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Introduction 

The demand of simulating a transmission line by lumped network in a 
given frequency-band may arise in several cases. Partly the terminating im
pedances of the equivalent net-work, partly the geometry preferred for the 
network determine which of the available methods is chosen for solving the 
problem. Equivalent networks in form of symmetrical lattice were treated in 
a previous paper [3] stating that such a network is favourable if the ter
minating impedances are much greater or much smaller than the characteristic 
impedance of the transmission line. In this paper the terminating impedances 
are supposed to be of the order of the characteristic one. Since the lattice net
work has several undesirable properties, the equivalent network is sought 
in form of ladder rather than of lattice network. 

The method of determining the equivalent network 

At first the transmission line is supposed to be lossless, and so the equiv
valent network contains only capacitances and inductances. _-\.n equivalent 
network is sought for, which is valid at low frequencies, more concretely in 
a frequency band [0; (1)0]. If the impedances terminating the transmission line 
are of the order of the characteristic one, the line is suitably described in terms 
of a scattering matrix with normalizing resistances equal to the characteristic 
impedance. This matrix is to be approximated by a scattering matrix realizable 
by a symmetrical network containing only inductances and capacitances. 

If the normalizing resistances equal the characteristic impedance, the 
scattering matrix of a lossless uniform transmission line can be expressed as: 

[ 
0 e-IP(S)] 

[8(8)] = e-iP(S) 0 I 
(1) 
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'I.-here 1 de-notes the length of the transmission line, and p(s) = s V L'C' is the 
propagation coefficient; here L' and Cl denote the self-inductance and capac
itance per unit length, resp. The total self-inductance and the total capacitance 
of the transmission line are denoted by L = lL' and C = lC', resp. With the 

notation T = V LC the scattering matrix can be written as: 

[S(s)]= . e . 
[ 

0 -sr] 
e-sr 0 

(la) 

It is known [1] that a matrix [S(s)] can be a scattering matrix of a 
symmetrical two-port containing only inductances and capacitances if and 
only if it is of the following form: 

[S(s)J = _1_ [h(S) 
d(s) f(s) 

f(S)] , 
h(s) 

(2) 

where d(s), f(s) and h(s) are polynomials with real coefficients, d(s) has no 
zero in the right half plane, the imaginary axis included, one of f(s) and h(s) 
is even, the other is odd and 

f(s)f( -s) + h(s)h( -s) = d(s)d( -s). (3) 

If s is pure imaginary, f(s)f( -s) and h(s)h( -s) give the square of the absolute 
value of the polynomials f(s) and h(s), resp., so the left side of (3) can equal 
zero on the imaginary axis only iff(s) and h(s) have a common pure imaginary 
zero. This case must be excluded, because d(s) may not have a zero on the 
imaginary axis. On the other hand, iff(s) and h(s) have no common zero there, 
they always define through (3) a unique polynomial d(s) with real coefficients 
and having no zero in the right half plane, the imaginary axis included. 

So the problem has the following form: polynomials f(s) and h(s) must 
be found, one of which is even, the other is odd, which have no common zero 
on the imaginary axis, and form with d(s) uniquely defined by (3) such a triad 
of polynomials that the matrix (2) fairly approximates the scattering matrix 
of the transmission line as a function of s along the interval [-jw 0; jw 0] 
of the imaginary axis. 

All-pass equivalent network 

Matrices (la) and (2) having heen compared, the polynomial h(s) can 
be chosen to equal zero. Then the polynomial f(s) may be either even or odd, 
but it cannot have any zero on the imaginary axis and (3) assumes the following 
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form: 

f(s)f( -5) = d(s)d( -s). (4) 

Accordingly the zeros of d(s) are giyen by the left half plane zeros of f(s) and 
its right half plane zeros multiplied by (-1). It results from the comparison 
of matrices (la) and (2) that the fractionf(s)'d(s) must approximate the func
tion exp (-TS). The left half plane zeros of f(s) are also zeros of d(s), and so 
an all-pass transfer function is got after cancelling, the zeros of which are 
images of its poles with respect to the imaginary axis. The absolute value of 
an all-pass function equals unity along the imaginary axis, so there it presents 
an approximation -without error in absolute value. But the approximation 
has to he yalid as to the phase, too. If instead of the phase the time delay is 
considered, the problem changes into one of finding an all-pass network the 
time delay of which closely approximates the constant yalue r in the frequency 
hand [0; coo]. An all-pass network can simply be realized by lattice, but not 
by ladder network. The problem both of the approximation and the realization 
is discussed in particulars in the literature treating the delay lines (e.g. [2], 
[5]), hence, no detailed discussion will be given here. 

