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List of symbols 

parameter of the resonant circuit (see (2») 
capacity in the resonant circuit 
parameters of the resonant circuit (see (2» 
ratio of threshold to saturation current 
inductivity in the resonant circuit 
quality factor of the resonant circuit 
load resistance of the resonant circuit 
small signal resistance of the Gunn-diode 
variables of the point transformation 
limits for the fixed point of delayed domain mode 
the maximum possible s value in the range of validity of the model (see Fig. 4) 
time 
bias voltage of the Gunn-diode 
domain sustaining voltage 
threshold voltage of the Gunn-diode 
state variables (see (1), (2» 
boundary points of the repulsion "egment (see Fig. 4) 
value of the state variable belonging to the trajectory originating from smax 
(see Fig. ,±) 
arc ctg Y2 
ratio of bias to threshold voltage 
normalized damping factor (see (12) and (17» 
transit angle ({t i = DiT;) 
transit angles belonging to the closed trajectory 
ratio of sustaining to threshold voltage 
normalized time (T = wot) 
transit angle corresponding to the domain transit time 
defi'ned on p. 265 
resonant frequency of the resonant circuit 
y'~. 
1 state ~~'ithont domain 
2 state with domain 

Introduction 

Numerous papers are known to discuss the investigation of the sinusoidal 
operating modes of the Gunn-diode oscillator, using a lumped element model 
of the diode. Some of them perform numerical investigations only [1-5], 
others analytical ones [6-16]. But non-sinusoidal (relaxation) oscillations 
were generally investigated numerically, using either a multi-frequency descrip-

1* 
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tion function or its modification pl'esupposing a memoryless model [12, 17, 18] 
or a simple numerical evaluation of a self-consistent description [19-22]. 
Models relying for their solution on partial differential equations have not been 
mentioned here. 

In this paper a uniform description of the behaviour of the Gunn-diode 
oscillator operating in domain modes is attempted. The method is applicable 
for investigating both relaxation and sinusoidal operating modes. In both 
cases the parameters describing the operation can numerically be determined. 
These quantities (e.g. the frequency of the oscillation and the amplitude) may 
be obtained by solving transcendental equations. 

In the case of relaxation type oscillations these equations are simpler 
than the relationships for other methods. 

The investigated model 

The lumped element circuit model, basis of the investigation, is seen in 
Fig. 1. The Gunn-diode is considered as a memoryless element of piecewise 
linear characteristics with hysteresis (Fig. 2). The id = ud/Ra section corre­
sponds to the state without domain, while the id = k . It section corresponds 
to the state with domain. 

The state equations of the circuit are: 

where 

C du~ . u, . 
--= -LL---Ld 

dt R 

L 
diL _ 
---uc 

dt 

Ut 
if there is no domain; Ro = -- , 

It 
if there is a domain. 

Introducing the symbols 

Equ. (1) may be written as: 

x = -2hl,2 X - (y + hl ,!) 
y=g 

t 
T=VLC=wot, 

(la) 

(lb) 

(2a) 

(2b) 
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.. 

Fig. 1. Model of a Gunn-diode oscillator 

kIt 

.. 
Url 

Fig. 2. Characteristics of a Gunn-diode 

where 

h =~(~-L_1 )1(L . 
1 2 R I Ro C ' 

r-

h2=+ ~ ~ ~ ; o. 

Subscripts 1 and 2 indicate states without, and with domain, respectively. 
The conditions of development of the two states are: 

- the domain appears when U c + U 0 > Ut, I.C. 

x ;> Ro V ~ (1 - ~) ; 
- the domain disappears when 
a) the diode voltage falls below the domain sustaining voltage Us: 

U c + Uo < Us, i.e. 

r-
x < Ro ~ ~ (0' -~) where 
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This case is the quenched domain operating mode. The changeover to the state 
without domain may be considered as a sudden leap. 

b) The domain reaches the anode. The diode voltage is supposed to be 
lower than the threshold voltage Ut at this moment. This case is the delayed 
domain operating mode. The condition of development will be formulated 
later using normalized variables. 

I 
I 
I 
I 
I 
I 
\ ,!C. 
\ Rovr(1-!3) , o , , 

x 

Fig. 3. Closed trajectory of the examined equations on the phase plane 

In both modes the periodic operation is conditioned by the existence of 
a closed trajectory of the describing systems of equations. This trajectory is 
non-analytic in our case but it consists of two analytic arcs. A closed trajectory 
is sho,m in Fig. 3 for quenched domain mode. 

