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With the advent and extensive use of state-variable formulations for
dynamical systems, a great deal of interest has appeared for similitary trans-
formations. Many papers have treated the problem of obtaining the phase-
variable canonical form [1...10]. Nowadays, other transformation problems
are in the focus of attention. One of the basic problems is perhaps the trans-
formation from phase-variable form to canonical forms with explicit eigen-
values. Tou [11, 12] has shown that, when starting with the phase-variable
form, transformation by means of the VANDERMONDE matrix results in the
desired diagonal form in the system matrix for the case of distinet eigenvalues.
Moreover, Tou has also given formulas for determining the inverse of the
VANDERMONDE matrix. Many other papers were dealing withe the same problem
[13...17] giving some improvements to the method. For the cases involving
repeated eigenvalues, the modified (or confluent) VANDERMONDE matrix
transforms the system matrix to a JORDAN canonical form. Now, the question
arises how to determine the inverse of the confluent VANDERMONDE matrix.

In many previous papers,e.g. in [18, 19, 20], it was shown that a complete
analysis of the dynamical system involved required the determination of the
inverse modal matrices. Many suggestions were made for the computation of
the confluent inverse VANDERMONDE matrix [18, 26], the VANDERMONDE
matrix being a modal matrix for the companion matrix, that is, for the system
matrix in phase-variable form. Although inversion can be accomplished by
usual methods, a direct evaluation of the inverse matrices in terms of system
parameters is desirable. The inverse matrices could then be evaluated from
certain general forms without resorting to inversion methods. At the same time
an insight into the composition of matrix elements would be possible. In some
cases one or another method may also have considerable practical adventage.

The purpose of this paper is to present a comparison between the suggest-
ed methods. At the same time we will endeavour to point out the connection
links between the various methods.
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1. Problem formulation

Let us start from the well-known phase-variable form

[ . - [ - N o
X, 0 1 0 0 0 ¥, 0
X, 0 0 1 o 0 0 Xy 0
= + u (1)
Xy, 0 0 o . . . 0 1 Xy 0
X, —Cy —@; —Qy . . . oy s Oy X,
Y= 0 by by by oo o by by ] s

The corresponding signal-flow graph is depicted in Fig. 1. Eq. (1) put in
short-hand notation reads
x=A x+bju
y =cTx. (2)
We omitted from the last row of Eq. (1) or (2) the term dju for the sake of
simplicity. It should be mentioned that the latter term means a parallel branch

from node u to node v in Fig. 1 not influencing otherwise the main part of the
signal-flow graphs or the corresponding equations.

uo

Fig. 1. State diagram of Eq. (1.) Q means here an integrator

It is to be emphasized that many other phase-variable forms exist.
The form given in Eq. (1) will be called the principle variant, whereas any
other particular variant may be obtained by an appropriate transformation
x = K x’ or by renumbering the phase variables.

By introducing an appropriate linear transformation

x=Lz z=L"1x (3)
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from Eq. (2) we may obtain the JORDAN canonical form:

z=Jz--bu (4)

T

y=c'z.

Here, the JorRDAN matrix is given in pseudodiagonal form: as a hypermatrix

J=L"1AL =diag [J.J., .. .. J,] (5)
where k, + ky, -+~ ... ky = n. Furthermore,
b=L"h, ¢ =AaL. (6)
In Eq. (5) the k;xk; matrix
1 ]
i1
J; = (i=12,....m) (M)
1
— 21‘ et

is a so-called Jorpan block containing the eigenvalue ,; with multiplicity k.

If some of the eigenvalues is distinet (k; = 1 di) then the correponding
Jorpax block reduces to a scalar quantity which is the eigenvalue itself,
J, =7, 3i.

For short, transformation (3) with result (5) will be called modal trans-
formation, and L is then called a modal matrix M, L = M.

Attention is focused on the problem how to obtain L and furthermore
L=1in order to get Eq. (5).

Asitis well known [27, 37] the original VANDERMONDE matrix is a modal
matrix vielding a diagonal form, furthermore an appropriate modal transfor-
mation matrix for satisfying Eq. (5) is the confluent VANDERMONDE matrix:

V=1[VyVa....V.] (8)
where
0 0
by 1 0
73 2 1
v, = (9a)
in_ g 1 9\ jn—:
AT (n— 1)ar 2 Y (n — 1}{n — 2)an—3
I o 4
> ’ 1 ”
N P S (9)
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is an n X k; VANDERMONDE block with corresponding nx1 vectors v; and its
derivatives.

Relatively few is spoken about b, that is, how to determine L and L—!
in order to obtain b in a certain special form at the same time to satisfy
Eq. (5). The latter problem was treated in [18] in some extent. It can be shown
that b can get the very simple form:

I 0

Je 0

: =i = . G=1,2,....,m) (10)
b= .

.im——l O

__]m ] 1

where j; is a k; < 1 matrix, alternatively b may be expressed in the somewhat
more complicated form:

1
1
' (11)

1
1
|
where b is a n X1 matrix.

For Egs (10), (5) and (7), we obtain the principal variant of JorDAN
form. Any other case will be called a particular case.

It should, however, be emphasized that VANDERMONDE matrices V,
or other modal matrices M, do not fulfil automatically neither Eq. (10) nor
Eq. (11):

V=2ib, ==b, M~ 1h, ==b,

For this purpose special T commutativity matrices must be intro-
duced such that in general
L=MI L™'=T"1M"! (12)
or specifically
L=VI, L 1=T-1V-!

with VANDERMONDE matrix V as given in Eq. (8). In such cases

T-M~1h,=b or T-1V-1b, = b (13)

where b is given in Eq. (10) or Eq. (11), see [18].
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After this introductory remark we shall concentrate our attention on
the determination of the JORDAN canonical form and especially on the compu-
tation of Y1,

2. First Method

Let us apply first LAPLACE transformation technique on Eq. (2) neglect-
ing initial conditions.

The suggested method is one of the most common ones. In textbooks,
see for example [29, 30, 32, 36], this method was applied for a single repeated
eigenvalue with many distinct eigenvalues. Here we shall analyse the case
of many repeated eigenvalues, that is, in the most general form when a dis-
tinct eigenvalue constitutes the special case of a repeated one. With the
transformation technique in Eq. (2):

sX(s) = A, X(s) + b, U(s)
Y(s) = ¢! X(s) .§ (14)

After some rearrangement the transfer function of the dynamical system may
be obtained in the form:

G(s) = %% = ¢T[sI — A,] Vb, (15)

The latter may be expressed as the ratio of two polynomials,

_ N(s)
66 = 3o (16)

where the order of D(s) is n, and the order of N(s) is at most n—1. Without
loss of generality the so-called characteristic polynomial, that is, the denomi-
nator polynomial D(s) can be expressed as

D(s) = (s — 2)f(s — Zp)fr ... (s — Ap)™ (17)
where the zeros J; of the latter are the repeated eigenvalues of multiplicity

k; in the system matrix A . The partial fraction form of G(s) in Eq. (16) can
be written as

(1) (1) 1)
G(s) = G — L G L .J___%L:____:_. L
(s =28 (s — At (s — 1)
(m) (m) (m)
F— + & +.F —C"‘"; (18)
(S - }‘m)k”‘ (S— }‘m)k"l_1 (S - /'rn)

or
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where the coefficients can he obtained from

-1 | .
C = hm-————}———f— e EPIRION (20)
s= (j — 1)1 dsU-D D(s) J
which, for a distinet eigenvalue (k; = 1) reduces to
C{) = lim (s — Z;) Nis) . (21
S—hi D(S)
According to Eq. (15) the output is
Y(s) = G{s) U(s) (22)
which, with (19) in mind, may be given as
m ks W 77 m
vig=33 U0 % s enzp (23)
AA G AR
where
] i =1,2,..., .
Z0g) = 2 =12 (24)
’ (5 - /’f)ki_j“—l (] = 1727' s I‘r 1)

From the latter expressions the following relationships are easily obtained:

. 1 . =1 k1 .
= —t g USRIk D
(s — 7)) ‘ (i=1,2....m).

