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In a former publication [1] it has been demonstrated that by character-
izing two-ports of the network by the chain matrices, a homogeneous descrip-
tion can be given, valid also for degenerated two-ports. While there the cal-
culation of the stationary state was considered, now the method will be em-
ployed for examinations in the time domain.

1. Stating the problem

Consider a linear time invariant network. Network parameters, the time
function of source quantities and the initial (¢t = ~-0) or starting (1 = —0)
values are given. The time function of branch voltages and branch currents
is required.

Our basic aim is to construct the state equation:

x(t) = Ax(t) + Ba(r) . (1)

where x is the column matrix of the state variables, zthat of the source quan-
tities, while 4 and B are matrices characterizing the network. Including
the other variables into a matrix y, they ean be expressed in terms of the state
variables and the excitations as:

¥(1) = Cx(t) + Da(1) . (2)

The problem is, on the one hand, the selection of the state variables x, on the
other hand the elaboration of a systematic process for the determination of
matrices A, B, C, D and of Eqs (1) and (2).

2. The network elements

The examined network may contain the following linear invariant ele-
ments (the symbols in brackets denote both the respective element and the
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number of the respective element; the meaning of the capitals will be clarified
later).

a) Voltage sources (v = V)
b) Current sources (a = 4)
c¢) Resistances (r = R + G)
d) Condensers (¢ = C - D)
e) Uncoupled or coupled inductors (I = L + I

f) Resistive two-ports (p =P 4+ Q,s =S +-T,p = s).

The voltage sources are assumed not to form a loop, the current sources not to
form a cut-set, further the two-ports are regarded two-ports with justification
(they are not general four-poles).

The individual elements are characterized by the following equations:

Uy ::fk(t)? ialc = glf(t) (3)

where f and g are given functions;

Up = ng Lrs; or iy = Gl: Ury (4)
where G, == 1/R,;
Lo == le Uy . (D)
uyp = Lyiy and wy= > L1 (6)
J

where L,; = Lj;

—_— N KoL
Upp = Hyjug + Ky i

o= M.u. -~ N i
T = My g+ Ny i

where p indicates the primary port of the two-port, while s the secondary
port. (For details see [1].) Parameters denoted by a capital letter are time-
independent constants.

3. The state variables

As known, state variables of linear invariant networks are very simple
to choose, if there are no capacitive (¢ + v) loops and inductive (I 4+ a) cut-sets.
In this case the state variables are the voltage of condensers and the current
of inductors.

In a more general case there are two possibilities. On the one hand,
independent condenser voltages and independent inductor currents can be
regarded as state variables. This means that in each independent capacitive
loop the voltage of one of the condensers, and in each independent inductive
cut-set the current of one of the inductors is not regarded as state variable.
Let C and D denote those condensers, the voltage of which is, or is not a state

variable, respectively, and similarly L and I" those coils, the current of which
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is, or is not a state variable, respectively (¢ = C + D, I =L + I'). In this
case a proper tree can be chosen in the graph of the network in such a way
that all C and I branches are twigs, and all D and L branches are links.

On the other hand, the charge of the cut-sets generated by twigs C and
the flux at loops generated by links L, or the voltages and currents, respectively,
proportional to these, can also be chosen as state variables.

The first mentioned method is simpler, though it has the disadvantage
that the continuity of state variables is not ensured if the time-function of
the excitations contains jumps.

For the sake of comprehensibility, the case without capacitive loops or
inductive cut-sets will be examined first, thereafter the more general case.

4. The “regular” network

The Kirchhoff laws for voltages and currents are:
Bu=0, Qi=0 (8)

where B denotes the loop matrix and @ the cut-set matrix. If the fundamental
loop and cut-set system generated by a tree is chosen, then, as known,

B=[F 1, 0= E], E=—F+ 9)

where 1 is the unit matrix and ¥ denotes the transpose.

Let us first examine the case where there are neither capacitive loops,
nor inductive cut-sets in the network. Choose a tree in the following way.
All v and ¢ branches are twigs (v = V,c = C, D = 0), all a and I branches
are links (@ = 4,1 = L, I' = 0), what is possible, according to the condition.
We should select maximal number of r branches as twigs (R-branches) and
minimal number as links (G-branches). Among the p-branches (primary ports),
in turn, possibly minimal number should be chosen as twigs (P-branches) and-
maximal number as links (Q-branches). Among the s-branches (secondary
ports) those designed as twigs are denoted by S, those designed as links by T.