Qualitative behaviours of the describing equations 

The only singular points of the system of equations (2) describing the 
investigated system are (0; -b) and (0; 0) in Cases 1 and 2, respectively. 
In either case it is easy to demonstrate that these singular points are stable. 
The radius vector belonging to Case 2 is rotated by an angle greater than :it 

as it is seen in Fig. 3. 
For hI ,2 > 1 the singular point is a node. But h2 > 1 involves hI > l. 

If the origin is a stable node in Case 2 then - in view of the above - two 
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straight trajectories join the node in a sector of central angle n; no cyclic 

operation is possible. * 
Consequently, in the following the system of parameters satisfying the 

conditions 0 < hI, 2 < 1 will only be dealt with. 

5 y 

x 

5' 

Fig. 4. Phase plane to investigate t1e point transformation 

Point transformation method for investigating the closed trajectory 

Existence and stability of the closed trajectory of the system of equations 
(2) will be examined by a generalization of Poincare's successor function method 
[23,24,26]. In Case 1 of the quenched domain mode, the system of equations 
maps the line S into the line S' (point transformation n 1), while in Case 2 it 
maps the line S' into the line S (point transformation n 2) (Fig. 4). The natural 
parameters of the 1>vo arcs are time intervals T 1 and T 2 during which the repre­
sentative point runs on the arcs. The two successive transformations can be 
considered as a single transformation n = nl . n 2 mapping the line S into 

* A kind of operation may be rea,lized where the trajectory tending to the node is discon­
tinued because of the finite domain transit time and the nucleation of a new domain begins. 
Such an operation cannot. however, be described without the consideration of the finite domain 
dissolution and nucleation time (see e.g. [25]). 
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Fig. 5. Lamerey's diagram of the point transformation 

itself. If this mapping has a fixed point, the solution of the system of equations 
has a closed trajectory. 

Describing the transformations in the form: 

n1: s' = T1(7:10) 

n 2 : s1 = T2(7:20) 

the fixed point does exist, if 

: = 7]1(7:10) l 
s = 7]~( 7: 20) 

(3) 

(4) 

The above transcendental equation of two variables 7:10 and 7::0 can be solved 
numerically. The values of sand s' have physical meaning: they are the values 
of the state variable y at the moment of the changeover from state 1 to state 2 
and vice versa. The values of state variable x in this moment are fixed. 

The problem may be handled graphically, by plotting functions s = s(s'} 
and S1 = Sl(S') of the transformations n 1 and n z in a common coordinate 
system. (Lamerey's diagram - Fig. 5.) The two curves intersect at the fixed 
point So of the transformation n. The existence of the fixed point can be 
deduced from the asymptotic behaviour of the functions. 

The closed trajectory is a stable limit cycle if the fixed point is stable. 
According to Koenig's theorem [23], its condition is the validity of 

I ~I <1 
ds S=5, ' 

(Sa) 

while for 

I dS1 I > 1 
I ds 5=5, 

(5b) 
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the solution is certainly unstable. Obviously 

I ds! I I ds ! 

I ds' 5=S, < I iW Is=~, 
is a sufficient condition of stability. 
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(6) 

In Fig. 5 the fixed point is stable; the corresponding closed trajectory 
is a stable limit cycle. 

The model used above includes two limitations for the trajectories 
(Fig. 4). 

1. The trajectory cannot intersect the S axis at an arbitrarily small value. 
Let us consider the straight isoclines where 

dx - 2hx (y + b) 
-- = const = ----'--"'--'--'--
dy x 

(7) 

The intersections of the isoclines belonging to the vertical tangents and the 
line S are: 

in Case 1: 

(8) 

while in Case 2: 
R 'v _ 0 

.;2---
R 

(9) 

at a distance 

Y2 - Yl = a - k:;;:=: O. (10) 

This part of the line S is the "repulsion segment". Tangents of the trajectory 
are of opposite direction on either side. Closed trajectory can only exist for 
SI > )'2; hence s >)'1 according to Eq. (10). This condition will be seen to be 
fulfilled by the point transformation itself. 

2. The trajectory cannot intersect the line S at an arbitrarily high value 

of s. Namely then the state variable x might attain values of x < -RoV i {3, 

where the model is not valid any more. Determination of the upper limit of s 

(smax in Fig. 4) will be shown later. 

Quenched domain operating mode 

The solution of the system of equations (2): 

x = e- hT (xo cos Q;: _ hxo + (Yo + b) sin Q T) 
Q 

Xo + h (Yo + b) . Q 1 ---''----'=-'-----''-- srn ~ T 
Q 

where Q = V~, while Xo and Yo are the initial values at T = O. 