Applying inverse LAPLACE transforms to Eqgs (24) and (25) we have the state
equations

#0 = J, &0 4 2
0 = 20 5P (i=12,...,m) (26)
20 = J oz -+ u
whereas Eq. (23) yields
m K
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Eqs (26) and (27) are exactly in the form as preseribed by Eqs (5),
(7) and (10) whereas vector ¢ can be expressed by Eq. (27) as

et = [cl el, ..., ¢T] (28)
with
e =[CP, CP, ..., CD (29)

As a consequence of Eqs (26) and (27) the state diagram in form of a
signal-flow diagram can be plotted as shown in Fig. 2.

() LA
2y, 1 Z g Q

Fig. 2. State diagram of Eqs (26) and (27). Q means here an integrator

By the way, let us remark that if Eq. (11), instead of Eq. (10) should be satis-
fied, then the state variables are to be defined in asomewhat different form:

Z0(s) = (24%)
whereas Eq. (29) is replaced by
CT=[CO.CHO €O, CP L. (29%)

It should be emphasized that according to Eq. (15) the determination of trans-
fer function G(s) seems to involve a matrix inversion. The latter can, however,
easily be avoided in practice. Taking the Laprace transform of each row
separately in Eq. (1), and neglecting initial conditions, we obtain from the
first (n—1) rows

Xi(s) = sIT1X (s) (j=2,3,....n) (30)
and form the n-th row

X, (s) _ 1 (31)

U(s) sta,_ st ay sHay
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whereas the (n - 1)th row yields

Y(s) b8t R bys by

U(s) s"ha, st a s+ ag

G(s) =

3. First Conclusion

The suggested method for obtaining the JORDAN canonical form seems
to be the easiest and most straightforward one. Neither matrix inversions nor
complicated matrix manipulation are necessary. The number of eigenvalues
or their multiplicity is not constrained. It supposes, however, the knowledge
of LaPLACE transformation techniques.

The suggested method is not quite new; for a single repeated eigenvalue
and many distinct eigenvalues it was given for example in [29, 30, 32, 36].
for many multiple eigenvalues the method is, however, formulated perhaps
here for the first time.

The JorDAN canonical form was seen to be directly obtained and the
determination of the inverse VANDERMONDE matrix or any other modal
matrices to be completely avoided. Thelatter is an advantage from the point
of view of the practice but spoils our pleasure in determining JorpAN forms
through the VANDERMONDE matrix and its inverse.

4. Second Method

Recently a simple method was suggested for the determination of the
inverse VANDERMONDE matrix which applied also Laprace transforms. BEck
and Lance [19] based their method on forced systems assuming a special
input matrix B and input vectors u, the former had to be an identity matrix
while the latter special vectors with all zero components but one. This is,
however, not a necessity.

In the opinion of the author of this paper the method is clearer and more
natural by starting with unforced systems subject to initial conditions, as
modal and inverse modal matrices are originally defined for system matrices
A and have nothing to do with input matrices B.

Taking the Laprace transform of the unforced system (u = 0) in
Eq. (1) subject to non-zero initial conditions we obtain

sX(s) = A, X(s) + x(0) (33)
and, applying the modal transformation given in Eq. (3) with L = V we may

write

sZ(s) = J Z(s) + V-1 x(0) (34)
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where J = V-1 A V. After rearrangement
Z(s) = sl — J]71V—1x(0) (35)
and
X(s) = VZ(s) = V[sI — J]71V—1x(0). (36)
Let us see one of the Jorpan blocks in Eq. (34)

SZW (s) = J,Z9D (5) 4 WO x(0) (37)

where W is a corresponding k; xn submatrix of V-1 Eq. (37) written out
in detail reads

2D (s) = 14 Z0 () + 2 (5) + Wi x(0)
ST () = 229 (5) + Z9 () + Wi x(0)
(38)
sZP (s) = 2,ZD (s) + wiD x(0)
where wf({) is the j-th row vector of W,
Successive substitutions and some algebraic manipulations yield
, ki wT® x(0)
Z9(s) = S X0 (39)
00 = ST
For a distinct eigenvalue this would reduce to
. ()
Z0(s) = MQL (40)
(s — %)
Now, Eqs (8), (9) and (36) show that
Xi(s) == Z{)(s) (41)
=1
or by Eq. (39)
m ki T()
X,(5) = ¥ v 0x(0) (42)

A Ay

By the way, the latter equation has a close resemblance to Eq. (23) when
taking also Eq. (24) into consideration.
Eq. (42) written in detailed form yields

m kit 2 (0) .. wl) x,(0)
= = (s — Ay

(43)
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where 105 LA wy,? are the components of row vector wjm) or in other words
the corresponding elements in the (k; -+~ ...k, _; & j)-th row of the inverse
modal matrix V71 = W. Our task is just to obtain elements lo( D,

In Eq. (—12),?:&1(8) is the first component of X(s), thus, it could be obtained

from Eq. (36) or more directly from
X(s) = [sI — A]~71 x(0). (44)

This expression looks somewhat complicated involving matrix inversion.
The latter, however, can completely be avoided introducing successive substi-

tutions similar to Eqs (30), (31), (32). Instead of Eq. (30) we have now

X[(5) = /71X, (5) = 5 51T, (0) (45)
k=l

(j=2,3, , 1)

and from the n-th row of the LapPLACE transform of Eq. (1), assuming u = 0,
we obtain

n n n n

N h—k .. Ny h—Fk . )
= > aps" T x(0) > NaystFx(0)
- f=1 sk k=1 h=F -
X(s)=" = : - (46)
n st st L ay s - ag
F ap sh ‘ ’
gy
h=0
where a,, = 1. The relationship in Eq. (46) can also be expressed as

i n
> N a, s x(0)

- r:llz’——//: L = 1 e
(s — 2)F (s — Jy)ke. (s — A)Fi (@, =1) (47)

It should be emphasized that the latter expression can directly be de-
scribed by inspection. Comparing Eqs (47) and (43) it is easily seen that the
elements of the inverse VANDERMONDE matrix V™! = W can be calculated
by direct conventional methods based on partial fraction expansion technique.
Setting for example

- [== 0, for k=1 ,
O 12 00 for k=I (18)
for Eqs (47) and (43)
X, (s) :s’l‘l—L—an_ls”‘l“l—.‘,—..w.—‘;—ap,ls—’,—ag _ Z\L I}“._ 1w | (49

x,(0) stta,_ st L 4 ag s+ o = (s A)Y



FROM PHASE-VARIABLE TO CANONICAL FORAMS 351

where
. [(Fe—J) N,(s)
wf) = lim d — (s~ Ak Nils)
seii (k; = )b dsti=D D(s)
(j:LQ.,...,ki) (50)
with special polynomials
NGs)y=s""+a s+ ... +a,s+aq (=1,2...,n). (51

According to HorRNER's scheme N(s) can also be expressed as
Ns) = [((s + any)s + ans) s + ... + ay]s + a;.

It is easily seen that IVi(s) is at the same time a truncated polynomial of the
denumerator polynomial D(s) divided by s'. Furthermore, according to Eq.
(49) the elements 1(5? can be obtained by partial fraction expansion, wﬁ’ being
the coefficient belonging to (s — 4;)™7.