Equivalent network in ladder configuration 

I f an equiyalent network in ladder configuration is demanded, the poly
nom ial h(s) cannot be chosen to equal zero. Instead of h(s), now the polynomial 
f(s) is considered. Its zeros are the transmission zeros, so they must be pure 
imaginary if ladder is used for the simulation. On the other hand it is most 
desirable to choose a polynomial f(s) with no pure imaginary zero, because 
the approximation must be close on the imaginary axis and the trasmission 
line has no transmission zero there, as anywhere on the complex plane. Ac
cordingly letf(s) be constant and without any restrictionf(s) = 1. So the trans
mission zeros of the equivalent ladder network are shifted to infinity, i. e. as 
far as possihle from the low frequencies, where the approximation must be 
a close one. This is also advantageous, because the phase of the parameter 
512 of the transmission line increases beyo nd all bounds with increasing 
frequency, hut the phase of the same parameter of the equivalent net-work 
converges to a constant value. If all the transmission zeros of the equivalent 
network are in infinity, the high frequency components cause a relatively 
small distortion in spite of the very poor phase characteristic, because they 
are strongly damped. This is also proved by the inspection of the unit step 
response in the different cases. 
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If f(s) = 1, the polynomial Iz(s) must be odd and so (3) assumes the 
following form: 

1 - 1z2(s) = d(s)d( -s). (5) 

It follows from comparing (2) with (la) that Iz(s) is to be chosen so that d(s) 
fairly approximates the function exp (TS). Since the polynomiallz(s) must be 
approximately zero in the region of the approximation, there the absolute value 
of the polynomial d(s) fairly approximates that one of the function exp (TS) 
according to (5). Special care must be taken to choose h(s) so that d(s) offers 
a close approximation in phase, too. 

The phase of the polynomial d(s) can he expressed by Bode's theorem 
along the imaginary axis as: 

'iOJ j' In !d(jy)J -In Id(jw)1 b(OJ) = arc d(jOJ) = --- dy = 
:T • y2 _ (0 2 

OJ f In [l - h2(jy)~ - 1~> [l - 1z2(jOJ)] dy. 
:T y~ w-

(6) 

The polynomial h(s) must be chosen so that the above expression faidy ap
proximates the linear function rr(OJ) = TW for small values of w. The relation
ship (6) cannot be used directly because of its intricacy, this is why it will be 
only applied to a special case. The polynomial h(s) is supposed to haye an m

fold zero at the origin. This assumption is justified by that the polynomial h(s) 
has to approximate zero in the neighbourhood of the origin. In order to simpli
fy, instead of arc dUOJ) only some of its first deriYatiYes with respect to (0 

will be inspected at the point OJ = O. The deriYatiYes of even order equal zero, 
those of odd order can be expressed after a transformation of (6) as: 

(7) 

where k = 1, 3, ... 2m - 1. If b'(O) is required to equal the ideal yalue T, 

the odd polynomial h(s) must satisfy the following condition: 

f (8) 

o 
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The two above relationships clearly show the difficulties and limits of ap
proximation. In order to approximate the scattering parameters in absolute 
value it is necessary to choose a low absolute value for the polynomial h(s). 
But it cannot be decreased ad libitum, because the integral (8) must yield a 
defined value. On the other hand the integral (7) must be as lo"w as possible 
for k > 1, but it cannot be decreased ad libitum because of (8) if the degree 
of h(s) is fixed. The last difficulty can be avoided if h(s) has only a simple zero 
at the origin, but then the approximation in absolute value will be less close. 
Generally it can be stated that the approximation of either the absolute value 
or of the phase is better, depending on the applied method. It seems compli
cated to approximate on the basis of the phase, since because of symmetry, 
d(s) must satisfy the condition (5) and so it cannot be determined from Bessel 
polynomials, as it is usual in synthetizing delay lines. So here the magnitude 
characteristic will be approximated, the phase characteristic taken in mind. 
To this aim, the following relationship, obtained by evaluating the integral 
in (7), will be used: 

k-l 1 
b(k)(O) = (- If~ (k - I)! :5' -. , 

l si' 
(9) 

where SI denotes the roots of the polynomial d(s) and k = 1, 3, ... 2m - 1. 
Accordingly (8) assumes the following form: 

