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Introduction

The recent extremely accelerated development of control theory allows
for the investigation of systems the dynamic behaviour of which is adequately
described by ordinary differential equations. However, the increasing complex-
ity of processes to be controlled requires the development of highly accurate
mathematic models to simulate the process. In case the mathematic, or other,
model considers also the space and time dependence of parameters determining
the dynamic behaviour, the model used to describe the process as a distributed
parameter model, that is, in case of mathematic models the dynamic behaviour
is described by partial differential equations rather than by ordinary ones [3, 6].

On the other hand, the systems developed must be optimum from a
certain defined aspect, an important requirement in control techniques. Exact
determination of the aspect from which a.system must be optimum is very
important, as a system highly satisfying a particular requirement might dis-
play less favourable behaviour in other respects. The aim of optimization is
usually expressed by a criterion that can be fulfilled through determining the
extremes, usually the minimum, less frequently the maximum, of a functional.
One of the simplest, and most frequent, optimizing problems is to minimize
a reasonably selected square integral criterion. Generally speaking, the task
is to determine one particular control vector that satisfies a defined condition
with respect to the system, with the system, that is the functional relationship
between the known state and control vector x(y, t) and u(y, t) resp. (Fig. 1),
[3.6,19]. As the goal is usually to minimize a functional, the methods of varia-
tion calculus concerned with the same fundamental problem have found extended
use in solving optimum control problems. A deviation from the classic form
of variation calculus is only represented here by the fact that the control vector
u(y, t) is introduced into the functional to be minimized, that is, into the cost
function. However, this deviation set no limits to the deduction of the optimiz-

! Department of Thermal Power Stations
* Department of Automation



406 L. LENGYEL and M. VAJTA Jr.

ing problem from one of the three fundamental problems of the classic variation
calculus, the choice of the problem from which deduction is made depending
on the nature of the problem. It should be noted that there are other methods
known to solve optimizing problems, namely, the optimizing principles suggest-
ed by PonTrJAGIN et al. and Breriman et al. [6] which are, however, not
discussed here. PONTRJAGIN's method is based on a generalization of the
variation calculus while that of BELLMAN uses the so-called ““dynamic pro-
gramming”.
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Fig. 1

A disadvantage of the available methods to solve optimizing problems
is that only the simplest systems of lumped parameters can be handled manu-
ally, more complex systems would require the use of analogue or digital
computers. However, the distributed parameter approach requires the use of
computers even in case of simplest systems [2, 3,6, 18, 24].

It must be noted that optimizing problems and techniques have widely
been used in several fields of system theory such as system identification,
adaptive control, stochastic problems ete., in addition to their use in optimum
control problems involving optimum regulation discussed in this study [I,2,

3,5,9,11,15,17, 20, 25].

Symbols used

— closed domain of the Euclidean m-dimensional space
boundary of the closed region
— space vector in the m-dimension space
— time
x(y.t) — state vector of n element, x€0
u(y.t) — control vector of 7 element, u€@
A — Lagrangian multiplicator

<4 B
I

1. Problem statement

Prior to be engaged in discussing of the distributed parameter systems,
it se¢ms reasonable to formulate the problem for continuous lumped parameter
systems, in particular for processes where the initial state is known and no
constraints are set on state and control vectors in the course of the process
or in the final state.
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Equation system to describe the process is [6,24]:

% = f(x.u, 1) (1)

where x — denotes the derivate of x with respect to t,
X — the n-vector state, and
u — the control vector with r elements.

Let the investigation be performed in interval t €(t, {7), with the known state
of the system at instant t, being

S(ty) = x, @)

As a criterion, assume that the expression known from the most general,
that is, the Borza-problem of variation calculus, has to be minimized [5]:

1=00x@).0'7 + | ¢lx@)u ), d 3)

[

where O, ¢ — scalar functions of the given arguments, defined in the closed
m-dimensional domain £ of the space and at boundary w of
this domain.