The I-th column of the inverse VANDERMONDE matrix W is, then,

i — .
V§1) ‘105’1)
o )

vy=| with v{) = (52)
v wil)

that is, an arbitrary element in the I-th column and r-th row can be expressed as

(i=1,2,...,m)

0 s k) (53)

Wy = Wtk = Wi (7 =1,

Finally, we mention that the inverse Laprace transform of Eq. (49)
yields

'mc ki o -1 i _
a(t) = 3 3wy ———= e x(0). (54)
=1 j=1 j—=D!

It is readily seen that from a physical point of view 'wj,l) is the coefficient of the
i-th modal transient process subject to the initial condition x;(0) and belonging
to the j-th multiplicity.
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5. Second Conclusion

The second method allows evaluation of the elements of inverse VANDER-
MONDE matrix W from explicit analytic forms. This has a practical value,
but the insight to be gained from the identification of matrix elements w”
with system behaviour is of even greater interest. The elements in the lth
column are exclusively due to the initial condition of the I-th state variable,
x; (0). Furthermore w},[) is the coefficient of the i-th mode connected with eigen-
value 7;, yielding the transient response of the first state variable due to mul-
tiplicity j, see Eqs (49) and (54). Of course, this interpretation holds true to
the elements w, of the inverse VANDERMORE matrix regardless of how they
were calculated.

The second method has serious disadvantages compared to the first
method. Here, partial fraction expansion is separately required for every
column of the inverse VANDERMONDE matrix, whereas in the first method
one partial fraction expansion is enough. Thus, the second method is at least
n-times more laborious than the first one. Even the computation work is
increased because after having the inverse VANDERMONDE matrix V™1, further
matrix manipulations are to be made for obtaining the canonical form, Eqs
(5) and (6) including the determination of an appropriate matrix T and its
inverse T~! to obtain b in form of Eq. (10), whereas the first method eschews
all these problems by giving directly the final solution.

6. A Supplementary\ Remark

The elements in the last column of the inverse VANDERMONDE matrix
play a very specific and important role, These elements can be computed for
distinct eigenvalues by

1 s = A n 1

IIZ - Res = = - - (55)
s=4 D(S) D(s) §S=;.,' J=1 /-,‘ — A

whereas for multiple eigenvalues by

(ki~j)
ol — tim — 4 e L (56)
Sdi (.l; )' dstki—i D

which means for j = k;:

Yy RY. o m 1
wfp—Res i BTy
s=ii D(s) D(s) et =1 (4; — /.j)liz'
J#Ei
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By the way, introducing D{(s) for D(s),f(s-—/'.i)k" Egs (57) and (58) can also
be expressed as
(ki—))
wl) = lim 1 d ! (57%)

T et (ky — )Y ds@— Dy(s)

and

1
Wi = ——— . (58%)
D(4;)

Choosing x,(0) 8(z) = u(t), that is, X,(0) = U(s), Eq. (49) yields
U(s): (58)

furthermore from Egq. (1), with zero initial conditions we have as in Eq. (30):
Xi(s) = s" 71X (s), (k=2,3,...,n). (59)
Thus, the LapracE transform of the output is given by

w(’)

Y(s) =2T‘2A’ s—/) by + bys +.. . b, s"1] U(s). (60).

From the latter the transfer function is

m ki 6]
Gs)= 3 30 _[p, "t 4. bys L byl (61)

i=1j=1 (S — /v")']

A comparison with Eq. (19) or applying Eq. (20) yields the connection between
the corresponding coefficients in the form of

1 du-1n /u wid il
C(‘) = lim . [( — 2 )’" — 2 b, s (62)
s=2 (j — 1)1 dsU-D (s — 4 )=
This can also be expressed as
1 qu-v & ,
C(‘) = lim » u(‘,)n (s — A)—" N(s). (62%)

S-rdi (] 1)' a’s“ D f-l

If there is no numerator dynamics then the last sum reduces to b,. For distinct
eigenvalues Eq. (62) reduces to

n—1
C(l) — ‘lbgl) 5‘ bl //t = wy, 5‘ b, /l‘ (63)

AO AO
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and for no numerator dyvnamies to

C = wl(.fz) by, = w;, b, (64)
Eqs (62), (63) and (64) vield in closed form the coefficients C}i) or C!Vin terms
of elements zv}in) and coefficients b,.

hY

7. Determination of Commutativity Matrices

We have seen in Eq (12) that a special commutativity matrix T and its
inverse T™! must be determined in order to satisfy Eq. (13) together with
e.g. Eq. (10). Now, let us concentrate to the determination of matrices
mentioned.

The commutativity character is expressed by

T-1JT =] (65)
or

JT=TJ, T 'J=JT (66)

which shows that T and J, as well as T~! and J must commute. As the JorpaN
matrix J is given in pseudodiagonal form, see Eq. (3), according to Eq. (66)
so are T and T—1:

T = diag [T, T,.....T]: T7!=diag [T7% T34 ..., T}
moreover the inverse of T; is even T7 %, where T; and T; ! are k; x k, matrices.
Thus, Eqs (56) and (66) are also valid for each Jomrpan block

)T =, (67)
and

J,‘T = TfJf», TrlJz' = JiTi—l' (68)

Evaluating the latter relationships, for the elements £ of T; and ele-
ments 175},) of T7! it becomes obvious that both T; and T;"* are upper triangular
matrices. Moreover

lgl) - tE’.IZ) o t§fii)‘“1 i1 T tgx'):/\'i = ty)
W= = =i, (69)
01 = 8, =60,
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and similarly

T(llz = Tg_’.) e = T;};‘Ll,P:;~l = T}f,-),k;'—/:\ T{”
) = ) == ) (70)
Wy = W22l

%, 2 o)

Lk =
where £~ means “by definition” and serves to introduce new quantities,
Hence, the elements in each diagonal are equal. Furthermore, according to
Eqs (2), (13) and (52)

T-Y{M~b,) =Ty, =bhb (71)
or for the i-th JorpaN block by Eqs (10) and (52)

) = ji. (72)

Eq. (72) written out in detailed form yields the simultaneous set of equations:

7D w® =1

ks T
D wf P ud, =0 (73)
Tii) wg,)--ln + T‘(_)i) 'I'Ufgsf—)-l,n + Tgi) w&s‘?,n =0

and so on. By successive substitutions Eqs (73) can easily be solved, yielding
the elements ry) in terms of elements w!). Instead of this we put first Eq. (72)

Jyite
into the form
v =T, j; (74)
which means in detailed form
w%l) = 1,

w‘(llrz = th‘;—l

Wipein = Ia

W,n =1y .

Hence, the elements of the commutativity matrix T are uniquely expressed
by the elements of the last column of W. Now, matrix inversion would vield

2 Periodica Polytechnica El 18/4



356 F. CSAKI

elements rﬁ-o of the inverse commutativity matrix T—1. Instead, we remark
that on the basis of TT—! = I we can write

7, =1
0Ty + t7, =0 (76)

8Ty + 1,7, + 137, = 0

and so on. Solving explicitly this simultaneous set of equations by successive
substitutions the first six results are summarized in Table 1.

Table 1

Element T}") of T;1 in terms of elements tj(,f) of T;

. 1
W=
i
o 0
H
o L5

O

L0 1 “ t-(zi) 2_ lg") }
3 . : R R
i%x) t§” | t:(\l)

SR N i W . G
1 0 | {0 (0 10 |

o1 4”)4_3'@)”&” L (e
T lle) T ) T e T e T
@ 17 t.g“ 5 ) '1_(31')‘:; t;(,f) ‘ ftgli)‘zt_(‘!i)
) = || — A | S 3| e

@[] Tl T Tl

BPL T ARINIY YO

) R U ROl
0 LS 6w .
le Z—‘?;‘Ztl_:_l'rj_l (~]:2,37...,k1‘).