Accordingly, the form of matrix F interpreted in (9), partitioned to
blocks is found to be

FFy Fao Fap Fus Fippl 4

F, F. Fgyp Fgs Fg,p|L
F=\|F, Fo Fu,, Fos Fgp |Q loops (10)

By, Fre Frp Frg Fprp | T

LFo Foo For Fgs Fopi G

|4 0 R S P <« cut-sets

The structure of matrix £ = —F* already follows from this (E,, = — F},
ete.).
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It follows from the structure of the tree that there are no S- and P-twigs
in the loops generated by the G-branches (resistive links), and no T-links in the

cut-sets generated by the P-branches (primary twigs), accordingly
FGS:()’ FGP:O7 Fszof (11)
ESG: O, EPG:O7 EPTZO'

The first group of Kirchhoff laws, on the basis of 4-loops and V-cut-sets
is found to be

nl : : i ! ‘
w, = — (Fyyuy + Fycue — Fypup + Fasus + Fapup) (12)
iy = — (Byyiy — Eypip + Eyqig + Eyrir + Eygig). .

These can be calculated in knowledge of the quantities in the right-hand side.
The second group of Kirchhoff laws is given by the loops Q, T, and G, and cut-
sets R, S, and P. Taking also (11) into consideration,

ug + Forup — Fosug + Fopup = — (Foyuy + Focug) ,
ur +— Frpup + Frgug = — (Fryuy + Frcug),
ug + Fopug = — (Fgyuy + Fgeug) ,
ip — Bgroig -+ Egrir + Epgig= — (Egaiy + Egp i) . (13)
ig + Esqig + Esrir = — (Bspiy + Egp i),
ip + Epqig = — (Epaly + Eppif) .
Branch rules (4) and (7) can be written in the following form:
up = Rip. i = Gug, (14a)
up | Hps  Hpr  Kps HKpr Us
o | _ | Hos Hor Kos Kor | |ur | (14b)
ip Mps Mpr Nps Npr is
i Mys My Nps Ngrl Liy

Matrices R and G are diagonal, while blocks H, K, M, and N contain only
one non-zero element in each row and column.

Upon substituting Eqs (14) into (13) we obtain (r 4+ p 4 s) equations
for the same number of unknown quatities ip, ug, ug, U, ig, iy, thus these can
be expressed by means of the given excitations (uy,i,) and state variables
(ug, iy ). These linear functions, further the linear functions which can be pro-
duced by substituting the former into (12), represent the linear function given
under (2).

The equations on loops L and cut-sets C are

u, = — (Fryuy + Freue + Frpug + Frsug + Frpup), (15)

ic = — (Ecaisy + Ecp iy + Ecqig + Ecrir + Eggig) .
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The branch rules (5) and (6) are
u; = LiL . iC = (,jl.lc . (16)

where C' is diagenal, but L is diagonal only in the case where there are no
coupled inductors. If L is not singular then on the basis of (16) and (15)

ip=—L7*(Fyuy +Fcuc+Frrup +Frsus + Frpup) . (17)

uc = — C7H(Ecyiy + Ecpip + Ecqiq + Ecrir + Ecglg) -

Substituting the linear functions obtained by solving (13) and (14), state
equation (1) has been produced.

5. The generalized network (1st method)

Let us now consider the more general case, namely where the network
can contain both capacitive loops and inductive cut-sets,

In choosing the tree, all v-branches are chosen as twigs, all a-branches
as links (v =V, a = A). Hereafter a maximum number of ¢c-branches are
chosen as twigs (C-branches), while the rest become links (D-branches).
Similarly a maximum number of I-branches are chosen as links (L-branches),
while the rest become twigs ([-branches). The same is done for r,p and s
branches. For the sake of understanding, the symbols of branches are tabulated.

Table 1
Branch Twig | Link Equation
v ‘ V -— uy = f(t)
a - 4 ia=g
c jic = Cecuic

¢ ’ D lip = Cpp ip
I L r [“L =Ljpip+Lyp i'r

; lup=Lpr iy + Lpp ip
r R G (14a)
p P Q

14b

s S T }( )

A systematic method of selecting the maximum number of twigs is the
following. Consider the partial graphs v,v + ¢, v - ¢ -~ r one by one. (The
other branches are substituted by open circuits.) Branches considered pre-
viously as twigs are completed to a forest, thus we obtain branches C and R,
while the remaining branches become branches D and G, respectively. The
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maximum number of links can be formed analogously by examining partial
graphs a, a + I, @ -~ I - p (but in this case the other branches are to be sub-
stituted by a short-circuit).

