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The aim of this paper is to give a brief survey of previous and recent 
trends of control theory and practice. The principles of control are widely 
used not only in the various fields of engineering practice but also in the 
sphere of certain other sciences such as economics, physiology, biology, social 
sciences and so on. Under such circumstances the character of the theory of 
control is becoming more and .more interdisciplinary. Therefore, it could per­
haps be of some interest to analyse the past and future trends in control 
science and technology. 

Historical Development of Control Engineering 

In the history of automation, by and large, three epochs can be distin­
guished. The first era begins in lhe antiquity by the activity of the Alexandrian 
KTESIBIOS (Fig. 1) and HERO:N (Fig. 2), the Byzantian PHILON (Fig. 3). The 
connecting link, as in other fields of sciences, was created by Arab scientists; 
and craftsmen such as BE:NU MUSA (Fig. 4), RIDwAN, AL GAZHARI. In the 
early times of the first ind.ustrial revolution some new developments can be 
mentioned e. g. the level contr oIlers of POLSU]';OV (Fig. 5) £nd \VOOD, the 
temperature controller of COl'iTI and REAUMUR, the steam-pressure controllers 
of .MEAD and WATT (Fig. 6) or the po,,·er-loom of JACQUARD with punch-cards. 
This first period of automation, which extends over about two thousand 
years, might be characterized by the heuristic approach, i.e. that the control 
systems ·were relatively simple in structure and could be realized without 
deeper insight of the theory. 

The second era of control engineering hegins with the thirties of the 
twentieth century and lasts on in our days. This epoch is closely related with 
the development and progress of linear control theory as well as the applica­
tion of BOOLE algebra in open-loop control. A lot of control systems have been 
realized; many servomcehanisms and process control systems have heen pro­
jected and taken into application. Numerous open-loop control systems have 
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Fig. 1. KTESIBIOS' water clock 

Fig. 2. Level controller of HERON 
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Fig. 3. Oil lamp of PmLON 

Fig. 4. Level controllers of BENU ~luSA 
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Fig. 5. Level controller of POLSUNOV 

Fig. 6. WATT'S steam engine with fly-wheell regulator 
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been put into practice, e. g. the automatic telephone centrals, the short­
circuit protection equipment of electric power systems and others. In this 
period the closed-loop and the open"loop controls develop seperately, and 
relatively few are of common application. In closed-loop control, complicated 
problems are attempted to be reduced, by allowable simplifications and neglects, 
to single-loop, time-invariant, linear problems. At the same time decoupled 
control loops are sought for. Initially the control systems are designed for 
deterministic signals and it is only during W orId War II that the investigation 
of stochastic systems is begun with. In this epoch the transformation methods 
are widely used: the LAPLACE, the two-sided L.ULACE, the FOURIER, the z 
and modified z transforms are applied. The simple control systems are analyzed 
and synthetized in the frequency domain, mainly by the aid of NYQUIST diagrams 
(Fig. 7), BODE plots (Fig. 8a and 8b) and NICHOLS curves (Fig. 9). 

Instead of these trial and error methods some analytical methods, based 
on integral criteria, are being introduced. The WIENER-KoLlVlOGOROV theory 
and the statistical design of optimal filters, predictors and controllers are 
essentially also based on integral criteria. By the end of this second period 
of control engineering, analog and digital computers come into prominence. 
They are mainly used as design aids because their application facilitates to 
simulate linear and nonlinear, single-loop and multiloop. single-variable and 

Fig. 7. NYQUIST plot of the second-order system 
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multivariable systems. The principles of analog computers are general enough, 
whereas for each family of digital computers special simulation languages 
have to be developed such as MIMIC, MIDAS, DYSAC, MADBLOC, DSL, 
CSMP, CSSL. In some cases hybrid simulation gives the fastest results. 