1 =1

Any element 7% can also be obtained by the recurrent relationship

J fgi)
. 1 i G . -
W= ¥ D r}-_),, (7=2,3, .. .. k). (77)

r -
N
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~}

Taking also Eq. (75) into consideration:

. 1
i) = 5
wkl;'n
() L3 o @ : ~
W= e 3wl W (=23.k) (1)
Wiin h=1

Although Table 1 is sufficient to determine elements -rj) in terms of ujn when
Eq. (75) is taken into consideration, for the sake of convenience Table 2 is
compiled.

Table II
Elements T of T-! in terms of elements ujn of W
0=~
i
Wiin
JpRes
o — I wil,

o 1 [
3 (D)
Wiin

w}}?_l n 2_ /(f,)_.)n
ot w0t

l\ n kin
20— 1 [ A(,)—l " }3“ ) wg‘),_,‘n wﬁj})_z.n N lv}.i.)._.;;n‘}:
wlfl;),n §l)r1 J u}\”n }l)n w}:l;zn ;\l)n
_ [ J - wﬁéf—4 n}
T |
T p—— 1 H“I()—l )’ 4 ‘ 1L§.l,)-—l nl? ““}1,)—.’.11 13 [u§ )—-1 n )2 ““/(Iz)—s noy
' wid w ] Vowl, b w®) 9, wd,
-3 “}H)——l . {”;l,)—’n]z _9 }f,)—l n 1“’1‘{?—-4,,1 s zt}l,)_g w;(l;l;)—?, LI §l,)—a,n j‘
‘ wi L wf?, , ‘lc,,‘.‘.)’(n) Wy n u}f’ n W }f,), o (’l)’ .
. 1 i
T = — — S vy (=23, k).
Wiin h=1
Finally, we remark that Eqs (6) and (12) vield
cT=1¢clVT (79)

which, according to Eqs (9) and (75) results in the same relationships as Eq.

()

(62) expressing coefficients C;’ in terms of elements 115,,) and coefficients b.

0%
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8. Illustrative Examples

First Example. Let us start with the phase-variable form

S 0 1 01 [x 0

xa| = 0 0 1 x| - {0 u
X4 —a® =3 —3x]| |=x, 1

y = [K, 0, 0] =

The corresponding transfer function is

C(s) = K _ K

(s o) 8%+ 3uxs? + 3a%s - o®

According to Eq. (20) in the first method we have
Cfl) — K; C_gl) = 0 Cél) = 0.

Thus, the JorDAN canonical form can be expressed as

SR I 8
W
[ NN
[
| EEna—
|
S OR
|
O R =
|
R O
| R
e

= K, 0, 0] =z

<

Following the second method, from Eq. (51) we have
Ny(s) == s + 3us + 3a% Ny(s) = s -+ 305 Ny(s) =1,

and applying Eq. (50) after some calculation

1 0 0
Vol=fa 1 0
o 2 1]
whereas, according to Eq. (9)
1 0 0
Ve=|—« 1 0
o2 — 2 1]

Keeping a check on, the result is

VAV=M""M=MM'1=VVi=1],
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indeed. As Y"1 b, = b is in the form of Eq. (10) we obtained directly the prin-
cipal variant and the commutativity matrix as well, as its inverse is in this case

T=1I=T"1.

The last equation holds for every case when the JORDAN matrix is com-
posed by a single JorpaN block. Finally,

c’I‘:c'g‘L:c’g‘T:cg‘: [K, 0, O].

Furthermore, Eq. (62) is also satisfied.

Second Example. Let the phase-variable form be

ii?l 0 1 0 B ES 0
Xo| = 0 0 1 x| + |0 u
Xy 23 20 — o —2x — f] lx, 1
y =[ K 0, 0] X.
The corresponding transfer function is
K K

(s 4+ 2)* (s +

G(s)

8+ (2 -+ ) s? - (228 + o) s +02B

)

Following the first method, according to Eq. (20) we can compute

cv— L o K e K
Foxl Ty (5 —
leading to the JorDAN canonical form
zl Il — 1 O‘ :l O
z,| = 0 —a 0 Jzo] — 1] u
Zq .0 0 —3] |3 1
K K K
yoo= |- — — —, = ~ z
(5= G B

The modal matrix is now

1 0 1
V =| -= 1 —g1 .
o 2a a°
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Following the second method, from Eq. (51) we have
Ni(s) = % + 2o + 3)s + (225 + o) Ny(s) = s + (2 + 3): Ny(s) = 1;

and, applyving Eq. (50) after some computation

1 pr— 248  —2x —1 wd  wly) Wl
V-l = FR 2t — 2B P fal=wld wd w
(B — =) o2 2z 1 wdh  w® wl

Now
p—u —1 1

A\ l"0 = > T
[(5 —o) (f—x)?  (F—2)

T
J#W,LHH

Applying Table 2 with k, = 2

1
M = = (f—=)
@
2D 1 { w%)}
wly) | wly
and with k, =1
, 1
.
=

The appropriate inverse commutativity matrix is then
B 1 0

T-! = 0 [3—1 0
0 0 (8 —x)?

vielding indeed the desired vector b:
TV, = [0, 1, 1]~

Furthermore from Eq. (75) for i == 1 we have

1 = ) = — _
(B — )
s—y 1
=g = =
(G—p =
and for i = 2

1
t(iz) = “‘%) =
(/3 - &)

9
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The commutativity matrix itself is then

| 1 1 i
0
f—x (G
T= 0 1 0
p—u
0 0 : ! -
(P —=)?
To keep a check on the commutativity matrix
_ . ; O -
f—n  (—ay
T) = 0 S 0 |=IJT
f—a
0 B
(B—=)?

soT71J T = J is satisfied, indeed. Finally
=] VI=[K,0,K]T=|-~ % K ]
f—a (F—a)p (f—2)
The latter result, which can also be obtained from Eq. (62), corresponds that
obtained by the first method.
Third Example. In [21] it has been shown that for the VANDERMONDE matrix

—

1 0 0 1 0 1
—1 1 0 —2 1 -3
1 —2 1 4 —4 9
V=1| -1 3 -3 —8 12 ~27
1 —4 6 16 32 81
~1 5 —10 ~32 80 —234
. -

by an appropriate algorithm

, see Chapter 12, the inverse matrix can be obtained

as:

V-1 =

16.5
— 9.0
6.0
—15.0
— 6.0

- 0.5

58.0

—36.0

20.0

~56.0
230

2.0

17.875  2.125
1075 —1.25
4.3 0.5
170 2.0
8.0 1.0
— 0.875  —0.125_
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Now, the characteristic equation is

D(s) = (s + 1)*s + 2)*(s + 3) =
= §% 4+ 10s° 4 40s* + 825% L 91> - 525 - 12 =0 .

Thus, the numerator polynomials are

Ny(s) = s5 -+ 10s* -~ 40s% - 82s* ++ 91s -+ 52
Ny(s) = st - 10s? - 40s®> 4 82s + 91

Ny(s) = s* 4 10s? + 40s —}— 82

Ny(s) = s* 4+ 10s -+ 40

Nys) =s +10

Ng(s) =1

For example, the last column of V=1 can be computed by means of Eq. (50)
as follows:

O LG — =t =05
D(s) oot Dyfs) ser | 2R+ 3) oy 2
o N GEn@an 5,
a5 Dy(s) loor (2B e 4
ol — 1 (3s+8)4+-3(s+2) (s+2)* (s +3)> — [4(s+2) (s +3)* -2 (s +2)*
K 2 (s 2)¢ (s + )" o
(3 +2Bs 8] _ 68, .
lg=—1 32
w = (s op el N ] -
: D(s) ooz Dofs) oz (15— 3) e
uﬁ)__ii’fﬁ(qs_)_? _ (s 1y (s——3)——(s——1)31 =—i=~2
ds Dy(s) s——2 (s + 1) (s + 3)? =2
W@ — (s + 3y L Nel) 1 o=t g
3(5) §=—13 D ( ) is:——:ﬁ (S ";_ 1)3 (S ':— 2)2 ES:—.’E 8