(Ha) 

(Hb) 
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In transformation n 1 at time T = 0 the actual values are: 

Xo = Ro V ~ (a - fJ); Yo = s , 

while at time T = Tl 

x = Ro V C (I - fJ): Y = - s' . L < 

The transformation function can be brought arithmetically to the para­
metric form: 

(I - fJ) ei','" - (a - fJ) (cos {}1 - Yl sin {}1) s = - -'-----'--'------'--------'-'-----=----'--''-----=- - b (I2a) 

s'= - (I2b) 

where 

Only the practically interesting case fJ > I will be examined, where 
fJ - a ::2:: fJ - I > 0 is also valid. 

The limits of the normalized time-interval are: 0 < Dl < n but the 
lower limit is purely theoretical because if {jl -'r 0 then s < 0, while for a 
closed limit cycle, s > Y 2' 

The transformation function has straight asymptotes: 

s b I 
-'-b-i = ei""(> I) 
s - 1",-,,-0 

(I3a) 

~I =-1. 
s' - b 1"1- 0 

(I3b) 

On the basis of the behaviour of the first and second derivatives of function (12) 
the following properties may be established: 

1. s' has a minimum value where s = Yl' For parameter values above 
the pertaining f}1 the trajectory bypasses the repulsion segment. 

2. The curve has an inflection point between the parameter values Bl 
and n - 0, if the condition 
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s 

YI-t---H-.(J s· 

a; 6'=1 b; 

Fig. 6. Function of the point transformation :71 

I-fJ 
----'----ey':"> 1 
er-fJ 

(14) 

is met. 
In the limit case er = 1 the curve is convex throughout the domain of 

the function and for f} -+ 0, 

S= 2(fJ-I)h l _ b 

1 11 L 
Ro ~ C 

s' = b _ 2(fJ - 1) hI 

1 1(r: -1-
Ro . C 

All the curves are seen to start from the line s s' = O. 

(I5a) 

(I5b) 

The function sought can be plotted approximately on this basis (Fig. 6). 
The lowest possible limit of s is given by the transformation itself. The 

upper limit can be assessed as follows: if from the point Smax on the axis S to 
the point of the vertical tangent of the trajectory the parameter varies by f}cr 

then, after some arithmetics, we obtain: 

-1 

fJ 
(16) 

The above equation has one and only one solution in the interval [0; n]. 
Smax can be easily calculated if we knowf}cr and Y3' 

The function of the point transformation n 2 mapping the line S' on the 
line S is, according to (11): 

SI = 
(1 - fJ) e-y,iJ, - (er- fJ) (cos 112 + Yz sin 112) 

(17 a) 
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s' = (17b) 

where 

The limits of the transit angle are :z; < f} 2 < 2n, although the upper limit 
cannot obviously be attained in a periodic operation. The function of transfor­
mation (17) has straight asymptotes: 

~j =e-l'·" 
s' io,-,,+o 

(18a) 

= _e-i':t~:r. (18b) 
I, 

S 10.-2" 

It may be accepted after having determined the derivatives that the 
function has a minimum value s' and the corresponding SI is equal to Ya 
(Fig. 7). 

From (12) and (17) the transit angles f}lo and f}20 can be determined on 
the basis of (4). The period of oscillation is 

(19) 

The qualitative properties of the oscillator can, however, be deduced 
from the diagram of the transformation functions. In the case shown in Fig. 8 
there is a stable limit cycle in the quenched domain mode. [The point of inter­
section belonging to ordinates lower than the Yl value (the critical point) is 
a fictitious one. In the quenched domain mode it has no real limit cycle.] 

Delayed domain operating mode 

In the above, the quenching of the domain during the decrease of the 
diode voltage has been presupposed. If, however, the transit time is less than 
the time interval belonging to the transit angle f} 20 obtained for the stable 
solution the domain disappears before the voltage drops below Us. The domain 
does not renucleate before the re-establishment of Ut - this time delay explains 
the name of the mode. 

In Case 2 the transit angle P is chosen as characteristic (P = (OoQ2ttranSit). 