Finally, the third era of automation has begun about two decades ago. 
It is impossible to draw a sharp line but, broadly speaking, this third epoch 
can be characterized by the wide-spread application of digital computers 
not only in the projects of control systems but also in the operation of compli­
cated processes. The application spectrum extends from the simple off-line 
open-loop control systems to the complicated on-line closed-loop control systems. 
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Fig. Ba. BODE magnitude plot of the second-order system 
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Fig. Bb. Phase plot of the second-order system G(s) 

2~~~-r~~,r~. ~~~~~~~~~~~ 
-~ ~'---¥-+7 ~ 
-4 
-6 
-8 

-10 

-12 

-14 

-16 

-16 

-20 
-22 
-24 

-26 

-28 

-30 

-32 

-34 
-36L-~~~~~--~~~--~~~~-~ __ ~~~ 

-210° -150° -120° - 90° 

--tp 
Fig. 9. l\ICHOLS plot of the second-order system 
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At the same time the development of control theory is so vigorous that a 
gap between practice and theory is often spoken of. Despite all efforts, this 
gap seems to have widened in the last few years. The theory of control moved 
enough far from the adjustment rules of PID (proportional integral and deriva­
tive or rate) controllers, although in practice the latter are still prevailing. 

Recent Trends in Control Theory 

In the theory of control systems many recent trends can be observed. 
N onlinear methods have come more and more into prominence. Some nonlinear 
techniques, such as the tangentiallinearization, statisticallinearization, harmonic 
balance and describing function techniques have just begun in the second 
period but some other methods such as the numerical methods in the solution 
of nonlinear differential equations, the application of the LYAPUNOV methods 
in investigating the stability of nonlinear systems characterize the third period. 
All these methods, except the PoPov stability~test method, are time-domain 
methods. One of them, the phase~plane or state-plane method is very suitable 
for the analysis of nonlinear second-order systems. Although the efforts to 
generalize the geometry of the phase~plane or state-plane method into phase­
space or state~space method, resp., failed, the analytic form of the state­
plane method itself served as a basis for the contemporary development of 
the common state~space methods. 

As it is well know-n, under fairly general conditions almost all concen­
trated-parameter dynamic systems can be described by the state-space vector 
differential equation and the algebraic auxiliary equation as follows: 

x = f(x, u, t) (1) 

y = g(x, u, t) (2) 

Here u is the input vector or control vector, y the output vector whereas x 
is the state vector of the system, f and g are specified nonlinear vector functions 
with vector arguments. This formulation is widely used in the modern control 
theory, and serves as basis for the theory of optimum systems, as well as for 
the LYAPUNOV theory, not speaking of the adaptive or learning systems, 
differential games and others. For linear, time~variable concentrated-parameter 
systems, Eqs (1) and (2) are replaced by state-space equations 

x = A(t)x B(t)u (3) 

y = C(t)x + D(t)u (4) 



TRESDS IS COSTROL ESGI,YEEREiG 107 

where A(t), B(t), C(t), D(t) are appropriate time-invariant systems, the latter 
matrices become constant and the state"space equations get the form 

x = Ax + Bu (5) 

y = Cx + Du (6) 

In this case it is easy to show the link between the time-domain and the 
frequency"domain techniques. Applying the LAPLACE transformation the 
input"output relationship can be obtained as 

y(s) = {C(sI - A]-IB + D}u(s) (7) 

where y(s) and u(s) denote the LAPLACE transform of y = y(t) and u = u(t), 
respectively. By the way 

G(s) = C(sI - A]-l B + D (8) 

is the transfer matrix of the multivariable system. 
Further we are going to show some applications of the state-space 

method restricting ourselves in the first line on optimal systems. 

Static Optimizations 

In the static case the systems are characterized by algebraic equations. 
Well known problems arise from the operational research, such as transpor­
tation problems, allocation of resources, load distribution of electric power 
systems etc. 

In the static time-invariant case Eq. (1) reduces to the algebraic equa-
tion 

f(x, u) = 0 (9) 

If the state to be kept at the constant steady-state value x = X
O then, from 

Eq. (9), the steady-state control vector UO can be determined. With both 
x = X

O and u = U
O constant, the goal or objective function of the problem 

(10) 

becomes also a constant. Both f and fo are assumed as continuous functions. 
One of the most simple cases of static optimization is that where both Eqs. (9) 
and (10) are linear. This is the so-called linear programming problem. It can 
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be stated as follows: Find non-negative values for the coordinates Xi of vector 
x minimizing (or maximizing) the linear objective function 

(11) 

subject to the linear inequality constraints 

Ax b (12) 

where the latter inequality must be fulfilled for each coordinate of vector 
band Ax. (The superscript T in (11) denotes a transposition.) As it is well 
known, the optimal solution must lie on at least one of the corner points of 
the polyhedron surface formed by Eq. (12) and x >0. Linear programming 
implies therefore a straightforward search by exchanging the extremum points, 
i.e. moving from one feasible solution to another. For high"dimensional prob­
lems this procedure becomes uneconomic even when using the high-speed 
bulk storage of modern digital computers. A more economic procedure is the 
well-known simplex method. Recently also decomposing techniques were 
developed. In this way the large problem is reduced to many small problems 
which could independently optimized. After the optimization of the sub­
systems, the total system could be optimized. 