Then, Eq. (75) vields

0 = 0.5; 1P = — 1.25; P = 2,125
12 = — 1; @ = - 2

1 = — 0.125
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and from Table 1 we obtain

Tgl) = 2; Tgl) = 5; Tél) = 4

@ = -1, P =2

P = — 8.
9. Third Method
It is well known e.g [11, 12] that for distinct eigenvalues the elements

w,; of the inverse VANDERMONDE matrix W = V™! can be obtained from the
r-th LAGRANGE polynomial

P2y = Sw, it (r=1,2...,n) (80)
=1

.. . Al
as the coefficients corresponding to 4 ! where

n
P(7) — H..}’__’L (r=1,2,....n). (81)
= A —
17

This statement is clarified by the fact that according to Eq. (80), P/(%)) expresses
the scalar or inner product of the r-throw of W and the j-th column of V which,
according to Eq. (81), is equal to d,;, where ¢,; is the KRONECKER symbol
(6;; = 0,forr 5¢j and §,; = 1, for r = j) yielding WV = L

Now, the question arises whether a similar method is also applicable
to multiple eigenvalues. The answ er is yes, but LAGRANGE interpolation poly-
nomials have to be replaced by HERMITIAN ones.

Let the row vectors of W be wj(i), i=1,2,..,m; j=1,2, ...,k
and the column vectors of V as given in Eq. (9). Then, the property WV =1

prescribes
. 1 1=1,2,...,m
WJT(I) S—— Vfch_l) = 0y 0y, » ( )

. . (82)
(h‘—l)! (hz]’k:l?zﬁ"'?kl')‘

Suppose Pj;, (%) are appropriate polynomials. Then, Eq. (80) must be further
valid:

n
P =3 wiP At (83)
=1

For 7 = 7;, Eqs (83) and (82) lead to

Py (7)) = by b1 (84)



364 F. CSAKT

Differentiating Eq. (83) with respect to 7 yields
Pip(h)y = W (1—1) 22, (85)
=2

For 7 = /,, Eqs (85) and (82) have to lead to

Pli(2) = 04 6js - (86)
Differentiating once more
n . L _
]’-'(,-)(/'.) = 210(;1) (I—1) (I —2) -5, 87)
[=3

For /. = 7,. Eqs (87) and (82) have to yield

j,l(l)()) = 2 ! 6i1{ (513 . (88)

In general

. IR}
PiNA) = 5 w‘”——(l————)— M-a-t (89)
I= q*l (Il—q— 1)

to yield

G Ek=12,...,m)

]((1)( i) = g 0y, 5; g+1 G=12,...k) (90)
(g=10,1,.. . k—1)

A polynomial assuming, together with its derivatives, prescribed values, is
called HERMITE interpolation polynomial [38, 39]. Owing to the properties
expressed in Eq. (90) we will term Pyy(4), i=1,2, ... m:j=1,2, ..., k
the HErMiTE — KRONECKER interpolation polynomials.

We emphasize that in contrast to the classical HERMITE problem.
where only one polynomial is to be determined, here a set of polynomials
are to be obtained.

In accordance with Eq. (17) let us define

DY = (5 — 300 — 2 . (G — a)em (91)
Suppose:
Po &5 A7 (92)
D(2) = (— A L
or
mn ki
P(2) XN A0 (7 — 4, ) 7D (2) (93)



FROM PHASE-VARIABLE TO CANONICAL FORMS 365

where

. D(Z
Doy = 28 (94)
(7 — Ay
Eq. (92) is a direct generalization of JorANsEN's formula [40], valid here for
a complete set of polynomials.

If the polynomials Py (4) were known then coefficients Ag-ifp could
easily be obtained as
(1) (2
A = lim 1 d . (A — Ayl ——-W_—P](’)(/') (95)
MU e (jr—1) A2 D(2)

(i =12,...m j=12,.. ks J =12,..,k.).
Here we have, however, an inverse problem, i.e. how to determine co-
efficients A(ji}l,') in order to satisfy the requirements in Eq. (9).

First we examine P,(4). From Eqs (93) and (84) we obtain

Pl(i)(;"i) = —4(1iii) D) =1

that is,
A = — (96)
D(%)
Eq. (86) and the first derivative of Eq. (93) vield
(%) = ALY Di(%) + AP D7) = 0
that is,
@ pia. (4
A6 — — _ililmD_z(_’_r)_ - D,(/..:) . (97)
i D(%) Di(2;)
Eq. (88) and the second derivative of Eq. (93) vield
1"(:')‘(7-,-) = A{D Di(2;) 4 248 D) + 24,D(2%) = 0
that is,
460 D7) — 246D D'(, "7 () ;
‘4%0: *'111 Dz(/'x) i ':‘f'lll D (/1) - Dl(/‘l)‘ ___ Dz (fz) . (98)
2D (4) 2D%(7) D2,

The procedure can be continued if necessary. The coefficients 4{"’ being zero
for i s=1’, the final form of Eq. (93) for j = 1 becomes
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Pyy(2) = AED D2y + A
D D
Dy%) D

L[ D) D) AAY (G — 72 L
[ 2D3(7;)  D¥%) JD,(/.)(/. VA L (99)

5
i
~\
S
o
=
-+
ﬂ>
2
i
™~
N
T
S
Il

It is to be emphasized that in order to get the elementsin the r-th row inverse
matrix W = V~1, where r = k; + ... 4+ ki, + 1, Py should be arranged
in terms of powers of /.
Next, we analyse P, (%). From Eqs (93) and (84) we obtain
Poiy(4) = AD Dy(3) = 0
that is
AED = 0. (100)

Eq. (86) and the first derivative of Eq. (93) yield

Pyiy(2:) = AEP D(2;) = 1
that is,

1

= AfD. 101
D) non

AGD =

Eq. (88) and the second derivative of Eq. (93) yield

b = 2AY0 Di(3) + 246 Di(3) = 0

that is
4UsD) D7 ().
‘/_,1‘(2%,1') — "42‘1 ?z(/'l> —_ Dl(/‘l) — AYZ'I) (102)
Dy(4) D7)
Now

Poy(%) = AGD (2 — 2) Di(3) + AGD (h— 22 D2) +. .. =

_ D) D)

D(;l) l( l)

Finally, we analyze P,(7). From Eqgs (93) and (84) as well as from Eq. (86)
and the first derivative of Eq. (93) we obtain

DA (h— 22 +. .. (103)

AGD =0,  AGD =0 (104)
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whereas Eq. (88) and the second derivative of Eq. (93) yield

that 1is,
. 1 . .
AD = A0 — A, 105
33 D7) 11 23 ( )
Thus,
. D, ..
P,(d) = ———(L— A1) +... 106
s)(%) D) ( ) (106)

The coefficients of these polynomials are the elements of the corresponding
row. In case of a single repeated eigenvalue the HerMmITE — KRONECKER
polynomials reduce to binomial polynomials:

Pl(l)(;:) = 1 N

Pyy(d) = 71—14

Piy(2) = (2 — 2yt

Pao(?) = (2 — Jgy=2. (107)

The structure of the latter are given in Eqs (99), (103) and (106). They remain
the same.

10. Third Conclusion

The third method is a direct one avoiding LAPLACE transforms. It gives
a deep insight into the character of the inverse VANDERMONDE matrix. It
supplies the rows of the latter by constructing appropriate HErmMITE —KRO-
NECKER interpolation polynomials. For distinct eigenvalues or a single repeated
eigenvalue the third method seems to be the simplest, see Eqs. (81) and (107).