The functional, called cost function, can be described by the help of the multi-

plicator 7, similarly known from variation caleulus, as follows [5,6, 20]:

T=0[x (0,07 + [ {p [ (w1 = 2 O [fIx(@u @1 —51}de (4)

o

and the scalar Hamilton function as:

Hix (@A (@] = ¢ [x(@u o] 20 Fx@u @l 6)
By the help of this function, the cost function is:

I=0/[x(@), t]i:: 4 tg (H [x(6),u(2), A (8), ] — AT (1)} de (6)

and

I = {Ox (0,1 = () x(O} "+ [ {Hx (0 0,70 ]+ W x@} dr. (T

The optimum is determined using the first variation of I:

o 4
T e R R T
' X =t ox u

te
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From this, the relationships giving the necessary conditions for minimum are:

=
dx
oH
= fx,u,t) = — 9
fxu,0) - 9)
8H _,
du
and in the initial state:

X(to) = Xy (10)

while in the final state:

A1) = 99%((%__)) ul (11)

From the equation systern the optimum u(t) can be determined.

2. Distributed parameter systems

( Formulation of distributed system problems)

Let the same problem be investigated for the case of distributed param-
eter systems to be described by partial differential equations which must
always be completed by auxiliary (initial and boundary) conditions.

Derivate the m-dimensional spatial co-ordinate vector y, defined in the
closed domain 2 of the space [2,11]:

yT

= [)"17 Yar oo ,\/‘m] (12

where the superscript T denotes matrix transpose.

State of the system at any instant of time ¢ is described by the state
vector x:

r -
X(¥1s Yoo o s Yo f)
xl(,,‘ 1Yo Yme t)
sy = | . (13)
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The space and time dependent control vector is:

r -
(¥ Yoo oo e B)
Us(¥V1s Yo o v e ¥ 1)
u(y, ) = ' (14)
ur() 12 Ye Ym t)
1. ed

[u(y, t) may run over the whole domain Q.] Let us consider the systems which
are described by the following vector differential equation:

PR

8x (y, 1) :f[y’ X (y. 1), 8x (y, 1) o 8x (y.1t) ‘ 8 x (y, 1)

ot 8y, 8y,  Bykayk...aykn

...u(y,t),t] (15)

where:
K= Yk (16)
=
and:
I~ 1

(f denoting the function vector).
Both the initial and boundary conditions are known at boundary o
and at instant ¢, that is

x(y ty) (18)
and the values
. vl " | K« (v
0x (y, 1) e 6x (y, 1) '8 x(_w) _| (19)
By1 o m By, By, vk e

are known, too.
Introducing simplifications, the equation will take following shape:

M,u(y, ), r] . (20)

By=k

ox (y.f)
ot

f [y x(y. 1),
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Now, the problem is to determine the control vector, u(y, t) where the cost
function given below is minimum:

6" x (y:9)

I={ O[x(y.t).td2+ | (g [yx 00—

su(y,t), t1d2de (21)
2 )
(where O and ¢ are, as usual, scalar functions of the given arguments).
Deriving the Hamilton function in the way used in case of lumped
parameter systems, that is, by the help of the Lagrangian multiplicator A,

Hx,u,M,t]=9¢[x,u, t] + AT (v, 1) - f(x,u,1), (22)
the cost function used as a criteriou can be described as follows:

I= {642+ i ( [H—.ﬂ(y, f) ﬁ‘—g—ﬁ_} dQ dr. (23)
5 i i t

f, &

With constant #; and @, the problem of determining extremes can be solved
by formulating the first variation of I.

3. Computation method

So far only continuous functions have been used in expressions describing
the system. However, in investigating distributed parameter systems, the
differential equation(s) described the system must usually be replaced by
difference equations, that is, discretized using one of the difference methods.
To do so, two possibilities are available. First, the differential equations describ-
ing the system are discretized to provide thus difference equations, and, on the
other hand, the process itself can be resolved, in space and/or in time, into
final terms [4,7,8,10]. Models so obtained are approximations which have to
satisfy some convergence and stability criteria. However, this problem is not
dealt with here in details.