In most practical cases the goal function (11) and/or the constraint (12) 
depends also on stochastic disturbances (parameters). Numerous methods 
have been developed in order to find the optimum expectation and optimum 
variance of the goal function. 

An interesting extension of the above formulation leads to nonlinear 
programming. This problem is given here only for the unforced autonomous 
case. A nonlinearobjective function 

(13) 

subject to the nonlinear inequality constraints 

f(x) < 0 (14) 

and non-negativity condition x >0, both applying for each coordinate, has 
to be minimized or maximized. 

The rigorous analysis of this general optimization problem is rather 
questionable, therefore optimum seeking methods are often applied. If, how­
ever, fo(x) and fi(X) , that is, the coordinates of f(x), are convex functions, then 
the so-called convex programming methods can be introduced. 
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Let us define the Lagrangian function 

(15) 

where A is the Lagrangian multiplier vector. The necessary and sufficient 
condition, that X

O be a solution of the convex programming problem, is that 
there exists· a vector A ° such that 

(16) 
and 

(17) 

for all x > 0, A ':2 O. Eq. (17) expresses the so-called saddle"point condition. 
The arguments concerning the linear programming of large-scale systems 

concern even more the convex programming problems. Here decomposition 
and multilevel optimization techniques are also useful. 

In practice the optimum search techniques have some importance. 
They all involve some comparison. The objective function fo(x) is evaluated 
for different allowed vectors x and the values offo(x) so obtained are compared 
in order to find the optimum value. The effectivity of the various searching 
techniques is strongly influenced by the global and local properties of the 
objective and constraint functions. Sometimes penality functions are employed 
to transform the constraint problem into a sequence of unconstrained optimi~ 
zations. 

In the case of stochastic disturbances it is necessary to make experiments 
with the system in real time. In such circumstances hill~climbing techniques, 
adaptive control techniques and, generally speaking, computer process control 
methods have to be employed. 

Dynamic Optimization 

As most automatic control systems are inherently of transient character, 
the problem of dynamic optimization seems to be very important for the control 
engineer. In this case state equation (1) describes the dynamic behaviour 
of the system and, instead of a goal or objective function, a performance 
functional is to be minimized or maximized. This functional is of the general 
form 

If 

J = S fo(x, u, t) dt + foo(x(tj ), tf ) (18) 
t, 

where to and tj are the initial and terminal time, respectively, fo is the goal 
or objective function whereas foo is an auxiliary function. In many cases, foo 
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can be neglected without loss of generality. In final value problems, however, 
foo occurs, whereas the first term in Eq. (18) is neglected. Let us consider 
some special cases of Eq. (18) assuming foo = O. If fo = 1 then we 
have a time-optimal control problem, if fo = uT sgn u, where sgn u = 

= [sgn Ul' ••• , sgn U r f then the fuel-optimal problem arises, if fo = uT u or 
more generally fo = u TRu, then the energy-optimal control problem is stated. 

One of the most frequently applied performance indices is 

If 

J = ~xT(tf) Sx(tf) + ~ j' (xTQx +U TRu) dt 
2 2 

(19) 

I, 

a quadratic performance index of the form of Eq. (18). In practical systems one 
of the most serious problems arises from the formulation of the appropriate 
performance index. For this purpose no general rules can be indicated. 

Frequently some (or all) of the initial and/or terminal states are not 
fixed a priori but can move along a specified starting or target set. In such 
cases so-called transyersality (orthogonality) conditions supply the necessary 
boundary conditions. 

In order to makc the mathematical model of the optimization problem 
more appropriate, that is, to approach the model to physical reality, some 
constraints must also be taken into account. One of the most frcquent con­
straints refers to the control vector u in the general form u E U. that is, u is 
constrained in some subspace U of the Euclidean r-dimensional space. Most 
often this general constraint is reduced to llj! 1, (j = 1,2, ... , r), where llj 
are the coordinates of vector u. 

Let us proceed no'w towards the solution of the dynamic optimization 
prohlems. 