The third method has, however, serious inconveniences. The computation
of the eoefficients A§’]’f) requires generally more work than does the calculation
of coefficients w}li) in the second method. Although here we have only to differ-
entiate polynomials in factered form, whereas in the second method, ratios
of polynomials are to be differentiated, but at the very end the desired poly-
nomials P;; must be obtained in terms of powers of / requiring complicated
multiplications. (The multiplications become, however, simpler if the eigen-
values are given in numerical form.)
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We remark that ScEappeLLE [23, 24] has given closed-form formulas
but they are very complicated and unlikely to be applied, except if a digital
computer is available,

We do also remark that the HERMITE — KRONECKER polynomials can
be compiled for certain structures. An example is shown in Table 3. After
substituting numerical values the final form is relatively easy to be obtained.
In case of distinct eigenvalues, HErmITE —KRONECKER interpolation poly-
nomials reduce to LAGRANGE polynomials. In case of a single repeated eigen-
value the HERMITE — KRONECKER polynomials become binomial polynomials,

Table II1

HerMiTE-KRONECKER interpolation polynomials

; f— 1y (2 —74) (h—14) (A—21)°
P2 = — P =
o= (2 — AP VAT
Pagll) = (i 2) (h— 74)
) (7 —4)?
For ky =3, ky = 1
P, () = R ) N (=) (A — 1)
' oy =7y (2 — 29)? | (2y— 24
. (A—2q) (2 —12y) (A— 22 (A — 2s)
P, (%) = LN TN T )
ol (i —72) (h— 1
Py () = (=22 (A=)
o T— 7y
Pl = — (=2
For by =2, ky=2
, (7 — 2)? (o= 2q) (2 — 25)?
i o= — 9.
o) (2 — 2o)? (7 — 2o)?
. (/"'/1)(;—;1)
Poy(4) =
i) (72— 2)
, (A—n4)p (=2 (a— 1)
Po(2) = e — 2 — - - -
=y (ra— o)
o (72— 7y) (A —4)
Poo)(2) = (G — 7Y

Such precalculated polynomials may considerably facilitate the inversion
of the VANDERMONDE matrix.
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11. Hlustrative Examples
We will solve the same problems as above by the third method.
First Example. If 7, = —« is a single repeated eigenvalue of multiplicity 3,
then, according to Eq. (107)
Py(G)=1; Pypy(2) =2+ 72 Pyy(2) =2+ 207 + 72

yielding

[ |
1 0 0
W=V"1= |ua 1 0
22 2z 1
| . —
Second Example. Let us choose 2, = — « as a twofold eigenvalue and /., = —73

as a distinct eigenvalue. Then Table 3 yields:

Pioy(4) = Gt (+=cp) = — ! [F% — 225 — 22/ — 27]

F—x B—wp G2
N GENCER N e e
Pty = VR — Lt () () 2]
Pugy = EE2E L ey e

F—2p  (B—ap

leading to the same inverse matrix as in Chapter 8,

Third Example. Let us determine, for example, the first and third rows of the
inverse VANDERMONDE matrix for 2, = —1, k; =3; J, = -2, k, =2, /; =
= -3, k, = 1. Now,

D) = (7 + 1)%G. — 27(; — 3)

and

For the first row, from Eqs (96), (97) and (98):
1 : 5 8 2
A = e 4O = T g =TT
T ¢ 7P 8 8 8
and
A =0, AP =0; AP = 0.
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From Eq. (99)

-

17 . . , I - - i
—~—8‘—(/. 4+ 1)2 (4 + 2)2 (A + 3) == 16.5 -~ 584 + 83.12574%* - 56.3751% +

Similarly, for the third row, from Eq. (106)

Pyoy(7) = __1. (212 (A + 2)2(3 4 3) = 6 — 204 + 25.5/2 1 15,544 +

12. Fourth Method

For the sake of completeness we remark that in [21], KaurmaN suggested
a procedure of obtaining the inverse of the VANDERMONDE matrix.

This method is a generalization of the Re1s [16] and WERTz [14] methods
relating to inversion of VANDERMONDE matrix with distinct eigenvalues.
The computation is based on

W = V-1 =D-1Q © (108

where for distinct eigenvalues

gn— 1("1) < 92(/1) 0:(%1) 1
Q =]gu-1(%s) c q(%2) (%) 1 (109)
er—l(/'n) : ‘ * 92(%) ql(;n) 1
and
¢
D — diag |, —— ..., —]|. (110)
l, dl d'l dn
Defining the characteristic equation in form
D)= [[(G—2)= Fart (111)
i=1 i=0

where the bar denotes a distinction, the elements of matrix @ are given in a
simple algorithm by HorNER’s scheme:

Gy (1) = @ %) 2 + ey (112)

and
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where subscript k refers to the degree in 4;. The elements of matrix D are

d,= -f;_p(;.); = [[ i—1). (114

A=k jE

For multiple eigenvalues Eq. (108) further holds with a pseudodiagonal
matrix

D! = diag[D,. D,, ..., D,] (115)

and a hypermatrix

Q=| - (116)
L Qm——'

where the k; X n matrices Q; are given as

Cqn-a(Z) -0 ga(Z)  q(2) 171
Dk P I 0
A 117)

L q(,{‘i—ll)(ll-) .. e 0 0 _i

where 1. ... k;—1 are superscripts and do not refer to derivation. The k;xk;
matrices D; have the following form
r d{d
4D 4P

D; = R (118)

_dP dP. . dD
where
. Drti=i(2) ;0 .
a9 = 0 —Lj(—/zi);' . (G=1,2.....k). (119)

Notice that the inverse D~! of D is given as

N
e (120)
50 80
| o |

3 Periodica Polytechnica El 18/4
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where
. o dt .
oD = — oD NP, 00, (j=2,3,....k) (121)
s=1
and
1 :
o = ——. (122)
4o

The elements of the matrix Q can be obtained from Eqs (112), (113) and.
using the following recursive algorithm

N AN A - = 1. ki —1 5
W) = dP0) ko) U
(k=p,....,n—2)
also
@O0 = 1. (124)

Thus Eqs (108) and (115) ... (124) can effectively be used in obtaining the
inverse W = V~1 of V,
It is to be emphasized that on the one hand Eq. (119) can be replaced by

L pu-»() (125)

d9 = = DY
ToG—1

where (j—1) means differentiation, and on the other hand,

o = A = A = AGO=... = —
D(%)
5 = AGD = 4G — agd — .= L[ L | DR a6
BT a7, | D) D¥(2)
) = AGD = AGD = AGD = ... = 1 e [ 1 ] _ D&%  DiA)
21 d2? | D{%) D¥(4y) 2D34)
0D = A@GD = AGD, = AGD., = 1 dar-t 1 .
? 7 7 P (p—1)! &2 | Dy(A)
Furthermore,
) Fei—j . (:12 .k)
D) = N S g™ (s J T RS e B 127
Wi go ki—j—h+19n-1 (/z) (l =1,2,..., n). ( )

The latter remarks show that in principle, the fourth method is equivaleut
to the third method yielding the corresponding matrix elements wj—li) by appro-
priate recursive formulas. Eq. (127) also connects the fourth and the second
method.
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We also remark that polynomials q§f)(}.), (s=0,1,.. k-1, Ek=s,...
n—1) may be expressed in terms of IN,_,(2) and its derivatives, where Ni(/;)
(I=0,1,2, ... n) are given in Eq. (51). The elements in the (n—k)-th column
of matrix Q can be expressed as

ql\‘(;') = AT,1_;( ())
—1
92.1)(}.) = 2 Ny (2) 2ot
h=0

(k=1,....n—1) (128)

@20 = _‘2 o (B) e

h=1
kZ W ] }
(3)(/) _7_'_‘: N._p (/) Ak—h—1
40 =2
and in general
1
PUAY o — (p—l) h—h—1 9
gP(2) NEZD (A A (129}
(p— Dl 2}7'~1
Here
Nol) = Npy () = == Ny () == 1 (130)
and
Nn k( ) = X i An—y 4 T Opepay A T G
= kL g ort L a2 a, (131)

Previously we observed that polynomials N,(4;) could also be obtained by
Hor~ER’s scheme. The same is valid also for IN/(%;), (1/2) V(%)) if coefficients
d,, are replaced by

ay = N, (%) (132)
and

@ = Nj(%), (133)

respectively. The procedure can be continued for higher derivatives,
Eqs (128) ... (131) put the connection between the second and fourth
method in a new light.