;rr < P < 2:z; is obviously valid. Differential equation (2) transforms now the 
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5 ," 

Fig. 7. Function of the point transformation l't: 

5, S' 

fixed point 

s· 

Fig. 8. Lamerey's diagram of the quenched domain mode 

line S into a curve in the phase-plane determined by the parameter P. From 
(11) it is evident that this curve is a straight line determined by 

Y = - sin ~P +~) x + e-i'.'F Ra V C (1- fJ) s~ ~ 
smP L smP 

(20) 

where sin ~ = Q 2' hence cos ~ = hz• 
The slope of this line grows beyond limits in the limit cases P -+ :-c and 

P -+ 2,," (the line is parallel to the Y axis) while it is zero at P z = -~. In small 
~ 3,," . 

damping ranges (Y2 ~ 0) P 2 > - and P 2 tends to 2,," wIth the growth of the 
2 

damping. 
It is noteworthy that only a part of the straight line contains points 

leading to any physically real periodical solution in further transformation 
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(Fig. 9). If the ordinate of the transformed point is higher than sf then the 
operation is of quenched domain type; if it is lower than sf* then our model 
cannot describe the processes of domain dissolution - domain nucleation. 
CI!'or ljI> P 2, the above mentioned higher-lower relations will be inverted.) 
If the operating point coincides with the point sf*, the operation is the limit 
case investigated by Warner [7]. sf and sf* can be determined from (17) 

choosing af = aactual and af* = 1, respectively. 

y 

---0...---+--+ 5, * 

Fig. 9. The allowed points on the phase plane representing the domain dissolution in the 
delayed domain mode 

Of course, all points 'Nith ordinates between sf and s1'* of the line deter­
mined by P may be re-transformed to the line S' by transformation n l • But 
we performed this transformation only with the value a = aactual in the pre­
vious (quenched domain) mode, and now a continuously assumes all values 
between aactual and 1. Both co-ordinates of the transformed point vary linearly 
together \\rith a. At the same time it is obvious from (12) and Fig. 6 that for 
decreasing a all the points of the function of the transformation nl are shifted 
to the right as compared to those for a higher value of a. Since both sand s' 
vary monotonously with a, the function of the transformation n J will be the 
monotonously varying function shown in Fig. 10 in the delayed domain mode. 

At the same time the transformation n 2 connecting the s' value and the 
ordinates of the transformed points has the following form on the basis of (20): 

s=-e-y,'l'(cosP+Y2sinP)s'+rY''l' ~2 RoV~ (l-p)sinP. (21) 

This function varies together with P in the way shown in Fig. 11. 
A closed trajectory will appear if the curves of the two functions intersect 

in the range sf* < s < sf (or sf < s < sr* for P> P 2). This trajectory is a 
stable limit cycle if (6) is met. The diagram of the stable delayed domain mode 
is shown in Fig. 12. 
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5 

5,* -+----------,9'0 

5/"4-+--_____ -(1/ 

5' 

Fig. 10. Point transformation function of the delayed domain mode (:1:,) 

5, 

5' 

b) '±';< 'if < 2'ir 

Fig. 11. Point transformation function of the delayed domain mode (:72) 
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S,S1 

-:fI' 1/1 stable fixed point .. 
S' 

Fig. 12. Lamerey's diagram of the delayed domain mode 

To determine the co-ordinates of the fixed point is more difficult here 
than in the quenched domain mode. Four transcendental equations must be 
written to obtain the four unknowns (s, s', cr, D10). The period is 

{jl0 
T = -- + ttransit. 

Wo £21 

(22) 

The parameter dependence of the function of point transformations. 
Tuning 

The tuning of the oscillator will be investigated in either operating mode 
independently. The tuning itself will be represented by changing three 
parameters: 

i) Bias voltage - f3 
ii) Resonant frequency Wo 

iii) Load or coupling - Q 

By definition 

(23) 

consequently, the increase of Q is equivalent with the decrease of IjR together 

with h1,2 and 1'1,2' 

A) Quenched domain mode 

i) The f3 value grows from 1 to an arbitrarily high value. In the case 
f3 = 1 (it is the case examined by Robson and Mahrous [6] where the diode 
voltage is purely sinusoidal) the diagram of the transformation III has no 
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inflection point according to (14). With increasing (J the asymptote f}1 -+- 77: - 0 
is shifted to the right, keeping its slope. The)'l value is the lowest at (J = 1; 
it may also be negative, if R has a very large value. With increasing f3 the )'1 

R 
value increases too; if f3 -+- 00 then )' r--./ RO f3. The diagram of the transforma-

tion approaches the limit case a = 1 according'to (12) (Fig. 6a). In the case 
of a sufficiently high f3, the critical point )'1 with the minimum value 5' is in 
the Hnd quadrant of the phase plane. 

j 
.... , stable 

. fixed point 

b I f-... un stable S' I fixed point 

I 

Fig. 13. Variation of the fixed point of the quegched domain mode vs. bias 

The asymptotes of the transformation 77:2 remain unchanged with vari­
able f3; the ordinate), 2 of the critical point grows linearly together with f3 
according to (9). From (17) it is obvious that the critical point is in the 1st 
quadrant for very high f3 values. In this case the two curves have no inter­
section point any more (Fig. 13). 

