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Introduction 

The recent extremely accelerated deyelopment of control theory allows 
for the inyestigation of systems the dynamic behayiour of which is adequately 
described by ordinary differential equations. Howeyer, the increasing complex­
ity of processes to be controlled requires the deyelopment of highly accurate 
mathematic models to simulate the process. In case the mathematic, or other, 
model considers also the space and time dependence of parameters determining 
the dynamic behayiour, the model used to describe the process as a distributed 
parameter model, that is, in case of mathematic models the dynamic behayiour 
is described by partial differential equations rather than by ordinary ones [3,6]. 

On the other hand, the systems deyeloped must be optimum from a 
certain defined aspect, an important requirement in control techniques. Exact 
determination of the aspect from which a. system must be optimum is yery 
important, as a system highly satisfying a particular requirement might dis­
play less fayourable behayiour in other respects. The aim of optimization is 
usually expressed by a criterion that can be fulfilled through determining the 
extremes, usually the minimum, less frequently the maximum, of a functional. 
One of the simplest, and most frequent, optimizing problems is to minimize 
a reasonably selected square integral criterion. Generally speaking, the task 
is to determine one particular control Yector that satisfies a defined condition 
with respect to the system, with the system, that is the functional relationship 
between the known state and control Yector x(y, t) and u(y, t) resp. (Fig. 1), 
[3,6,19]. As the goal is usually to minimize a functional, the methods of varia­
tion calculus concerned with the same fundamental problem haye found extended 
use in solving optimum control problcms. A deyiation from the classic form 
of yariation calculus is only represented here by the fact that the control yector 
u(y, t) is introduced into the functional to be minimized, that is, into tl~e cost 
function. Howeyer, this deyiation set no limits to the deduction of the optimiz-
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ing problem from one of the three fundamental problems of the classic variation 
calculus, the choice of the problem from which deduction is made depending 
on the nature of the problem. It should be noted that there are other methods 
kno'wn to solve optimizing problems, namely, the optimizing principles suggest­
ed by POl'iTRJAGIl'i et a1. and BELL;\IAl'i et a1. [6] which are, however, not 
discussed here. POl'iTRJAGIJ'i'S method is based on a generalization of the 
variation calculus while that of BELL:\IAl'i uses the so-called "dynamic pro­
gramming" . 

u(y,t) J I 
\~1L~ __ k_n_oW_n __ s_y_s_te_m~--------~ 

! L==lt.===i =1 ===:::J1 f 

x (y, t) 

Fig. 1 

A disadvantage of the available methods to solve optimizing problems 
is that only the simplest systems of lumped parameters can be handled manu­
ally, more complex systems 'would require the use of analogue or digital 
computers. However, the distributed parameter approach requires the use of 
computers even in case of simplest systems [2,3,6,18,24]. 

It must be noted that optimizing problems and techniques have widely 
been used in several fields of system theory such as system identification. 
adaptive control, stochastic problems etc., in addition to their use in optimum 
control problems involving optimum regulation discussed in this study [1,2, 
3,5,9, n, 15, 17, 20, 25]. 

Q 

w 
y 
t 
x(y. t) 
u(y, t) 
;. 

Symbols used 

closed domain of the Euclidean m-dimensional space 
boundary of the closed region 
space vector in the m-dimension space 
time 
state vector of n element, xEQ 
control vector of r element, uEQ 
Lagrangian multi plica tor 

1. Problem statement 

Prior to be engaged in discussing of the distributed parameter systems, 
it senllS reasonable to formulate the problem for continuous lumped parameter 
systems, in particular for processes where the initial state is known and no 
constraints are set on state and control vectors in the course of the process 
or in the final state. 
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Equation system to describe the process is [6,24]: 

x = f(x, u, t) (1) 

where x denotes the derivate of x with respect to t, 

x - the n-vector state, and 
u the control vector with r elements. 