1 "5'-=-T. 
T SI 

lVIaximally flat approximation 

(10) 

First, h(s) is chosen so that it approximates zero in the neighbourhood 
of the origin 'with maximal flatness, i. e. let 

, h(s) = (cs)m, (11 ) 

where m is an odd number. Here c is determined so that the first derivative 
of arc d(jo)) with respect to (J) equals the ideal value T at the point 0) = O. 
(5) gives the following values for the m roots of the polynomial d(s): 

1 jl2 
sl=--e m 

C 

where I 0, 1, ') 
-~ ... 

Substituting this in (10) yields after transformation that 

. :r 
c = T Sln-- . 

2m 

m-I 

2 
(12) 

(13) 
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It is clear that c decreases and the approximation gradually improves in abso
lute value at low frequencies by increasing m. 

After transformations the folloeing expression is got from (9) and (12) 
for the derivatives of b( (j)) = arc d(j{j)): 

sin"~ 
2m b(k)(O) = (k - I)! 7:" __ _ 

. k;r 
SIn--

2m 

(14 ) 

The validity of the above relation can be proven not only for k = 1, 3, ... 
2m-1 but for all odd values of k. The absolute values of all the differential 
quotiens b(")(O) but b'(O) decrease with increasing m, and converge to zero 
when m converges to infinity, i. e. they approximate ever closer the ideal value. 

The polynomial d(s) can be expressed with the roots in (12) as: 

m-I 

d(s) = II (1 + sTe
j1iii 

sin ;" ) 
m-I ~m 

I=-~ 

m-I 

( 
.;r )LI2 ( l;r .;r > > • ? ;r ) = 1 + S7: SIll -. - 1 + 2S7: cos - SIn -.- + S~ 7:~ SIn~ -.- . 

2m 1=1 m 2m 2m 
(15 ) 

The polynomial is obtained at less of computation if s' is substituted by 
ST sin (;r,2m) in the Butterworth polynomials Bm (s') kno"wn and tabulated 
in the theory of the maximally flat low-pass filters. Likewise using results 
of the theory of filters [5] the coefficients of the polynomial 

d(s) 

can be expressed as: 

" 1 d" = 7:
k II ------;~--;;-;---;-::---c;-

i=1 1 tg [(i - 1) ;rj2m] 
tg (;rJ2m) 

d m 
m S 

k = 1, 2, .. . m. 

(16) 

(17) 

It can easily be proved that all the coefficients d l; but d1 increase monotonously 
with increasing m and 

7:" 
limd,,=- . 

m-co k! 
(18) 
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Thus the limit values of the coefficients die equal the coefficients of the 
lVlcLuurin expansion of the function exp (is), and so a deliberately close ap
proximation can be obtained in a given frequency band. 

The coefficients d" are given in Table 1 for the values m = 1, 3, 5, 7 
and 9. The last row of the table contains the corresponding coefficients of the 
ll1cLuurin expansion of the function exp (is) for the sake of comparison. 

Equiripple approximation 

The maximally flat approximation is known to be little advantageous 
if zero is to be approximated by a polynomial in a given interval. From this 
point of view the use of Chebyshev polynomial gives a better approximation. 
Accordingly h(s) is now chosen so that 

hUw) 

J 
( 

w ) =cT,,, - , 
Wo 

(19) 

where T m is the Chebyshev polynomial of degree m (here m is an odd number). 
For such a choice 

(20) 

i. e. the accuracy requirements of the approximation determine the value of c 

and the approximation is valid in the frequency band [0; wo]. But Wo must 
he chosen so that arc dUw) approximates the function iW in the interval [0; wo]. 