The Calculus of Variations 

If the prohlcm is unconstrained then the classical calculus of yariations 
can he applied to the solution procedure. In this case a so-called isoperimetric 
prohlcm ariscs and the functional to he minimized IS 

if 

J = J F(x, X, u, A, t) dt (20) 
I, 

whcrc the generalized objectiye function F is given in the form 

• T· 
F(X,X,U,A,t) ~ fo(x,u,t) + A [f(x,u,t) - x] = fo(x,u,t) [f(x,u,t) - x]TA (21) 

with A a Lagrangian multiplier vector. The necessary conditions of extremum 
are expressed by the 'well-known EULER-LAGRANGE equations given here in 
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vector form: 

8F _ ~ 8F _ 8io ...L 8fT "I ...L':; _ 0 
- I J\ I ,/\-

8x dt 8i 8x 8x 
( 22) 

8F d 8F 8io 8fT A = 0 -----= 
8u dt 8ll 8u 8u 

(23) 

8F d 8F 
= f(x, u, t) - x = 0 ----

8A dt 
(24) 

Here dfTjdx and dfT/du denote J acobian matrices. The extremal trajectory 
x(t), the extremal control Yector u(t) and the extremal multiplicator vector 
A(t) must fulfil Eqs. (22), (23), (24). The latter .is the original state-space 
differential equation, whereas (22) can be regarded as an adjoint differential 
equation, that is, a costate equation. Introducing the Hamiltonian state 
function 

H(x, u, A, t) e io(x, u, t) + A Tf(x, u,t) = io(x, u, t) + fT(x, u, t)A (25) 

Eq. (23) can also be expressed as 

8H 

8u 
o (26) 

the common necessary condition of the extremum of function H. It must be 
emphasized that eyen Eq. (26) will lose its yalidity in case of a constraint on 
Yector u. 

The lUaximum and l\'linimum Principles 

The maximum and minimum principles can be regarded as an extension 
of the classical calculus of yariations. Since by introducing a ne"w coordinate 

Xn + 1 = t with differential equation ,-i;" + 1 1 and zero initial condition all 
time-yariable problems can bc reduced to time-inyariant ones, only the latter 
will be discussed here. 

Let the state-space differential equation of the system be 

x = f(x, u) (27) 

subject to the initial condition x(to) = Xo and terminal condition x(tf) E C, 
where C is a specified target set. The functional 

tl 

J = J io(x(t), u(t)) dt (28) 
t, 
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has to be minimized. Let us find the control vector u E U, which transfers 
the state of the system from x(to) = Xo to x(tJ) E C and minimizes the cost 
functional (28). 

Let us now introduce the Hamiltonians 

(29) 
and 

(30) 

Comparing (29) and. (30) with (25) we can recognize that on the one hand 

p(t) = - ~(t) = A(t) (31) 
and on the other 

(32) 

Let XO(t) denote the solution of differential equation (27) for the optimal 
control UO(t). Then, corresponding to UO(t) and XO(t) a costate vector ~o or pO 
exists such that with H~ = HI'(xO,uO,~O) and H~ = Hp(xO,uO,pO) the canonical 
equations 

'0 8H~ 
x =-- or 

8~0 

or 

hold, subject to the boundary conditions: 

'0 8H~ x =---
8po 

'0 8H~ 
P =---

8x o 

(33) 

(34) 

or, according to the transversality condition, ~O(tJ) or pO(tJ) must be nor­
mal to Cat XO(tj). Then the necessary condition of optimality can be expressed 
as 

(35) 
or 

(36) 

or every t in the interval to t ::s:.: tJ and for all u E u. 
Eq. (35) states the maximum whereas Eq. (36) the minimum principle. 

Both are equivalent and the choice depends on preference. PONTRY AGIN 

originally formulated his theory as maximum principle, the minimum principle 
has, however, a closer relation to other theorems, therefore we .~in refer to 
the latter in the following development. 
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In applying the minimum principle to the determination of the optimal 
control u O(t), the following steps are to be taken. We start from relationship (36) 
in order to deduce a relationship 

(37) 