Let the investigation be performed in interval t E (t 0' tt), with the known state 
of the system at instant to heing 

(2) 

As a criterion, assume that the expression known from the most general, 
that is, the BOLzA-problem of variation calculus, has to he minimized [5]: 

Ij 

1= G [x(t), t]il=/'i + r er [x (t), u (t), t] dt 
:1=1, • 

I, 

(3) 

where G, rp scalar functions of the given arguments, defined in the closed 
m-dimensional domain Q of the space and at houndary w of 
this domain. 

The functional, called cost function, can he described by the help of the multi­
plicator ;., similarly known from variation calculus, as follows [5,6,20]: 

1= G [x (t), tf=l/ 
!I=I, 

Ij J {rp [x (t), u (t), t] 
I, 

J..T (t) [f[x (t), u (t), t] - in dt (4) 

and the scalar Hamilton function as: 

H [x (t), u (t), A (t),] = rp [x (t), u (t), t] -L A (t) [f[x (t), u (t), t]]. (5) 

By the help of this function, the cost function is: 

Ij 

1= G [x (t), t]I'I:I! + r (H [x (t), u (t), A (t), t] - AT (t)i} dt (6) 
I-I, t, 

and 

I {G[x(t),t] AT (t) x(t)}il=lf 
il=lo 

If .r {H[x(t),U(t),A(t),t] 
10 

). T x(t)} dt. (7) 

The optimum is determined using the first variation of I: 

Of ~ IbxT [~~ - All:: + J 10,T [~~ + 5.l + OUT [~~ II dt. (8) 
t, 
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From this, the relationships giyillg the necessary conditions for minimum are: 

and in the initial state: 

while III the final state: 

. 8H 
A=--

8x 

_ 8H 
x =f(x, u, t) = SA 

8H o 
8u 

From the equation system the optimum u(t) can he determined. 

2. Distributed parameter systems 

( F ormulatioll of distributed sY'stem problems) 

(9) 

(10) 

(11) 

Let the same prohlem he inyestigated for the case of distrihuted param­
eter systems to he described hy partial differential equations which must 
always he completed hy auxiliary (initial and houndary) conditions. 

Derivate the m-dimensional spatial co-ordinate vector y, defined in the 
closed domain Q of the space [2,11]: 

T [] (12 Y = Yl,Y~,···Ym 

where the superscript T denotes matrix transpose. 
State of the system at any instant of time t IS descrihed hy the state 

vector x: 

r -, 
X 1(Yl')"2' .. Ym' t) 
X z( VI' Y2 ... y"" t) 

x(y, t) (13) 
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The space and time dependent control vector is: 

r -, 
UI(YI' )'2' .. Ym' t) 
u2Ch'Y2" 'Ym' t) 

409 

u(y, t) (14) 

[u(y, t) may run over the whole domain Q.] Let us consider the systems 'which 
are descrihed hy the following vector differential equation: 

8x(y,t) f[- _(_ ) 8x(y,t) ax(.y,t) 
-~--'-= y,x y,t, ... 

at aYI 8Ym 

where: 

and: 

... u(y,t),t] 

m 

K=2kL 
L=l 

r -, 
f1 
f2 

., .. . 

(15 ) 

(16) 

f = (17) 

f;, 
'- -.l 

(f denoting the function vector). 
Both the initial and houndarv conditions are kno,nl at boundary co 

and at instant to' that is 
(IS) 

and the values 

aYm 

af( x (y, t) 
,... i 

8y /', 8y /' ... y;;;" !'" 
(19) 8x (y, t) I 

I "J' •• 

aYI I", 

ax (y, t) 

are known, too. 
Introducing simplifications, the equation will take following shape: 

8x (y, t) [ a~k x (y, t) 1 =f y,x(y,t), ,u(y,t),t
J

. 
at av~k 

(20 ) 
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);'ow, the problem is to determine the control vector, u(y, t) where the cost 
function given below is mInImum: 

1= J e [x (y, tj ), tj] dQ + J J q) y, x (y, t), It l 
Q 4 Q 

a~" x (y, t) 
ay~I' 

, u (y, t), tJ dQ dt (21) 

(where e and gJ are, as usual, scalar functions of the given arguments). 
Deriving the Hamilton function in the way used in case of lumped 

parameter systems, that is, by the help of the Lagrangian multiplicator A, 

H [x, u, A, t] = gJ [x, u, t] AT(y,t) ·f(x,u,t), 

the cost function used as a criterion can be described as follows: 

I = I' edQ 
b 

r r [H-AT (y, t) ax (y, t)] dQ dt. 
I, b at 

(22) 

(23) 

\Vith constant tj and Q, the problem of determining extremes can be solved 
by formulating the first variation of I. 