13. Fourth Conclusion

This method avoids partial fraction expansion technique as well as
Larprace transforms. Ounly simple recursive algorithms are used. For obtaining
D the method requires repeated differentiation of the characteristic equation,
which, however, is not very complicated and can further be facilited by Eq.

g%
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(125). The inverse matrix D~! of D is also relatively easy to obtain. The
polynomials gi(%) involved are of the same structure, only various substitutions
are necessary.

The drawback of the method is shown in Eq. (108) referring to matrix
multiplication. Also some other numerical computations are necessary.

The fourth method can be regarded as a variant of the third method.
Principally it gives perhaps less insight into the essence of the inverse VANDER-
MONDE matrix but at the same time it is more suitable for numerical computa-
tions and easily programmable for digital computers.

The insight can, however, be somewhat enhanced by the relationships

in Egs (125), (126) and (127) as well as (128) ... (130).

14. An IMlustrative Example

For the VANDERMONDE matrix given in the third example (in Chapter
8) by Eqs (112), (113); (123) and (124) the matrix Q can be obtained as

-
12 40 51 3

1 9 1
12 28 23 8 1 0
Q=12 16 7 1 0 0
6 23 34 23 8 1
3 10 12 6 1 0
4 16 25 19 T 1
L 1
Applying Eq. (119)
dP =2, d{ =5:d{V = 4;dP = - 1,dP =2:dP = — 8
vielding
0 0 2
D, =10 2 5 D, = —(l) "i D= [-8]
2 5 4 -
From Eqs (121), (122)
O = 0.5, 6V = — 1.25; 0P = 2.125; 0¥ = —1, & = —2, Y = —0.125
yielding
- -1
2.125 —1.25 0.5 0 0 0
—1.25 0.5 0 0 0 0
D-1= 0.5 0 0 0 0 0
0 0 0 —2 -1 0
0 0 0 —1 0 0
0 0 0 0 0 -—0.
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ol

Through Eq. (108) W = V7! is obtained. It is worth mentioning that
0 0 L _
0 1 0
rooe 0
T-1D~1 = 0 1
9.
1
. - |

and premultiplying matrix Q with the latter means the change of rows in Q,
so finally

(12 16 7 1 0 0]

12 28 28 8 1 0]

L-1—T-1D-1Q =| 12 40 51 31 9 1|
3 10 12 6 1 0
6 23 34 24 8 1

4 16 25 19 7 1]

| - —d

is the inverse of the modal matrix
L=TV

vielding the principal variant and satisfying Eq. (10). (For the elements of
T and T~! see the third example in Chapter 8.)

15. Final Conclusions

The purpose of this paper is to compare the various methods of conver-
sion from phase-variable form to JORDAN canonical form, in case of multiple
eigenvalues, or to diagonal form, in case of distinct eigenvalues. In such cases
the confluent or original VANDERMONDE matrix may play an important role:
that of a modal matrix. The determination of the inverse VANDERMONDE
matrix is not a trivial one and three various methods were shown to obtain
it. For sake of comparison a method completely eliminating the VANDER-
MONDE matrices was also shown.

The paper aims also at making a comparison and revealing the connec-
tion links between the various methods. At the same time the advantages
and drawbacks of each method are also summarized. To the author’s knowledge,
no such a relatively complete review of the problem exists to now.

Some elaborated examples illustrate the theoretical considerations.

Besides of its reviewing and critic character, the paper pretends also to
priority in some points:
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1. To the author’s knowledge, the paper is likely to be the first to give
a complete solution of the first method for any number of repeated eigen-
values (See Eqs (5), (7). (10), (28) and (29) also Fig. 2). This method seems
be the simplest and the most straightforward one.

2. The second method suggested originally by Beck and Lance [19]
is here derived supposing an unforced system subject to special initial condi-
tions. The element 105‘1) of the inverse VANDERMONDE matrix can be obtained
by partial fraction expansion, see Eq. (49). The element w'? is the coefficient
belonging to (s—2;)/ and simultaneously it is the coefficient of the i-th modal
transient process of the first phase-variable subject to the initial condition
of the I-th phase-variable x,(0) and belonging to the j-th multiplicity, see Eq.
(54). The identification of the nature of the coefficients w(;,) gives a deep insight
into the processes involved.

3. The connection between the first and the second method is manifest
from Eq. (62) where elements C}i) of row vector ¢’ are given in terms of matrix
elements wﬁQ and coefficients by, that is, elements b, of row vector ¢j. The
same connection is also expressed in Eq. (79).

4. The paper shows how HERMITE interpolation, as a generalization of
LAGRANGE interpolation, may facilitate the inversion of the confluent VANDER-
MONDE matrix. In our case, we have to do with special HERMITE — KRONECKER
polynomials Pjy(4). The auxiliary coefficients A%"i) may be obtained from Eqgs
(96), (97), (98) and (101), (102) and (105). The procedure is easy to be continued
if necessary.

The HErMITE — KRONECKER polynomial, here introduced perhaps for the
first case, may be precalculated as shown by an example in Table 3.

Two special cases, that of distinct eigenvalues and that of a single repeated
eigenvalue, are quite simplified. The first case leads to LAGRANGE interpola-
tion, the second one to binomial interpolations.

5. For numerical computations the KAurmaN method -seems to be the
best because it avoids differentiation and partial fraction expansion technique
as well as Laprace transforms. These are replaced by relatively simple recursive
algorithms.

For manual calculation, expressions with derivatives are perhaps more
perspicuous, therefore we derived Eqs (125) ... (127) as well as Eqs (128) . ..
(130). These groups of equations are connection links between the second,
third and fourth methods.

6. Although the second method determines the columns of the inverse
VANDERMONDE matrix whereas the third and the fourth method their rows,
all the three methods are essentially the same. This is pointed out by the fact
that on the one hand

w) = lim 1 : d(’\i j? Ni(s)
s (kg — )1 s Dy (5

(134)
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which yields the first method, and on the other hand, according to the LEiBNIZ
rule of derivation

) &=
Aty — 13
wif = lim

e —iw

Nhi—j—k (S)H—l. A ] (135)

k! ds®  Dys)
which yields the second or third method as

. (k—1) .. .. ..
o =tim— 0 L genaep, —agp,  (136)
S—>hi (Iu — 1)' dst1) D,»(s)

and, by the way,

(k~1)
dg) = lim—-—l——‘—i————Di(s). (137)
S—+Aj (k e 1)! dsth=1)
Also

. 1
q¢9,(4) = p—‘_/\/§1’) . (138)

7. In contrast to other papers dealing with the same topic such as [19,
21, 24, 25], this paper also points to the fact that by the inversion of the
VANDERMONDE matrix the problem of transforming the phase-variable form
into a JORDAN canonical form is but partly solved.

The paper emphasizes that VANDERMONDE matrices are not the best
modal matrices. In order to obtain the simplest JoRDAN form, that is, the
principal variant, b must assume the form given in Eq. (10). This ean be realized
by introducing a commutativity transformation matrix T. The commuta-
tivity matrix and its inverse are both upper triangular matrices, each having
equal elements in each diagonal. Moreover the elements of T are given by the
element wgﬁz) in the last column of W = V1, see Eq. (75). The elements of
T—! are relatively easy to compute as shown in Tables 1 and 2. Recurrent
relationships are also given, see Eqs (77) and (78).