It is known from the theory of the Chebysev filters that if h(s) is chosen 
according to (19) the zcros of the polynomials d(s) are as follows: 

jch Q sin (PIJ (21 ) 

where 
1 1 

'1= -arsh-, 
m c 

k:T m-I er" = -- and k = 0.1,2, ... ---
m 2 

Wo can he chosen so that darcd(jw)!dw equals i at the point (0 = 0 
similarly as in the maximally flat approximation. Then, on the basis of (10) 
and (21), Wo has the value 

m-I 

1 [_1_ -+- 2sho ~ cos epk J. 
I .. .-- ., • <) 

i sh'1 k=1 sh-'1 sm-ep" 
(22) 

At such a choice the approximation of the phase characteristic is very close 
in the neighbourhood of the zero frequency, but it is rather poor in the neigh-



SDICLATIOS OF TRASS-,lISSIOS LISES 77 

bourhood of wo' Therefore it is more reasonable to choose Wo so that arc d(jw) 
equals the ideal value at the end points of the interval [0; wo], i. e. let 
arc d(jwo) = TWo' In this case (00 has the following value: 

1 [arc tg_
1

_ 
T sh!? 

m-I 

_
" ... ~ COS Cf"] I 'arc tg--- , 

,:::i sh!? 
(23) 

If not only the end points but the whole inten-al [0; coo] is to be considered 
Wo can be choosen so that the quantity 

H(x) = r [arc d(jco) - xwFdw 
6 

(24) 

very characteristic of the error of the approximation as a function of x has 
a minimum at x = T. A some,,-hat lengthy calculation gn-es the following 

value for (00: 

3 f 0 1 sh cooe = - ch'-!? arc tg -- - --'-- + 
2T 1 sh Q -;r SIn 

2m 

m-I 

cos (h sin cr" J] ch 20 cos 2q;',,) arc tg----'-- +sh2osin2rr:"arth---' ,(25) 
~ , ~ sh!? ' ~ 'r , ch Q 

The last choice of COo seems to be the more justified among the three different 

ones shown so far. For reasonable, i.e. not too high values of 8, COob < CO Oe < 
< CO oa . If 8 is low, CO oa and COob differ hardly. With increasing 8 the difference 
increases, too, which reflects that arc d(jco) approximates worse and worse 
a linear function in the interval [0; co 0]' 

If 8 is so low that exp Q ;> 1, then all the three formulae [(22), (23) 
and (25)] give practically the following value for coo: 

COo R,; 2 (_8_) A __ 1 __ 
T, 2 .:-r 

Sln--

(26) 

2m 

Substituting this in (21) and using exp Q;> 1, the same values are yielded for 
the zeros of the polynomial d(s) as at the maxim ally flat approximation, 
i. e. -when c converges to zero, the equiripple approximation turns into the 
maxim ally flat one. 
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Comparison of the maximally flat and 
the equiripple approximation 

The accuracy requirements concerning the simulation of transmission 
lines by lumped networks can be formulated by giving the frequency band 
in which the difference between the original and the equivalent network 
must remain under a given bound. This difference can only be characterized 
by more than one data, but here a single one, probably the most characteristic, 
the ...-alue of Ih(j(!) i -will be considered. It must be lower than a given value 
e in a frequency band [0; 00]' 

It follo·ws from (ll) and (13) that for the maximally flat approximation 
the condition :h(jw) < e is satisfied in the frequency band [0; wo], where 

• ;z: 
(27) 

7: Sln--

'2m 

For the equiripple approximation this quantity Wo equals that one represented 
in (19), given by one of the formulae (22), (23) and (25). If e and 00 are given, 
m must be chosen so that Wo > 00' 

As m cannot be simply expressed in terms of e and 00 either for the 
maximally flat or the equiripple approximation, the two different values 
of Wo will be compared supposing that e and m are given. For sake of simplicity 
it is also supposed, that e is low, and so the values of Wo for the equiripple 
approximation and for the maximally flat one (denoted by wOe and W OI11 ' resp.) 
are given by (26) and (27), resp. Then 

1- 1 
=2 m (28) 

i. e. if e is low and m is high, the equiripple approximation is acceptable in 
a frequency band twice as wide. 