3. Computation method 

So far only continuous functions have been used in expressions describing 
the system. However, in investigating distributed parameter systems, the 
differential equation(s) described the system must usually be replaced hy 
difference equations, that is, discretized using one of the difference methods. 
To do so, two possibilities are availahle. First, the differential equations describ­
ing the system are discretize d to provide thus difference equations, and, on the 
other hand, the process itself can be resoh-ecl, in space and/or in time, into 
final terms [4,7,8, 10]. Mo clels so ohtained are approximations which have to 
satisfy some convergence an d stability criteria. HO'wever, this prohlem is not 
dealt with here in details. 

It follo"ws that the form ulae obtained in the foregoing should reasonahly 
be described by discrete variables in a discrete form in order to make them 
available for direct use in computers, and, actually, this is possible according 
to the rules of variation calculus. 

Let the n-element state vector and the r-element input signal vector 
of a discrete or even nonlinear system be Xli and UI" respectively, at k-th in­
stant of time. 

At (k 1 )-th instant, t he state of the system can be characterized "with 
the relationship: 

(24) 
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Here the formulation of the problem is quite similar to that descrihed previously 
the task heing here the determination of extremes, too, that is, to minimize 
the cost function 

(25) 

Initial and final points of the process are ko and kf' respectively. 
Making use of the Lagrangian multiplicator Afi, the cost function can he 

rewritten as: 

"1-1 

:5' cP [Xfi' 11", k] - AL.-I [Xfi-'-l -f(Xfi' 11,,, k)]. ... . , (26) 
k=!:)I 

The Hamilton function is then formed as: 

and thus the cost function is: 

(28) 

Similarly to the method used in case of continuous systems, the solution 
proceeds as follo·ws: The difference equation system, descrihing the distrihuted 
parameter linear system, is formulated in matrix form, using a discretizing 
in both space and time: 

(29) 

and 

X(O) = Xo 

k = 0, 1,2 ... kJ (30) 

where matrices A and B may he hoth space and time dependent. 
With introducing reas onahly selected ·weighting matrices, Q and R, 

·which may he similarly the functions of sp ace and of time In-el k, the Hamilton 
function ·will he: 

and 

1 
H= [xIQxd 

2 
(31) 

(32) 

Thus, ·with Ak kno·wn, the multiplicator Afi+ 1 of the new time level can he deter­
mined if A-I exists. This condition is fulfilled as the transfer matrix is A. 
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This can be easily understood if the homogeneous term of the discrete state 
equation is considered: 

In the final state: 

A(kj ) = S . x(kj } 

S = a0 (kj ) [x (k
j
)] • 

ax (kj ) 

With the use of discrete maximum principle: 

(33) 

(34) 

To accomplish optimatization, the following linear difference equation system 
must be solved (Fig. 2): 

Xk+, x, 

~I '-:::::=::::j~; Tim, A"'OY ~ i,l! 
11 L. r=J 
~ 

..." 

at the initial time: 

at the final time: 

Fig. 2 

Xk+ 1 = AXk 

Ak = QXk 

BR-J BT AHI 

ATAk-'-l 

(35) 

(36) 

(37) 
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Now, assume that 
(38) 

Rearranging and suhstituting: 

(39) 

In the final state: 
(40) 

With the matrices descrihing systems A and B and the weighting matrices 
Q and R known, P(k) can he determined if the ahove equation is solved pro­
ceeding hackwards, from k = k j to k = O. With the knowledge of this, the 
relation hetween XI, and the optimum UI, at the k-th time level will he: 

(41 ) 

(where a necessary condition of this result is that Q and S he negatiye while 
R positive definites). Thus, input signals 0 f the system are ohtained in a way 
similar to the function of the conyentional contro 1 device, that is, the optimum 
control vector has h een produced. 

ji R-1 ST G -1 . Pk+l +S . R-1 r '8T . A IJ 
Fig. 3 

4. Applications 

4.1 Thermal applications - temperature control 

A common prohlem in thermal engineering is the control of spatially 
distrihuted temperature of media flowing in ducts. 

