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Introduction 

The identification has three phases: approximation of the structure, 
parameter estimation and checking, but only the latter two hayc satisfactory 
-- but not definite theory. [1, 2]. l'Iowadays the main problem is to find 
the suitably fitting structure. The estimation of model order has already 
been inyestigated for linear systems [1, 3, 4, ;)] but this is not the case for 
llolllinear dynamic systems. The reason may be the many yariations of the 
model and noise structures. The task is of' topical interest because the descrip
tion of complex chemical and biological systems is based more and more on 
input-output modelling since the establishment and solution of reaction, 
material and energy equations are often difficult. In case of nonlinear struc
tures the mathematical description and description for identification purpose 
are contradictory, namely each nonlinear dynamic process can be characterized 
hy a YOLTERRA series of infinite number of parameters while only a finite 
number of parameters can be identified. SincE' different models can he estab
lished in casc of a giyenllUmber of parameters and alEong them the YOLTERRA 
series of finite parameter giyes the poorest approximation, our aim was to 
elaborate different structures for identification purposes and at the same tiuH: 
to see ho'w they approximatE' the gE'neral YOLTERRA series description. 

Seyeral algorithms haye been elaborated for linear parameter estimation 
under noisy conditions. SincE' thesc assume only the parameters to be linear, 
they can also he used for nonlinear identification. Therefore our aim 'I-as to 
find (nonlinear) models which are lille'eH in parameters. The algorithm'3 haye 
already been published in [6, 7]. 

The VOLTERRA-series expansion 

A nonlinear static function can he approximated hy its TA YLOR series 
ill the yicinity of thc working point, which is actually a polynomial of infinite 
order. Similarly an impulse response of "infinite extC:Lsion" describes the 
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linear dynamic systems. Generally the so-called VOLTERRA integral operator 
is used to describe nonlinear, dynamic, continuous systems. Since the discrete 
form is preferable for data processing by digital computers, further on we deal 
with such a description: 

y(l) = 1"0 + ~ lri u(t 
i=O 

i) + :E :E!Vij u(t -- i) II (t 
i=O j=O 

:E . .. :E Wi. .. k ll(t - i) ... ll(t k). 
i=O /{=o 

j) 

(1) 

Here ll(t) and y(t) are the input and output signals, respectively, at the 
l-th moment, assuming that the sampling time T = 1, 1"0 is the constant term, 
Ir!, Irij, ... are the generalization of the linear weighting function series, the 
kernels of the series. 

The series is "twice infinite in dimension"; both in time, which derives 
from the series expanded form of the transfer function of dynamic part, and 
in the number of sums, 'which derives from the more and more accurate approxi
mation of the nonlinear, static characteristics. At the same time, only a finite 
number of parameters can be estimated. 

Further on, TA YLOR series of the static characteristics of the process 
is assumed to exist (that can be differentiated any times, has no break point 
or discontinuity). So the closeness of approximation depends only on the 
numher of sums. A quadratic approximation better than the linear one can be 
ohtained if only the kernels of second order are considered. Besides this the 
time-memory has also to he restricted. 

In such a way "the finite order YOLTERRA 'weighting function model" 
is ohtained (FVW): 

m m m 
)·(t) - r -L ....., u·· II (1 - 0 I ...;;;;;;.. I i) "" ....... le· ·1l(1 -- i) ll(t ..,;;;;...,;;;;. IJ j) . (2) 

1=1 i=1 j=1 

Here 111 < """ is the degree of time-memory and the summing up is started 
from 1 'which is usual for the difference equations descrihing th~ dynamic 
processes. Be 

W-(,,-1) - . _-1 i 
~ -/tT" T··· (3) 

where Z-1 is the backward shift operator and W is an m X m symmetrical matrix. 
Rewriting Eq. (2) 

fT (u( t)) W f( ll( t)) (4) 
where 

fT(ll(t)) = [ll(t - 1), ... , ll(t m)] . (5) 
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The form (4) is linear in the parameters, i.e. the output can be giyen as a scalar 
product of the parameter vector p and the situation vector g: 

(6) 
where 

(7) 
and 

gT = [1, u(t - 1), ... , u(t - m),u2(t 1 ),u(t l)u(t - 2), ... , u~(t - m)] (8) 

This was the first general form applied to estimate the nonlinear systems [9, 
10, 11]. 

Further on, only quadratic models will be dealt with. 