Obviously, if the transmission line must be simulated in given frequency 
band at a given accuracy, it is more advantageous to choose the equiripple 
approximation. The Chebyshev polynomials increase very fast outside the inter
...-al [-1; 1] and so the error of the equiripple approximation begins to increase 
much more rapidly above the frequency Wo than that one of the maximally 
flat approximation. It may also be a disadvantage of the equiripple ap
proximation that the value of the error oscillates in the frequency band [0; 
(1)0]' whereas the error of the maximally flat approximation increases mono
tonously with increasing frequency. Consequently, if the transmission line is to be 
simulated at low frequencies in principle, but the upper limit of the frequency 
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band of the approximation is not unambiguously defined and at higher 
frequencies a greater error is allowable, then the maximally flat approximation 
is more advantageous to be used. 

The realization of the equivalent network 

Let us examine now how to realize the scattering matrix already chosen. 
This problem can be solved in the same manner as for the synthesis of filters. 

The driving-point impedance of the two-port terminated in a resistance 
Zo can be used as starting-point. It is expressed as: 

Z = ZoJ S11 = Zo d(s) -+- h(s) 
In 

1 - Sl1 d(s) - h(s) 
(29) 

This impedance must be realized. It follows from (5) that two polynomials 
h(s), differing only by sign belong to a polynomial d(s). In one case Zin has 
a pole at infinity, in the other a zero. As all the transmission zeros are at 
infinity, the two equivalent networks in Fig. 1 are got in the two respective 
cases. The two networks are dual to each other with respect to the value ZOo 
It is probably simpler to express the open-circuit dri"dng-point impedance 
and to realize it: 

(30) 

where d1(s) and d2(s) denote the even and odd part of the polynomial d(s), resp. 
The realization can be done by expanding in continued fraction, but 

this is in general superfluous, because of the availability of tables and explicit 
formulae of the synthesis of filters. Tables are suitable where the internal 
resistance of the generator and the load resistance are equal, because the 
scattering matrix has been normalized to the same value (the characteristic 
impedance) at both sides of the two-port. 

As the tabulated values are normalized to unit load and unit cutoff 
frequency, they are to be multiplied by Zoi(J)l for the inductances and by 
Ij(Zo (J)1) for the capacitances. At maxim ally flat approximation (J)1 is the re
ciprocal value of c occurring in relationship (ll), i.e. 

1 
(° 1 = ----

T sin ;r 

2m 

(31) 

In equiripple approximation (J)1 is the frequency (J)o from (19), i. e. its value 

is given by one of the formulae (22), (23) and (25). 
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Fig. 1 

In the theories of Butterworth and Chebyshev filters, formulae are known 
which give directly the values of the network elements occurring in the filter. 
In case of maximally flat approximation these formulae give the following 
results for both networks in Fig. 1: 

L '1L' :r . (2k - :r " =:.. SIn -- sIn -----'--
2m 2m 

(32) 

C 
'1C' :r. (2k-l):r 

le = - SIn -- SIll -'----'--
2m 2m 

,\-here Land C denote the total inductance and capacitance of the transmis
sion line, resp. It can be proved that the sum of the inductances equals L, and 
the sum of the capacitances equals C (excepted for m = 1). 

In the case of equiripple approximation the values of the network ele
ment can be computed with a recursion formula if a quantity Kr is introduced, 
which can denote both products Lr Cr~l and CLr-':-l' It is defined as: 

. (2r 1):r. 
4 SIll SIn -'-----'-

2m 2m 

., (' . 2r:r) ('Jo P~ + Slll---;;: 
(33) 

where ( 1 1 ) 
P = sh l-;; arsh -;- . 

The values of the first elements in the two networks in Fig. 1 are: 

2Z0 . :r 
Ll = -- sin --

cOoP 2m 
and 

. :r 
Cl = ---- sIn -- . 

UJoZop 2m 
(34) 
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Though it is more convenient to compute with the aid of the recursion formula, 
the values of the elements can be expressed directly; e. g. in the network in 

Fig. la: 

(2i - 1):< k-I , -- P~ 

L 2Zo . (2k -1):< U2 
m 

!- = -- SIn ----------
'WoP 2m ;=1 .. , 2in 

p2 sm----
m 

p2 + sin2 
m 

:< p2 + sin2 -'-__ --'-_ 
m 

(35) 

Finallv notice that rather than m, only (m + 1)/2 values haye to be 
computed for symmetry reasons. 