It follows that the formulae obtained in the foregoing should reasonably
be described by discrete variables in a discrete form in order to make them
available for direct use in computers, and, actually, this is possible according
to the rules of variation calculus.

Let the n-element state vector and the r-element input signal vector
of a discrete or even nonlinear system be x; and uy, respectively, at k-th in-
stant of time.

At (k <4 1)-th instant, the state of the system can be characterized with
the relationship:

X1 zf(xlf7 uy, k). (24)
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Here the formulation of the problem is quite similar to that described previously
the task being here the determination of extremes, too, that is, to minimize
the cost function

th=k; kgl -
I=0[x, k] ‘;—1{0 - 2 @ [xp. . k. (25)

= k=l

Initial and final points of the process are k; and ky, respectively.
Making use of the Lagrangian multiplicator Ay, the cost function can be
rewritten as:

t—1

5,‘ 7 [ka . k] - 7"1{+1 [le~21 '_f(xlr& ., ]"')] . (26)

1

k=l

I=0[x,k """+
ih=1k,

The Hamilton function is then formed as:
H[xpw, Moy, k] = Hy = ¢ [x4, wy k] -+ Moy f (55, W ) 27

and thus the cost function is:

B

_— ei—1
T=0[x, k[T + 3

k=k,

[Hk“lg+lxlf+l]' (28)

o

Similarly to the method used in case of continuous systems, the solution
proceeds as follows: The difference equation system, describing the distributed
parameter linear system, is formulated in matrix form, using a discretizing
in both space and time:

o1 =Ax, + By (29)
and '
x(0) = x,
E=0,1,2...k (30)

where matrices A and B may be both space and time dependent.

With introducing reasonably selected weighting matrices, Q and R,
which may be similarly the functions of space and of time level k, the Hamilton
function will be:

1 1
H= Y [xf Qx;]+ Y [uf Ru,]+ 7\;{+1 [Ax; -+ Bu,] (31)

and )
)'Ic - Qxlc -+ AT}I{-% 1 (32)

Thus, with A, known, the multiplicator A, , of the new time level can be deter-
mined if A~?! exists. This condition is fulfilled as the transfer matrix is A.
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This can be easily understood if the homogeneous term of the discrete state
equation is considered:

X (tger) = A (tres o1p) X (1)
In the final state:
Mk = S5 - x(ky)

_ 80y
S= e X1 (33)

With the use of discrete maximum principle:

oH

=0=Ru, +~B"%,. (34)
Ou,,

To accomplish optimatization, the following linear difference equation system
must be solved (Fig. 2):

K ker Xx
]Time delay i
{
|
(- |
! | i
| =
8-K' 8" i
Akt Ay ‘
=) N Tirme delay -
AN | |
I l
i i
I
] |
il [AT] $ i
3

Xpep = Ax, — BRTIBT A, (35)
)‘k = Qxlc + AT)\I\'+1
at the initial time:
X(k()) e XO (36)
at the final time:

Ak)) = Sx; . (37



CONTROL OF DISTRIBUTED PARAMETER 413

Now, assume that
)"l\‘ = PI{ Xp - (38)

Rearranging and substituting:

P.x, = Qx; + ATP., [I + BRT'BTP, ;] - Ax,
(39)
P, — Q + AT [Pz, - BR-IBT] -1 - A.

i

In the final state:

P, =S. (40)

With the matrices describing systems A and B and the weighting matrices
Q and R known, P(k) can be determined if the above equation is solved pro-
ceeding backwards, from k = k; to k = 0. With the knowledge of this, the
relation between x; and the optimum uy at the k-th time level will be:

w, = — R™1BT [Pj1, + BR-1B7]-Ax, (41)

(where a necessary condition of this result is that Q and S be negative while
R positive definites). Thus, input signals of the system are obtained in a way
similar to the function of the conventional control device, that is, the optimum
control vector has heen produced.