The typical optimization prohlem can he formulated as follows [15,16,18]: 
With given medium flowing in a duct of negligihle heat capacity, heated 

from outside, assume that the heating, i.e. the heat flux density affecting 
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the duct or the outer temperature having a known relation to heat flux density 
can be modified as a function of space and time. Temperature of the medium 
is assumed to be a controlled characteristic while the difference between inter­
nal and external temperatures is the control signal. For the sake of simplicity, 
the example chosen is a one-dimensional investigation (Fig. 4.). 

q (heClt flow) 

.'Ia (G[l1bient temperat\Jre) 

!F2Z2, ~Z?Z? /::z;::. / /_2222/ / .''l/~// / <:2221" 1 
~ A/p,C/H· ~ 

u: /J Q - If 

,.. y 

v/////////- ////, //," ! 

Fig_ 4 

Differential equation for the medium flowing in a duct is: 

a{) (y, t) 
-a----'=---'---

ay 
b u (v, t) = a {) (y, t) 

" at 
Let the initial condition be 

{) (y, 0) = 1 

Bo undary conditions: 

a {) (y, t) = 0 for y = 0 and 0 < t < t] 
8 ). 

a {) (y, t) = 0 for y =)j and 0 < t :S: t r _ 
ay 

Coefficients of the equation: 
a =H' 

x-u* 
b=---

A ''l-e 

the flow rate of the medium, [m/sec] 

(42) 

(43) 

(44) 

where w 

u* internal perimeter of the tube (assuming a thin-walled pipe com­
pared 'with its diameter) [m] 

A 

'l 
e 

x 

flow cross-section [m2] 

density of flowing medium [kg/m3 ] 

specific heat of the medium [kcal/kg QC] 
heat transfer coefficient [kcal/m2 sec °C]. 
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The task is to modify the difference (u[y, t]) between inner and outer 
temperature so as to minimize functional 

(45 ) 

QI and RI are reasonably selected weighting factors. 
There are several methods available to solve the problem numerically, 

such as to discretize in space and time the process, that is, to divide investi­
gation time K and the tube length (i.e. the section investigated) into L parts 
and re"write the differential equation into difference equation with forming a 
grid of time and space increments of LIt and Lty, respectively (e.g. on the basis 
of centered difference method). 
Thus 

O<k<K 
O<I::;;:L 

so that the following matrix equation is obtained: 

where 
ft(k + I) = Aft(k) + Bu(k) 

ft(kf = [[to,k' 

u(kf = [UO,k' 

(}1,k ••• {} L,,,] 

Ul,k ••• UL,k] 

(46) 

(47) 

(48) 

A and Bare bidiagonal and diagonal matrices containing coefficients a and b, 
respectively. The functional to be minimized is: 

I I(-l 

I=? Lty LIt ~ [ftT (k) Q ft(k) + uT (k) R U.,(k)] 
- k=O 

(49) 

and the Hamilton function: 

I 
H(k) = - Lty Ltt [ftT(k) Qft (k) + uT(k) R u (k)] + )...T(k + I) [Aft (k) + B u (k)]. 

2 
(50) 

Equation system to be solved: 

(51) 

u(k) =_ 1 R-IBT A-T[P(k)-Q]ft(k). 
Lty Ltt 

(52) 

Relationship to be "written for P(k): 
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P(k)=J)"Jt Q +ATP(k+1).[A-l+ 1 
J)" ..:1t 

P(K) = O. 

A-IBR-IBTP(k + 1)r
1 

(53) 

Initial condition as a function of time: 

&(0) = 1 .J.... <:5 • I . Vr/L. I .IJ 
(54) 

Let the weighting matrices Q and R he reasonably: 

Q = R = diag < 1/2 1 ... 1 1/2 > . 
To obtain a numerical solution, the grid of the domain inyestigated 

must he assumed, that is, the yalues of Jy and ..:1t must he determined. Here, 
considerations in relation with the method of finite differences apply (stahility 
and conyergenee conditions). 