As a conclusion one can obtain a stable limit cycle for low bias voltages; 
with growing bias an unstable limit cycle appears too; finally the stable limit 
cycle disappears: the oscillation is discontinued in the quenched mode. This 
phenomenon is physically due to the more and more disproportionate division 
of the period among the operating intervals with and without domain. 

ii) The valiation of COo does not influence this operating mode because 
it is not directly included among the parameters. (The real period T varies 
of course.) Furthermore it has to be taken into consideration that the model 
is not valid any more for very high COo values, since the transition between 
states 1 and 2 cannot be considered a jump. 

iii) With increasing Q the asymptote f}1 -+- 77: - 0 of the transformation 
77:1 becomes less sloping, the )'1 value decreases and the curve itself "flares" 
less and less. At the same time the asymptote {j ~ -)- ;[ + 0 of the transforma­
tion ;[2 becomes steeper and steeper with Y 2 tending to zero. Thus the point 
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of intersection of the two asymptotes is continuously shifted towards higher s 
and s' values. 

Consequently, the system originally without a stable limit cycle ,till 
have one with growing Q (Fig. 14). The amplitude also grows but this fact 
does not involve the increase of the output power! Namely with increasing Q, 
either the load resistance increases or the coupling becomes weaker. 

Fig. 14. Variation of the fixed point of the quenched domain mode vs. quality factor 

B) Delayed domain operating mode 

i) With a constant P the slope of the transformed image of the line s' 
does not depend on fJ. Consequently sf and sf* are the functions of fJ, but their 
difference sf - sf* is independent of it. The horizontal distance between the 
limit points decreases with increasing fJ, because the curve determined by (12) 
belonging to the parameter value aactual gradually approaches that of pa­
rameter a = I. 

A detailed and very tedious calculation can help to establish three inter­
vals in the allowed domain of the transit angle: (n, P z); (P2, Po) and (Po, 2n), 
having different variation properties with varying fJ. In the interval n < P < 
< P 2 (Fig. IS) with growing fJ the intersection of the straight line of transfor­
mation n 2 with the axis and sf* vary linearly with fJ, but the latter grows 
faster; in the interval P 2 < P < Po it grows slower (Fig. 16); while in the 
interval Po < P < 2n the intersection on the axis grows and sf* decreases 
"\tith growing fJ (Fig. 17). Thus, for any P there is a bias voltage to which a 
stable limit cycle belongs. With growing bias voltage this operating mode 
disappears in each case. 

ii) For a fixed transit time Wo and P are proportional, hence a gro"\ting 
transit angle represents a growing frequency. The change of the limit points 
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c) fl =131=1 

Fig. 15. Fixed point of the delayed domain mode vs. bias (;r < 'P < 'P2) 

1"1-
Fig. 16. Fixed point of the delayed domain mode vs. bias ('P2 < 'P < 'Po) 

a) fl=fl,=l 

Fig. 17. Fixed point of the delayed domain modes vs. bias ('Po < 'P < 2n) 

2* 
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and the arcs between them is shown in Fig. 18. The section bounding the 
diagram of the transformation 71:2 is also plotted in the figure. 

Comparison of Figs 11 and 18 shows to be no periodic operation for Iow 
tp values. With increasing tp (i.e. increasing resonant frequency) a stable fixed 
point appears. It means with small f3 (small bias voltage) a stable oscillation 
with growing amplitude; with higher /3 a stable oscillation with a first increasing 
and then decreasing amplitude; while finally, 'with further increasing the reso­
nant frequency the oscillation ceases. 

5 

:Fig. 18. Variation of the point transformation of the delayed domain mode vs. 'J7 

iii) The relations are in rather complicated dependence upon all the pa­
rameters. The functions may be discussed in vie'w of the derivatives ·with respect 
to )'2. Two characteristic cases are shown in Fig. 19 for low and high Q values. 
Comparison of this figure to Fig. 18 shows that with decreasing frequency the 
same oscillation mode can develop at a higher Q value. If the circuit can 
oscillate at two different Q values in the same frequency range, then the oscil­
lation can switch over from the mode of 10"<\' Q breaking off during the decrease . 
of the frequency to the mode of higher Q (supposing that the point of in­
tersection of the transformation functions is in the interval si - sr*). This fact 
is known from experiments [27], but theoretically has not been explained so 
far to the knowledge of the author. 