Kk A Xy

= B ,@::>Time delay
|
il i A ’(j

R“-BT{P;; +B<R‘1-B'].-1A ~

Fig. 3

4. Applications

4.1 Thermal applications — temperature control

A common problem in thermal engineering is the control of spatially
distributed temperature of media flowing in duects.

The typical optimization problem can be formulated as follows [15,16, 18]:

With given medium flowing in a duct of negligible heat capacity, heated
from outside, assume that the heating, i.e. the heat flux density affecting
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the duct or the outer temperature having a known relation to heat flux density
can be modified as a function of space and time. Temperature of the medium
is assumed to be a controlled characteristic while the difference between inter-
nal and external temperatures is the control signal. For the sake of simplicity,
the example chosen is a one-dimensional investigation (Fig. 4).

-

- q (heat flow)
\l

Jq (ambient temperature)

T L d

s
é 2 ) é uzi)q- i
1 T

b

Y

Differential equation for the medium flowing in a duct is:

88 (v,t 89 (v, t
_ 2000 g = 2000 (42)
oy ot
Let the initial condition be
F(y,0)=1+0-y: >0, 0<y<ys (43)
Bo undary conditions:
89 (y,
———’(‘“Zﬁ: 0 for y =0 and 0Tt <1
8y
(44)
8 (v,
AS) =0 for y =y; and 0 <t <t,.
oy
Coefficients of the equation:
a == w
b— aou*
Ad.o-e
where w — the flow rate of the medium, [m/sec]
u* — internal perimeter of the tube (assuming a thin-walled pipe com-
pared with its diameter) [m]
A — flow cross-section [m?]
o — density of flowing medium [kg/m?]
¢ — specific heat of the medium [kecal/kg °C]
% — heat transfer coefficient [keal/m? sec °C]J.
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The task is to modify the difference (u[y, t]) between inner and outer
temperature so as to minimize functional

iy
~

I= %__J J[Ql P (y.t) + Ryu®(y, )] dy de (43)

00

Q. and R, are reasonably selected weighting factors.

There are several methods available to solve the problem numerically,
such as to discretize in space and time the process, that is, to divide investi-
gation time K and the tube length (i.e. the section investigated) into L parts
and rewrite the differential equation into difference equation with forming a
grid of time and space increments of i and Ay, respectively (e.g. on the basis
of centered difference method).

Thus
0<E<K
0<<1LL (46)
so that the following matrix equation is obtained:
ok + 1) = Ad(k) + Bu(k) 47)
where
Gk = Bopr  Frp- v el (48)
u(k)T = [ugps  Uyp .- ULl

A and B are bidiagonal and diagonal matrices containing coefficients a and b,
respectively. The functional to be minimized is:

K1
= dyde 3 [07 () Q8(K) + o (B) R u (k)] (49)
- k=0 .
and the Hamilton function:

H(k) = - Ay 40 [97() Q0 () + u”(k) Rou (B)] + AT(k -+ 1) [A (k) + B u (k)]

(50)
Equation system to be solved:
1 - )
& (k) = [I i BR-! BTP(k)J A (k—1) (51)
Ay At
u(k) = — — _ R-1BT A-T[P (k) — Q] 5(k) . (52)
Ay At

Relationship to be written for P(k):
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—1
Pk)=AdyAtQ - ATP(k +1)-|A"L + —-—1~—- AIBRIBTP(k L+ 1)
Ay At
(53)
and
P(K) =10
Initial condition as a function of time:
HO) =1+ 06-1 - v/ L. (54)

Let the weighting matrices Q and R be reasonably:
Q=R=diag <12 1...11/2>.

To obtain a numerical solution, the grid of the domain investigated
must be assumed, that is, the values of Ay and 4t must be determined. Here,
considerations in relation with the method of finite differences apply (stability
and convergence conditions).