Simple nonlinear dynamic structures 

A static second order polynomial function can be gIven 111 the form: 

(9) 

The weighting function series of a linear, dynamic, discrete-time model can 
be approximated by fractional polynomials 

y (t) 

where 
B( -1) b -1 ! ! b -m Z = 1Z :- .•• -t- mZ 

(10) 

(11) 

(12) 

These parts can be used to construct the simple cascade models i.e. the "simple 
WIEl"ER model" (SW) (Fig. 1) and the "simple HA2VIl\1ERSTEm model" (SH) 

(Fig. 2). These models used to be described by introducing the auxiliary vari
able v(t), and accordingly their identification is done by iteration [12, 8]. 
The H.HIMERSTEIN model is seen to be linear in the parameters [13, 8]. It can 
be provided that this model is a special case of the so-called "generalized 
H.HIl\IERSTEm model" (GH) (Fig. 3) which may be considered a multiple
input single-output linear, dynamic system in the new vector space obtained 
by transforming the input signals [6, 14]. The output is described by 

B ( ~-1) B ( -1) 
( ) 1 '" ( ) 2 Z "( .) \' t = C -.L U t + uo t 

• 0 I A (Z-1) A (Z-1) 
(13 ) 

or 
y(t) = (14) 
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where 

c* o Co (1 (1;) ) 

Including the functions of the output in the right side of (14), there is a non
linear feedback and we get the "extended HA::IDIERSTEL" model" (EH) (Fig. 4): 

Considering the original YOLTERRA series (1), also the cross-products of the 
input signals are seen there to occur, but not to occur in (13). 

This fact inspired us to inyoh-e these terms, by analogy to the "finite order 
YOLTERRA weighting function model" (:2), possible by including a shift
storage of finite elements. The so-called "finite order YOLTERRA modd" (FY) 
is shown in Fig. 5, described as: 

rr ( II (t)) B 2f( II (t)) (17 ) 

where B2 is an m >< m symmetrical matrix. Similarly, the "extended finite 
order YOLTERRA model" (EFY) is (Fig. 6): 

y(t) = -A(;;-1)y(t) c~; - El (;;-1) ll(t) --T- fT (ll(t)) B2 f(ll(t)) 

..L fT (y(t)) D f(y(t)). 
(18) 

Here 

rr (y(t)) = [y (t - 1), ... , Y (t I) ] (19) 

and D is an 1 ;:-< 1 symmetrical matrix. 
::'Imr let us return to the other cascade model, i.e. to the \,fIEXER model. 

Its generalization, the "generalized \VIE'.'<ER model" (G \V) is shown in Fig. -;-. 
The "extended WIEXER model" (EW) results from assuming different dynamic 
transfer lags before the multiplier. (Fig. 8). 

Alter hay-ing reyiewed the above eight simple nonlinear structures let 
u;; consider some typical criteria. 

1. The extension can easily be giyen for higher order polynomial terms. 
2. If B2 or D are diagonal matrices then the HA::IDIERSTEI'.'< models are 

special cases of the corresponding YOLTERRA models. 
3. The HA::IDIERSTEL" and the finite order YOLTERRA models are linear 

in the parameters, and can be reduced to form (6) contrary to WIE'.'<ER lllodl'ls 
which are nonlinear in the parameters. 

4. The simple and generalized \VIEXER models inelude the corresponding 
HA::IDIERSTEL" model (to be proyed subsequently). 
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5. Every mentioned structure excepting the finite order VOLTERRA 

models is a so-called separable model, i.e. nonlinear static and linear dynamic 
elements occur separately. Remark that only some of the physical systems can 
be written in this 'way, e.g. the inductance of the exciting coil of a generator 
which determines the time constant depends on the flux. If the structure 
of dependence of the model is known it may be transformed into a sepa
rable one that is, however more difficult to estimate. 

The above mentioned models can be described by parameters of a finite 
number. Since these are to approximate unknown processes, it has to be 
known what general models can be handled by them. Even more than the 
analytical relation between the models and VOLTERRA series, it is of importance 
to know what types of models lend themselves to estimate certain terms of 
the VOLTERRA series. 

Relationship hetween the model parameters and the kernels of the 
VOLTERRA-series 

In case of linear systems, there are two possibilities to compare the trans
fer function consisting of fractional polynomials of finite elements to the 
weighting function series. The first possibility is the well-kno·wn division 

of polynomials 

"re get the same result rewriting (10): 

(21) 

Replace the former values of the output into the right-hand-side of (21) 

y(t) i) . 

(22) 

Carrying on the recursive procedure, it is seen that the argument of y tends 
to - =, and only the input signals remain in the equation in agreement with 
the fact, that the system is only excited by its input signal. Contracting the 
terms ·with identical arguments again leads to Eq. (20). The k-th component 
of the weighting function is 

k-l 
. - ~ b ",' [( 'l{/i: - /. k-s .' - -s=o 

1)'" 11 a,] (23) 
(.!:i=s) 
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where all possible products appear in the second sum, therefore some of 
them is repeated . .u is equal to 0 if the number of the ai is even but it is 
equal to 1 if there are odd pieces of a i in the product. 

IC!; is seen to exist for all positive k, in spite of 

b,,-s = 0; for k - s> m. 

The recursive replacing procedure may be applied for any difference equation, 
also for a nonlinear one [15, 16]. 