If XO(t) and pO(t) uniquely specify UO(t) in the whole interval [to, tf] then we 
have a so,called normal problem, otherwise we have a singular problem. 
Restricting ourselves to the former case and substituting Eq. (37) into (33) 
and (34), the latter will depend only on XO(t) and pO(t). Then two vector equa" 
tions are at our disposal for the solution of the state vector XO(t) and the costate 
vector pO(t). The solution leads, however, generally to a two-point boundary­
value problem. The initial and terminal conditions XO(to) and xo(tf) or the trans­
versality conditions, supplying the coordinates of pO(tJ), give 2n boundary 
conditions for the solution of the 2n scalar equations (33) and (34). However, 
n of them refer to the initial states and n of them to the final states or costates. 
In any case, after finding the optimal state vector XO(t) and costate vector 
pO(t) also the optimal control vector UO(t) is delivered by Eq. (37). From the 
outlined procedure it becomes obvious that no analytical solution can be 
expected but for the most simple cases. This is one of the main reasons why 
numerical solutions are of so a great significance. 

The Discrete l\finimum Principle 

The discrete maximum or minimum principle has some advantages over 
the continuous ones, at least from computation aspects, as they are in a form 
directly suitable for digital computation. We may discretize the optimum 
problem from the beginning and replace the differential equations by difference 
equations. It must be mentioned, however, that the intuitive insight into 
the character and structure of the optimum problem gets somewhat lost by 
the discretization. 

Let us describe the dynamic system by the vector difference equation 

(38) 

(k = 0,1,2, ... , K-l) 

where xk is the value of the state vector at the k,th sampling instant, u k the 
value of the control vector at the same moment, and fk a vector function 
of vector arguments Xk and u k • Given the control constraint 

u k E U for all k = 0,1,2, ... , K-l (39) 

2 Periodica Polytechnica EL. 17/2. 
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and the cost functional in the form 

1\-1 

J = ;;;E fo"(X,, , U,J (40) 
k=O 

where fOI,(x", uiJ is a scalar objcctiye fUllction of the vector arguments Xii and 
Uk' let us suppose that the boundary conditions are 

(41 ) 

where C is some specified target set in the n-dimensional Euclidean state space. 
Our aim is to find the optimal control sequence u~, u l o, ... , U!;-l satisfying 

the constraint (39) such that for the generated state sequence x~, xt, ... ,xfc -1' 

subject to the boundary conditions (41), the cost functional (40) is at its 
minimum. Let us define the Hamiltonian 

(42) 

f 
or k = 0,1,2, ... , K-l. 

Corresponding to the optimal state sequence x~ and control sequence 
Ui~' (k = 0,1,2, ... , K-l) a costate ycctor sequence pr., (k = 0,1,2, ... ,K) 
exists such that with Ri; = RI,(X%,1l~'PH1) the canonical diffEIEllce equations 

aRk 
aXk 

(43) 

(44) 

hold, subject to the boundary conditions xg = cc; x~< E C, p~( normal to C at 
x'K. Then the necessary condition of optimality can he expressed as 

(45) 

for all u" E U and all k = 0, 1, 2, ... , K -1. The comparison between the 
continuous and the discrete minimum principles shows a close analogy. 

Dynamic Programming 

According to the principle of optimality, the final part of an optimal 
trajectory in itself is also an optimal trajectory. Based on this principle 
BELL)CIAN developed the dynamic programming method. The discrete form 
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of this method is essentially a multistage deeision process, where XI: denotes 
the state vector and U k denotes the control vcctor or in other words the deci­
sion or policy vector. The optimal policy minimizes the cost functio:::::l 

1\-1 

~2:' fo(xo, u o)' 
k=O 

Denoting by S1\-" the optimal value of the partial sum I K- If' that is, 

where 

SI\-k = min I K - k 
UE._I.- EU 

(45) 

(46) 

(47) 

and applying the principle of optimality, the following recurrent relationship 
can be obtained: 

As a r~sult of the minimization procedure from (48) the optimal value uCk _ k of 
uJ(-k can be computed. By iterating (48) and the minimization procedurc the 

whole control sequence U7<-I' uk-~, ... ,HI' Ho is obtained as a final resuh. 
In the continuous, time-variable case the performance functional to be 

minimized can be expressed as 

/, 

J = S fo(x(t), u(t), t) dt. (49) 
/., 

Let us denote by S(XO(t), t) the minimum value of the partial functional owing 
o the trajectory segment starting from XO(t), that is 

(50) 

Then, the fundamental equation of dynamic programming, the so-called 
HA1\uLTOl'i-]ACOBI-BELL}lAl'i equation can be derived as 

- ----- - mIn x t, ut, t as(XO (t), t) _ . {as(x
C 

(t), t) f( _O() () ) 
at uE U axcT 

After the minimization procedure the partial differential equation of HA}IIL­
TON-]ACOBI can be obtained: 

2* 

as(XO(t), t) 

at 
as(XO (t), t) f( _O() o() ) x t,H t.t axoT . 