Thus, on the hasis of relations given ahoye, the digital computer program 
to solye the distributed optimum prohlem can he formulated with ease. 

4.2 Thermal load of solid dielectrics 

Another example of applications is the prohlem of insulations frequently 
used in high yoltage technique. Fig. 5 shows the homogeneous one-dimensional 
plane yariation of the prohlem. Using this setup, transformer insulations can 
he simulated. 

In this setup, the two electrodes haying an a.c. yoltage of an effective 
U Jt) yalue hetween them are insulated with homogeneous material. As 

x 

Fig. 5 
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known, a loss may occur in the dielectric, partly emerging into the ambient 
and, on the other hand, increasing the temperature of the dielectric. As the 
maximum temperature rise of dielectrics is determined by the so-called thermal 
groups, no higher temperature than that specified as a maximum for the cli­
electrics is permitted to develop in the dielcctric. At the same time, economic 
reasons require that the operating temperature of the insulation be possihly 
closc to the maximum value specified. Thus, in the present case, the maximum 
temperature of the dielectric can be considered as the controlled characteristic, 
the voltage applied to the dielectric being the control signal. Let us investi­
gate now the relationships between these characteristics. 

Let the partial differential equation describing the temperature distribu-
t · b . 1 1 [')1 ')') ')3 ')-] Ion e Sllnu atec _, __ , _ , _;) : 

lJ.b (y, t) 

the specific heat of the dielectric, [kcal/kg CC] 
the density of the dielectric, [kg/m:!] 
the thermal conductivity, [kcal/m sec °C] 

(55) 

where cf 

9f 
i' J 

qo the internal heat source per unit volume and per unit time 
[kcal/m:l sec]. 

Assuming dielectric losses alone [21, 22, 23]: 

where 
Po = ku2(t). 

:;.\ecessary initial and boundary conditions are: 

{j (y, 0) = D () = const. 

aD 
ay 

i' J F _8_D--=---,- = x. F [D (y, t) - {} a] 
8y 

[or Y=Yrand "1-t:;:[t,t/1 

where F the heat transmission surface [m~] 
x the heat transfer coefficient [kcalfm2 sec CO] 
Da the constant ambient temperature [Co]. 

(56) 

(57) 

(58) 

(.59) 

Several methods are offered by the literature to soh'e equations of this 
type, in the present case, howcver, that preferred in the foregoing will he 
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used. Hence, the time co-ordinate is resolved by increments LIt and the space 
by increments Lly. Introducing the symbols 

(60) 

and 

(61) 

where u* = U2, that is, the square of the voltage vector is considered to be the 
control vector, and, introducing the symbols given in [55) the following for­
mula will be obtained: 

it(k 1) = Afr(k) A* it(k) + B u(k) (62) 
where 

A I 
-, 

Co 0 ... 0 
bl Cl ... 0 
a 2 b2 C2 0 (63) 

aL-l bL - l cL-l 
o aL bL 

i = 2, ... L 1, 

Although the expression (62) can be rewritten as the well known expres­
sion (47), there are still difficulties as the matrix B is in exponentional relation 
with the temperature vector according to (64). This means that in solving 
the control problem a non-linear equation system has to be solved at each 
k-th internal of time. As a cost function, again (49) can be chosen. 

Boundary conditions are contained by the corresponding elements of 
the individual coefficient matrices. 

Using the above symbols and solutions, the expression of the algorithm 
to minimize the cost function is completely analogue with the example given 
in 4.1. 

Summary 

In recent years the problem of optimizing control systems has become highly signif­
icant. In the case of systems of distributed parameters the discrete variational calculus and 
discrete maximum principle is used to give a calculation algorithm which can be directly 
programmed. 
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The calculation method described finds a wide application in solving the problem of 
optimum control of different physical processes, that is, with the knowledge of parameters 
determining the system properties the optimum control vector as a function of space and time 
can be calculated. 
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