Thus, on the basis of relations given above, the digital computer program
to solve the distributed optimum problem can be formulated with ease.

4.2 Thermal load of solid dielectrics

Another example of applications is the problem of insulations frequently
used in high voltage technique. Fig. 5 shows the homogeneous one-dimensional
plane variation of the problem. Using this setup, transformer insulations can
be simulated.

In this setup, the two electrodes having an a.c. voltage of an effective
U,(t) value between them are insulated with homogeneous material. As
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knowun, a loss may ocecur in the dielectric, partly emerging into the ambient
and, on the other hand, increasing the temperature of the dielectric. As the
maximum temperature rise of dielectrics is determined by the so-called thermal
groups, no higher tempevature than that specified as a maximum for the di-
electrics is permitted to develop in the dielectric. At the same time, economic
reasons require that the operating temperature of the insulation be possibly
close to the maximum value specified. Thus, in the present case, the maximum
temperature of the dielectric can be considered as the controlled characteristic,
the voltage applied to the dielectric being the control signal. Let us investi-
gate now the relationships between these characteristics.

Let the partial differential equation describing the temperature distribu-
tion be simulated [21, 22, 23, 25]:

59 (1, 1)

82 9(+
T A Ll i LC L B (55)
ot By?
where ¢; — the specific heat of the dielectric, [keal/kg °C]
oy - the density of the dielectric, [kg/m?]
Z; — the thermal conductivity, [keal/m sec °C]
g, — the internal heat source per unit volume and per unit time

[keal/m® sec].
Assuming dielectric losses alome [21, 22, 23]:

gy (¥, 1) = pePlPD—%l1 [keal/sec m?] (56)
where
po = kui(t).
Necessary initial and boundary conditions are:
P (y,0) =103, = const. 0 <y<yf (57)
3 (v.t) -
ELACZL R (58)
8y =0
. 8 (v,
LI R 9 (i — )
0y
for y = yrand %t £[t, t] (59)
where F' -- the heat transmission surface [m?]
% — the heat transfer coefficient [kealjm®sec C°]
#q -~ the constant ambient temperature [C°].

Several methods are offered by the literature to solve equations of this
type, in the present case, however, that preferred in the foregoing will be
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used. Hence, the time co-ordinate is resolved by increments At and the space
by increments Ay. Introducing the symbols

ﬁT(k) = ['190,,‘.’ 'ﬁl,ke s ﬁL,k] (60)
and

T .
wy (k) = [ugus U« oo ] (61)
where u, = U?, that is, the square of the voltage vector is considered to be the

control vector, and, introducing the symbols given in [55) the following for-
mula will be obtained:

ke + 1) = AdE) + A* 0(k) + Bu(k) (62)
where
A =1
b, o 0. 0
A* =1 aq b, ¢ - 0
0 a, b, Cc, 0 (63)

y3 At
a; == — b; = — 2a,,

Cr ¥y (dy)? ‘

B = Keblot—tol, (64)

Although the expression (62) can be rewritten as the well known expres-
sion (47), there are still difficulties as the matrix B is in exponentional relation
with the temperature vector according to (64). This means that in solving
the control problem a non-linear equation system has to be solved at each
k-th internal of time. As a cost function, again (49) can be chosen.

Boundary conditions are contained by the corresponding elements of
the individual coefficient matrices.

Using the above symbols and solutions, the expression of the algorithm
to minimize the cost function is completely analogue with the example given
in 4.1,

Summary

In recent years the problem of optimizing control systems has become highly signif-
icant. In the case of systems of distributed parameters the discrete variational calculus and
discrete maximum principle is used to give a calculation algorithm which can be directly
programmed.
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The calculation method described finds a wide application in solving the problem of

optimum control of different physical processes, that is, with the knowledge of parameters
determining the system properties the optimum control vector as a functicn of space and time
can be calenlated.
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