(52) 
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In the time"invariant case the left "hand side term of (51) becomes zero and 
after introducing 

o [8S 
P = 8x~' 

8S , ... , 8S]T =_~o 
8x~ 8x~ 

(53) 

we obtain from (51): 

(54) 

which is just the PONTRYAGIN minimum principle (see Eqs (30) and (36». 
As an additive result, in time"invariant, free-terminal-time problems the 
minimum value of the Hamiltonian is seen to become zero. In a quite similar 
way the maximum principle may also be stated. Furthermore, from Eq. (52) 
the EULER-LAGRA.NGE equation (22) of calculus of variations can also be 
derived. Thus, dynamic programming seems to be the most general optimiza­
tion method. 

Computational Difficulties 

The calculus of variations, the maximum or minimum principle reduces 
the optimal control problem to a two-point boundary"value problem involving 
vector differential or difference equations. To the solution of the latter, in 
general, numerical methods must be applied. The amount of numerical com­
putations require the use of relatively large-scale digital computers. That is 
why variational methods have found so little application in applied science, 
for example, in control engineering. But even in case of an appropriate com­
puter it is a difficult problem to choose the right fast-converging algorithm 
for a certain type of optimization. The difficulties associated with two-point 
boundary"value problems appear at the first sight avoided by the discrete 
dynamic programming. This method, however, necessitates bulk storage capaci­
ties in the memory of computers. 

The above"mentioned problems restrict the application field of optimiza­
tion methods. In space research they are perhaps inevitable but in process 
control they are seldom used to now. 

Compnters in Process Control 

A recent trend in control engineering is the application of relatively 
IiImail"size computers for process control purposes. Without speaking of supervi­
sion, recording and reporting duties we mention here only one aspect: the 
direct digital control (DDC). This method facilitates to apply a digital computer 
to perform the control calculations and, with suitable ;:'onnections to the 
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process equipment, eliminates much of the usual analog devices. Therefore, 
DDC seems to have great potentialities. 

As it is well known, a common PID (proportional-integral, derivative or 
rate) controller operates after the following rule: 

t de 
u=Ko+Kpe +KpKJ Sedt+KpKo-· 

o dt 
(55) 

The corresponding DDC algorithm can be expressed for the simplest case as 

Direct digital control offers an opportunity to apply new theoretical solutions 
in control problems. It must be emphasized, however, that the application 
of DDC depends mostly on the reliability of computer equipment and a high 
MTBF (mean time before failure) of about ten thousand hours or more must 
be guaranteed. 

Some Concluding Remarks 

The advent of the state-space methods and the wide-spread application 
of digital computers is in close relation to each other at least in the field of 
control engineering. On the one hand, the digital computations required the 
introduction and application of the state-space methods and, on the other 
hand, the problems formulated in this form, even for moderately complicated 
problems, can only be solved by the use of a digital computer. 

The modern trends of control engineering, therefore, can indeed be 
characterized by the abundant application of digital computers and the 
state-space method. 

In the limited scope of this paper it was impossible to treat all the topics 
of modern control theory and practice. For example, the optimizing, adaptive 
and learning systems become more and more important. The same can be 
stated in connection with the theory of large-scale systems, where the problems 
of hierarchy, decomposition, and reorganization arise. All the problems mentioned 
can only be solved by appropriate algorithm and structures. 

These problem formulations are concerned not only with technological 
processes but also with economic, social, biological and physiological systems. 
In this way, various fields of science approach each other, control theory 
and practice become of interdisciplinary character. At the same time, much 
is learned from the various branches of science. The theory of control develops 
towards generalizations and integrations whereas the practice of control seems 
to be more specific. 
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Summary 

This paper gives a brief sun;ey of previous and recent trends of control theory and 
practice. After reviewing the three historical epochs of control engineering, some recent trends 
;as, for example, state-space methods, static and dynamic optimization techniques (linear 
programming, convex programming, calculus of variations, maximum and minimum prin­
ciples, dynamic programming) are treated. The fundamentals of process control computer 
applications and some other topics are also mentioned. 
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