The structure of matrix F (upon immediately considering the zero
blocks) is now the following:

i ’1«‘-”“: Fac Fap Fus Fap Fur')

Fpp Fie Fip Fig Fip Frp
Foy Foo F Fos F 0

F = 'Q\ ’(x "QR ‘QS QP 18
Fry Fre Fog Ipg 0 0 (18)

Foo Foe Fgp O 0 0

- lﬂDV Il" DC () 0 (} 0

Choose now voltages u. and currents i, as state variables. The construc-
tion of the state equation can be performed in the same way as previously.
On the basis of loops 4 and cut-sets V, n, and i, can be expressed in terms
of the other variables. On the basis of loops 0, T, and G, further of cut-sets R, S,
and P, as well as of Eqs (14) the voltages and currents with the indicated sub-
scripts can be expressed by the state variables and excitations. On the basis
of loops D and cut-sets [, up, and i can be expressed by the state variables
and excitations, and so can i, and uy by means of relationships given in the
table. Finally, on the basis of loops L and cut-sets C, and eliminating the
previously expressed variables we obtain the state equation.

6. The generalized network (2nd method)

Let us choose the tree and the individual branches in the manner de-
scribed previously. Let the state variables be

4 y—1 g0 ‘
u==u, + Coc Ec:p Cppup,

o . e R . 19
(1+LL1{I’LFLFL) i, ~ Li + (Lyp+ FopLep) ir (19)

i=

(We have assumed that IL;; is not singular.) It can be easily conceived that
Cccu is the total charge of cut-sets generated by branches C, and L ;i is the
total flux of loops generated by branches L. Cut-set charge and loop flux are
continuous in the case of bounded excitation, thus u and i are themselves
continuous.

The equations on loops D and cut-sets 7 are

up "‘“ l’lDy uy —*‘ i;DC e =

ir 4+ EBraiy + Er i, =0.
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Substituting the expressions for u, and i, from (19), we have:

uy,= — (1 —Fp Ol Ecp Cpp) ™' - (Fpyuy = Fpeu), o)
ip = — (1= Ep L} (Fyp+-Frp Lpp) ™ (Braia + Eird)
where
Ero =Ep (1 + L FirLp)™" (22)

(If there are no coupled coiles, then FEp, = E;, and Ly=1L =40)
Substituting variables up and i, from (20) into (19), we obtain:

ue = (1 —EcpFpc)™" - (EcpFoyuy +u),

- _ (23)
ip = (1 4+ L F Ly, —Frr Epy) ™' (FopEpaiy + )
where
Ecp=CccEepCpp. Frr=Li Lip+FirLpr. (24)

The state equation can be produced in the way described under item 5, since
u. and i; are expressed by the state variables and excitations according to (23).

In writing the state equation, the terms w;, 4 F,uy and i, + E.pip
occur in the equations pertaining to loops L and cut-sets C, respectively. These
can be expressed simply in terms of the state variables, according to (19) in
the forms L;; iand C,.u, respectively. Accordingly, the derivatives of excita-
tions are not figuring here and just this ensures that u(t) and i(t) are continuous
in the case of bounded excitation. With the 1st method this is not ensured.

7. On the solvability of the equations

For the sake of completeness it should be mentioned that our process
tor choosing the state variables and for constructing the state equations takes
only the topology of the network into consideration. In the case of degenerate
two-ports, however, it may happen that the independence of the designated
state variables and the solvability of equations (the invertibility of matrices)
is not ensured.

A problem may arise if both a primary and a secondary quantity of some
of the two-ports are state variables, and the two-port itself is degenerate.
It is easy to prove that if some of the two-port parameters are zero, then some
termination pairs are not permitted, in this case one of the state variables
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would determine the other, hence only one of them can be regarded as state
variable. The forbidden terminations are the following (Fig. 1):

Parameter Primary Secondary Relationship
H=0 L, u, = —Ki,
K=0 c, C. u, = Hu,
M=0 L, | L, i = Ni,
N=o0 L C, i, = —Mu,

In the following the permitfed termination pairs are summarized for the
typical degenerate two-ports:

Two-port ; Primary Secondary

!
!

Nullor (H=0, K=0, M =0, N = 0)

Voltage controlled voltage source (H = 0)
Voltage controlled current source (K = 0)
Current controlled voltage source (M = 0)
Current controlled current source (N = 0)
Ideal transformer 1

oo (H = 0, N = 0)
Negative converter J

Gyrator (K =0, M = 0)

O OO0
MO0 O

The construction of the state equation by the described method is ensured
only if the given conditions are satisfied.

Summary
A method is given for the systematic construction of the state equation of linear net-
works containing sources, condensers, uncoupled and coupled inductors, resistors, and resistive

two-ports, The two-ports can be degenerate too. The cases where there are, or are not capacitive
loops and inductive cut-sets in the network, are examined separately.
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