By the way
. . 1
0 = d = —— D=1 (], 139
EE T k—1y ) (13%)
and '
(k1) B
1) = o = 1 d 1 . (140)
(k—l)' ds(""l) Di(S) (A=di
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Summary

This paper compares four methods for the conversion from phase-variable form to

canonical JORDAN form: the Laprace transform method. the inversion of the confluent Van-
DERMONDE matrix by LAPLACE transforms. by HErRMITE-KRONECKER polynomials and by
recursive formulas. It is emphasized that the last three methods are only partial solutions to
the problem and commutativity matrices should also be introduced.

The advantages and disadvantages of each method are analyzed. Scme examples are

also given for the sake of illustration.

by

e

[« Q3

-1

10.

11.

12,
13.

14.

16.
17.
18.
19.

References

.Rave, D. S.: A Simplified Transformation to Phase Variable Form. IEEE Trans. on

Automatic Control, AC-8 (1963), pp. 608—619.

. Jounsoxw, C. D.— WonmaM, W. M.: A Note on the Transformation to Canonical (Phase-

Variable) Forms. IEEE Trans. on Automatic Control, 4C-9 (1964), pp. 312—313.

. S1LvERMAN, L. M.: Transformation of Time-Variable Systems to Canonical (Phase-Variable)

Form. IEEE Trans. on Automatic Control, AC-11 (1966), pp. 300—303.

. Murry, I. H.: On the Reduction of a System to Canonical (Phase-Variable) Form. IEEE

Trans. on Automatic Control, AC-10 (1965), pp. 206—207.

.Tuver, W. C.: Canonical Form for Linear Systems. IBM Research Rep., RJ 375, 1966.
. TuEL, W. C.: On the Transformation to (Phase-Variable) Canonical Form. IEEE Trans. on

Automatic Control, AC-11 (1966), p. 107.

. CEipAMBARA, M. R.: Comment on *On the Transformation to (Phase-Variable) Canonical

Form™ IEEE Trans. on Automatic Control, 4C-11 (1966), pp. 607608,

. LENBERGER, D. G.: Canonical Forms for Linear Multivariable Systems. IEEE Trans.

on Automatic Control, AC-12 (1967), pp. 290—293.

. Ramaswayri, B.—Ramar, K.: Transformation to the Phase-Variable Canonical Form.

IEEE Trans. on Automatic Control, 4C-13 (1968), pp. 746—747.

Ramaswaymi, B.—Ramar, K.: On the Transformation of Time-Variable Systems to the
Phase-Variable Canonical Form. IEEE Trans. on Automatic Control, 4C-14 (1969) pp.
417—419.

Tovu, J. T.: Determination of the Inverse Vandermonde Matrix. IEEE Trans. on Automatic
Control, AC-9 (1964) July. (Correspondence.)

Tou, J.T.: Modern Control Theory. McGraw-Hill, New York 1964.

Brurg, J. D.: A Note on the Vandermonde Determinant. IEEE Trans. on Automatic
Control, 4C-9 (1964), July, pp. 314—315. (Correspondence.)

Wertz, H. J.: On the Numerical Inversion of the Recurrent Problem: the Vandermonde
Matrix. IEEE Trans. on Automatic Control, 4C-10 (1965), Oct., p. 492. (Correspondence.)

. Wu, S. H.: On the Inverse of Vandermonde Matrix. IEEE Trans. on Automatic Control,

AC-11 (1966), Oct. p. 769. (Correspondence.)

Reis, G. C.: A Matrix Formulation for the Inverse Vandermonde Matrix. IEEE Trans.
on Automatic Control, 4C-12 (1967), Dec., p. 793. (Correspondence.)

Sysro, M.: The Inverse for the Real Similarity Transform of a Companion Matrix. IEEE
Trans. on Automatic Control, AC-16 (1971), Oct. p. 491492,

Csixr, F.: Some Remarks on Modal Transformations. Periodica Polytechnica, Electrical
Engineering, 16 (1972), pp. 333-—346.

Beck, R.—Lance, G. M.: Direct and Inverse Transformations between Phase Variable
and Canonical Forms. Joint Automatic Control Conference of the American Automatic
Council. Stanford, 1972, pp. 133—137.

. Beck, R.: Anpalysis and Pole-Zero Synthesis Using Stte Variable Techniques. Ph. D.

Dissertation, The University of Iowa, May, 1972.

21. KauFMAN, I.: The Inversion of the Vandermonde Matrix and the Transformation to the

Jordan Canonical Form. IEEE Trans. on Automatic Control, AC-14 (1969). Dec., pp.

P iedsl

774—177. (Correspondence.)

. Kax, P. E.: An Inversion Procedure of the Generalized Vandermonde Matrix, IEEE Trans.

on Automatic Control, 4C-16 (1971), Oct. pp. 492—493. (Techn. Notes and Corresp.)

. ScuarpELLE, R. H.: The Inverse of the Confluent Vandermonde Matrix. IEEE Trans. on

Automatic Control, 4C-17 (1972), Oct. 724—725.



30.
31.

32.
33.

34.

33.
36.

37.
38.
39.
40.

FROM PHASE-VARIABLE TO CANONICAL FORMS 379

. ScHAPPELLE, R. H.: The Inverse of the General Confluent Vandermonde Matrix. General

Dynamics Convair Aerosp. Div. Rep. GDC-BBA69-001, 1969.

. GavurscHi, W.: On Inverses of Vandermonde and Confluent Vandermonde Matrices, Numer.

Math. 4 (1962), pp. 117123,

26. Rao, K. R.—Aamep, N.: Evaluation of Transition Matrices. IEEE Trans. on Automatic

Control, 4C-14 (1969), Dec., pp. 779—780.

. Armans, M.—FaiB, P.: Optimal Control. McGraw-Hill, New York 1966.
. Csixk1, F.: Modern Control Theories. Nonlinear, Optimal and Adaptive Systems. Akadémiai

Kiad6, Budapest, 1972.

29, Csixi, F.: Die Zustandsraum-Methode in der Regelungstechnik. VDI Verlag Diisseldorf —

Akadémiai Kiadé, Budapest 1973.

DeRusso, P. M.—Rovy, R. J.—Crosg, C. M.: State Variables for Engineers. John Wiley,
New York 1965.

Dorr, R.: Time-Domain Analysis and Design of Control Systems. Reading. Mass. Addison-
Wesley, 1965.

Ocata, K.: State Space Analysis of Control Systems. Englewood Cliffs, 1967.

SsvceEpo, R.—ScHIRING, E.: Introduction to Continuous and Digital Control Systems.
McMillan, New York 1968.

ScrULTZ, D.—MELSA, J.: State Functions and Linear Control Systems. McGraw-Hill, New
York 1967.

Scewarz, R.—FRieprLaxp, B.: Linear Systems. McGraw-Hill, New York 1965.

TimorEY, L.—Bona, B.: State Space Analysis: An Introduction. McGraw-Hill, New
York 1968.

TaxkavasHL, Y. RABINS, M.— AUSLANDER, D.: Control and Dynamic Systems. Reading
Mass-Addison Wesley, 1970.

Hermite, CH.: Sur la formule d'interpolation de Lagrange. Journal fiir die reine u. ange-
wandte Mathematik, 84 (1878), p. 70.

SPI1TZBART, A.: A Generalization of Hermite's Interpolation Formula. American Mathe-
matical Monthly, 67 (1960), pp. 42—46.

JoransEN, P.: Uber osculierende Interpolation. Skandinavisk Aktuarietidskrift, 1931,
Uppsala.

Prof. Dr. Frigyes CsAxi, H-1511 Budapest