Mode switching in tuning. Hysteresis 

In the previous section the tuning properties of the two considered 
operating modes were investigated separately. The operating mode may, 
however, change during the process of tuning. These phenomena ·will bc exam­
ined in this section. 
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high (1 

Fig. 19. Variation of the fixed point with increasing Q 

A) Varying bias voltage-varying ~ 

1. P:> n. si was seen to be of a very high value in general, therefore 
only the delayed domain mode appears. 

2. With increasing lJI for ~ r-J 1, a stable quenched mode appears. With 
increasing ,9 the stable fixed point attains sf and the oscillation transits into 
the delayed domain mode. With further increase of ~ this mode disappears 
because the fixed point attains sf*. 

3. With higher lJI the sf value is so small that the quenched domain 
mode breaks off (Fig. 14) before the appearance of the delayed domain mode. 
The possible cases are: 

a) The oscillation breaks up finally. 
b) If the delayed domain mode has a fixed point, it jumps in (the 

amplitude decreases) and for a further increase of ~ the fixed point attains sf*. 
But with decreasing ,9 the delayed domain mode exists as long as the fixed 
point attains si. Only at this moment does the quenched mode step in. The 
path of the fixed point on the s - s' plane describes a hysteresis loop. There is 
no switching on and off at the same values of the parameters. 

2* 
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4. In the case of very high values of (lJf< 2:7) the delayed domain mode 
appears first and with increasing f3 it attains the unstable fixed point of the 
quenched domain mode. In this case the system jumps into the stable quenched 
mode and the fixed point becomes to move, as outlined in item 3. 

It is worth noting that the growth of the quality Q of the resonant circuit 
widens the range of the quenched domain mode because the unstable fixed 
point cannot appear but at very high f3 values. (See e.g. Fig. 15.) 

Remind that the numerical investigations of Tsvirko and Ivanchenko [14] 
for very high Q values found the cases 1, 2 and 4 to be the only possible vari­
ations for the very reason that they precluded the relaxation types of oscillation. 

B) Varying resonant frequency-rarying Wo 

No oscillation for very low (1)0 (low lJf values) is possible at first. With 
increasing lJf the delayed domain mode appears first, later, ,,,-hen the fixed 

point attains si the operation changes over to the quenched domain mode. 
There are two other possibilities: st coincides either with the unstable 

or with a fictitious fixed point (curye section oyer the critical point). The 
delayed domain mode appears in both cases. With decreasing frequency the 
inverted process takes place without hysteresis. 

If the resonant system (e.g. a resonant cavity) oscillates in several modes 
and the tuning bands overlap, then the delayed domain mode that hecame 
unstahle with increasing frequency can he stable again with a cavity mode of 

iower Q. 
If there is no fixed point of stable quenched domain mode, because the 

f3 value is too high, the delayed mode is continuously tuned from the limit 
point st'" to a given value of tp < 2:7, where the oscillation discontinues. 

Summary 

1. _-\. point transformation method has been applied to describe the behaviour of an 
oscillating system containing Gunn-diode simulated by piecewise linear memoryless character­
istics with hysteresis. The method known from the literature has been generalized for the 
case where the transition between two states of the system occurred at a given moment (delayed 
domain mode) rather than to be caused by any critical state (quenched domain mode). 

2 .. This method constitutes a simple graphical procedure to examine the tuning of the 
·Gunn (}scillator. Variation of the operating modes and their stability as a function of the bias 
voltage of the diode, the resonant frequency and. the quality factor of the oscillating system 
has been shown. The results are valid both for relaxation type and for nearly sinusoidal oscil­
lations. 

3. The conditions of the mode switching and the encountered hysteresis phenomena 
have been presented, stating a) the possibility of tuning without hysteresis; b) the numerical 
examination established for harmonic oscillations to be deficient. 

4. A partial explanation has been given for an experimentally observed but theoretically 
uncleared f.'ct, namely how ·the mode selection in a multimode oscillator and the Q of each 
mode are int"rrelnted. 

Between limitations of the given simple model rather generalized results have been 
aimed at. But the involved relationships can be used for the numerical analysis of the (}scilla­
t(}rs. The calculation requires the solution of transcendE'Tltal systems of equations. 
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