=yt —r 1) et ) =50+ 100 + et — 1), (88)
where y(t - 1| t) is the least squares estimation for y(t + 1) based on the obser-
vations available at the time t.
On the basis of Eq. (86) and (88):
Y+ 2) =TE )yt —d+2) + SEu(t —d +2) —hyy(t + 1) —
= hyy(t) — = hy(t— 1+ 2) eyt + 2) = Ty (1 —d + 2) +
+ S u(t — d + 2) — kit + 1) — hoy(t) — ... — hey{t — 1+ 2) —
— hyes(t + 1) + eyt + 2) = F(t - 2 [ 1) — hyey(t + 1) + est + 2) . (89)
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Going on from this procedure

y(t + d) = T3y (1) + SEYu"(r) — Ha(s=2y(1) —
— Hy(z7)y(t +d — 118 + L(z"Yes(t + d) (90)

where

Hy(z=Y) = hy + hyz=1 4+ hy_ 579,
Hy(z7Y) = hg - hgoqgz=t + ...+ b 079, (91)
Lz =1+ 1zt + ...+ Zd_lz_(d_l).

The coefficients of the polynomial L(z~') can be derived from the coefficients
of the polynomial H(z~1) by the following relation:

or | & ‘
gi+l = P g!- - “ v hl . (92)
I, ., 0

¢ =[1,0,0,....0],

giy = [y .o laoq], (93)
hy= [~ hy — Ry oo oy~ hy_4]

where

Q

and I;_, is a unit matrix of order (d — 2).
To determine the control law, let us introduce the following notations:

u" (1) = u(r) + é u(t — Db = u(t) - a" (1) (94)

S'(z—l) = 8§ F Sez Tt L+ sn1+d_1z—(7]1+d-2) . (95)

Using the notations above in Eq. (90) we obtain:

¥t + d) = [TE9y7 (@) + SEYu"(t — 1) + spi" (1) + sou(t) —
— Hy(z"Y)y(0) — Hy(="Yy(t +d — 1[)] + [L(z" eyt - )] . (96)
After raising to the second power, taking mathematical expectation in Eq.
(96) and using the fact that e(t) is asymptotically independent, we get:

E{y(t + d)} = E{[Ty7(0) + S(-u" — 1) + 5,70 + sqult) -
— Hy(e=9y(0) — Hys=95( + d — 1| 0F} + {BILEYeit + OF} - (97)
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By means of u(t) the first, non-negative term can be minimized, thus

) = [T + Sl = 1)+ 56 (0) — Hyle () —
— Hy (55 +d — 1] 1)] (98)

is an optimal strategy, by which

E{y(t +d)} = E{[L(z"Ye,(t - )"} = E{e(t - )WL+ kK — ...+ hi_)). (99)

4. Simulation results

In order to investigate the properties of these mentioned control algo-
rithms we have simulated the situation in Fig. 1 by digital computer “Odra
1204°*. The difference equation of the system to be controlled was the following:

y() =15yt — 1) — 054 v(t — 2) = 2 u(t — 1) — 1.8 u(t — 2) +
4 3[e(t) — 0.2e(t — 1) — 048 e(t — 2)] (100)

that is a second order system was simulated with d = 1 and 7 = 3.
We have investigated the following cases:
— uncontrolled case (UC):
— minimal variance control of constant and knewn system (KPC)
— minimal variance centrol of constant but unknown system using
the least squares method (L3C):

| -
} PROCESS
|
ult) . 2-18z7 + I y(t)
i z *
control signal 1-18z7.054z2 ® controlied signal
COMPUTER —}
I ) 1
| Controller I‘

R
desired value

Fig. 1
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— minimal variance control of constant but unknown system using
the generalized least squares method (GLSC).
The desired value of the output (R) was counted as zero. The time curves
for every case can be seen in Fig. 2, and the variance of the output (c}) is
presented in Fig. 3. ‘

G, 2
2004
1004
10
g
theoretical
i uc
minimum et
—————— LSC
————— GLSC
1,
n
01 1 T 7
1 10 30 100 1000
Fig. 3

In the uncontrolled case u(t) should be chosen in such a way that the
mean value of the process output should be equal to the desired value of the
controlled signal (R). Since the transfer factor of the process referring to the

m / n
mean value iz ¥ bi/f (1 - S a

. therefore, the control signal should be

i=0 i=1
equal to

n
T 4

u(t) = =l R = constant.

S,

I==Q

Choosing R = 0 the control signal u(f) will be zero in the uncontrolled case.

The equation of the optimal controller can be computed on the basis of
Eq. (8) and (12) as follows:

_0.85—0.51571

utt) =
® 1—0.9z:71

y(@® (102)
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and the control error by (18) is
h(t + d) = h(t -+ 1) = Je(t + d) == 3e(t -~ 1). (103)

The variance of the controlled signal by Eq. (14) is o} = 72 = 9.

At the control based on the least squares method (LSC) the estimation
of p was started with a zero initial value and carried out by recursive relation
(57). It means that we did not make an off-line estimation in order to get an
apriori initial value. This is why the estimated value of p differs from its exact
value during the first steps, so the adjustment of the controller is not optimal
at all. Thus, it is worthwhile starting the control only after a few estimation
steps. Up to that time the control signal corresponding to the uncontrolled
case should be given for the system. When the simulation program was used,
the control was started from the 30th step. It was also made at the generalized
least squares method. We have seen that by this method the estimated system

"parameters are also needed for the estimation of the parameters of the filter.
Therefore, in the case of effective generalized least squares method the estima-
tion of the filter parameters should be started only if the estimation of the
system parameters gives a relatively stationary value. At the simulation the
estimation of the fourth order filter H(z~1) was started at the 80th step.

5. Conclusions

It can be seen from the simulation results that the minimal variance
control strategies are very effective, the variance of the control error can be
considerably decreased by them (in our example the output variance decreased
with one order). It is noteworthy that after a few steps the control of an un-
known system has similarly nice qualitative properties (mean value, variance),
as the control of a known system. It seems that the generalized least squares
method (GLSC) suggested by us has the most complicated structure, but accord-
ing to our experiences its asymptotical properties are the most advantageous.

On the basis of this paper we can establish that in the knowledge of sys-
tem parameters the memory and computation time needed for the realization
of optimal control algorithm by computer are very small and the program can
easily be made. The adaptive control of the unknown systems needs far more
store capacity and computation time, whereas the optimal control is always
able to adopt to the process.

Studying the literature of the minimal variance control we can say that
it is a subject worth dealing with. Several papers have already given account
of practical applications and the general opinion is that these algorithms will
constitute one of the most important field of direct digital control. It is so much
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the more expectable because there is no particular difficulty to extend these

methods for multivariable systems.

Summary

In this paper the minimal variance control of discrete time, linear. time-invariant

systems is discussed. The disturbances of the system are considered to be a stochastic process
with rational spectral density referred to the output. In the different sections algorithms are
shown for known and unknown systems. Besides the known methods a new method is suggested
for the adaptive solution of the minimal variance control, where the generalized least squares
method is used for the adaptive estimation of the parameters of the optimal controller.
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