Simulation of lossy transmission lines 

It results from the foregoing that the self-inductances of coils and the 
capacitances of condensers in an equivalent network of a transmission line 

can be expressed as L" = Il" Land C" = v" C, resp., where Ilk and v" are in
dependent of Land C. So the equiyalent network of a lossy transmission line 
can be deduced from that of a lossless transmission line the following way: 
a resistance Il"R must be connected in series with eyery coil of self-inductance 
u"L and a resistance 1 (v" G) must he connected in parallel with every con
denser of capacitance t·" C, where Rand G denote the total resistance and 
leakage conductance of the tram mission line, resp. ::\ amely the equations 
describing a lossy transmission line in the domain of Laplace transforms are 
obtained hy' substituting sL + R for sL and sC G for sC in the equations 
of a lossless transmission line. The new equiyalent network is acceptable at 
fre quencies 'where jw + (R L) and jeo (G. C) fall in the domain of the s-plane 
·where the approximation of the original, 10ssless transmission line is valid, 

In case of maximally flat approximation the absolute yalue of the poly. 
nomial h(s) is constant in the s-plane along circles concentrical ahout the 
origin. The approximation may he accepted valid inside of a circle of a radius 
given hy Wo preyiously defined. So the simulati0n of the lossy transmission 
line is acceptable in the frequency band [0; w~], where 

t
r R') 

, / <) -

(1)0 = . Wo - nlax ; 
£2 

6 Periodic. Polytechnic. El. XYII,l. 

(
R' 

---.-- - max --; 
V 

LCsin2.3..-
2111 

(36) 
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Here 8 is the quantity characteristic of the accuracy of the approximation, 
as seen previously. If a negative number stands under the square root in the 
relationship (36), the approximation has not the prescribed accuracy with 
the chosen m evcn for zero frequency. Then the value of m must be increased. 

In case of equiripple approximation the absolute value of the polynomial 
h(s) increases much more rapidly along the real axis than the imaginary 
one, especially for great m, and so the absolute value of the error is constant 
along rather flat ovals adhering closely to the imaginary axis. This is a dis
advantage of the equiripple approximation, inhibiting it to be used for sim
ulating transmission lines other than of very low loss. 

Fig. 2 

1 
Gm 

Here the results concerning equivalent networks of lossy transmission 
lines are summarized in case of maximally flat approximation. A uniform 
transmission line can be simulated at low frequencies by a lumped network 
according to either Fig. 2a or Fig. 2b. The values of the elements in both 
networks are given by the following formulae: 

(37) 

where L, C, Rand G are the total self-inductance, capacitance, resistance 
and leakage conductance of the transmission line, resp., and 

'). ;;r; • 
q" = :. Sln-- sln--'-----'--

2m 2m 
(38) 

The error of the approximation can be decreased ad libitum by increasing m, 
i. e. thc frequency band where the approximation is acceptable can be in
creased ad libitum hy increasing m. 
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Finally an illustrative interpretation of these results is given. The trans
mission line of length I is divided into m-I parts; the successive lengths 
of these parts are: 

A[ . Jl: • kn 
.LJ k = tg -- sln -- , 

2m m 
k=I,2, ... m-1. 

It is easy to prove that 
m-l 

","' L11k = 1. 
:=1 

(39) 

(40) 

The distributed self-inductance, capacitance, resistance and leakage conduct
ance of such a part of length L11k are substituted by lumped elements. The 
whole taken as a two-port can be substituted by a lumped network in two 

!J';;C'T 

Fig. 3 

different ·ways shown in Fig. 3. The parts of the transmission line are substituted 
one by one alternately by these two networks and where it is possible, the 
elements in series and parallel are contracted. Depending on whether the 
first part is substituted by the network in Fig. 3a or 3b the net,vork in Fig. 
2a or 2b is got. It is worth mentioning that the partition is much more finer 
near the two ends of the transmission line than in the middle. 

Summary 

Lumped equivalcnt networks of lossless and lossy transmission lines have been treated. 
In case of lossless transmission line first its scattering matrix is to be approximated by a matrix 
which is realizable by a reactive lumped network. Two different methods have been dealt with, 
namely the maximalIy flat and the equiripple approximation. The approximating scattering 
matrix was realized by a ladder network. The equivalent network of a lossy transmission line 
can be determined from that of a lossless transmission line. 

6* 
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