First let us apply the procedure for the "finite order VOLTERRA model" 

(17): 

n m m m 
y(t)=- ~aJy(t-j),"c~+_"5:'b;ll(t-i)+ 7' ~b"lll(t-k)ll(t-l)= - --j=1 ;=1 "=11=1 

m 
- "'5'a - '" a y(t-J' n [ n 

..... J "..;;;;,. JI..". '" b ll(t-J' - i)..i... ..,;;;.. [1 1 ' 

j=1 j,=1 

J 

m m 

i1=1 

c* 
() 

+ ~ ~b"lll(t k)ll(t-l). 
1:=11=1 

(25) 

Carrying on the substitutions, let us compare the result with the form (1) 
of VOLTERRA series. For the constant element we get: 

[ 

n 

r = c* 1- ~a· U 0 ..;;;;. J 
j=1 

(~aj)~="'\J=c~ In 
J-1 1 ~ ~a· 

I .;;;;,. J 

Co' (26) 

j=1 

This 'was expected from (1.3) but it has to be completed the assumption that 

Tl 

.:t aj / 1 
j=1 

(27) 

holds what is generally true for stable systems. For the linear term 'we get 
(23). Finally, the expression obtained for quadratic terms: 

min(t;,t)-l 

" b '" [ 'l°l-Ll .:=. ,..;;:. k-s, [-s .,;;. l)li 11 a;]. (28) 
s=o (.0;=5) 

It is remarkable that 
le!.:1 = 0; for k (29) 

since B~ is an m X m matrix. 
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Let us represent the elements IClil in a two-dimensional screen (i.e. in 
an infinite matrix). The "finite order YOLTERRA model" takes account only 
of those quadratic terms of the YOLTERRA series for ·which Eq. (29) holds i.f'. 
it estimates the band of ·width m along main diagonal line (see Fig. 9 FY). 

B2 being diagonal in the "generalized HA}DIERSTEI:\" model": 

0; for k- I > O. (30) 

Eq. (14) giyes no estimation of terms of cross-product type of the input signal, 
only of the diagonal elements (in Fig. 9). 

The "finite order YOLTERRA weighting function model", Eq. (2) is ob
tained from Eq. (17) under condition n = 0, so the model has no infinite time-
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memory any more, i.e. it estimates only m linear elements and the quadratic 
terms up to m order (see the framed square in Fig. 9). For n > 0, this model 
estimates with infinite time-memory independently of n but more precisely. 

Let us consider "the extended WIENER model" (see Fig. 8). The constant 
and linear terms are obtained from (26) and (23) in this case, too. The quad
ratic terms can be established as a product of two linear series 

"-1 1-1 

W"l = :E :E b2J'-SI ba,l-s, (31) 
SI=O s,=o 

This means that each quadratic term occurs, but the estimation has a low 
degree of freedom (see Fig. 9-W). In the case of the "generalized WIENER 

model" the number of parameter variations is decreasing: 

(32) 

The extended models what are linear in parameters permit to approximate 
higher order kernels, by means of the quadratic terms of this estimation form. 

Consider the "extended finite order YOLTERRA model" (18) by definition 
be: 

(33) 

Introduce linear and nonlinear operators: 

L(x) = - _4(z-1)X(t) (34) 
and 

N(x) = fT(x(t))D f(x(t)) (35) 
where 

fT(x(t)) = [x(t - 1), ... , x(t - 1)] (36) 
and let: 

F(x) = L(x) + lV(x) . (37 
) 

Let us start to re cursively replace the former values of y(t) into the right-hand
side of (18). The k-th order approximation of the output (after k replacing steps) 
is obtained by omitting the former values of y(t): 

YI(t) = x(t); 

Y2(t) = x(t) F(x) 

:Yk(t) = x(t) F(x + F(x + ... + F(x))) . 

(38) 

(39) 

(40) 
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Considering Eq. (37) and the fact that the superposition principle is yalid for 
operator L(x), we get: 

y(t) = ~ V (x) 
- - 1"> (x) (41) 

i=O 

where the first term produces just the same kernels as the "finite order VOL

TERRA model" (23), (26), (28), while 1">(x) contains the higher order kernels 
which can be computed recursively. 

Without going into the details the products of the input signals are 
seen to occur at every degree but starting from ever earlier time-memories. 

Conclusions 

In our paper quadratic dynamic models are considered for identification 
purpose. Most of these models are to be linear in parameters and therefore 
the programs already available for multiple input single output systems 
may be used to estimate them. 

Relationships are given between the model parameters and the VOLTERRA 

senes. 
The extension for higher-order general polynomial forms fo11o'ws logically 

from the involved statements. 
In this paper no noise models have been dealt with but it has to he noted 

that the output noise models cannot be estimated by the extended models 
linear in parameters [17]. 

Summary 

In this paper the simple nonlinear, dynamic process models are reviewed and the param
eters of the equivalent YOLTERRA series are described. 

The higher-order YOLTERRA series could be described with infinite time-memory by 
quadratic structures of finite elements linear iu parameters. 
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