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In a former publication [1] it has heen demonstrated that by character­
lzmg two-ports of the network by the chain matrices, a homogeneous descrip­
tion can be given, valid also for degenerated t,\-o-ports. While there the cal­
culation of the stationary state was considered, now the method will he em­
ployed for examinations in the time domain. 

1. Stating the problem 

Consider a linear time invariant network. Network parameters, the time 
function of source quantities and the initial (t = +0) or starting (t = 0) 
values are given. The time function of branch volt ages and branch currents 
is required. 

Our basic aim is to construct the state equation: 

~(t) Ax(t) Bz(t) , (1) 

where x is the column matrix of the state variables, z that of the source quan­
tities, while A and E are matrices characterizing the network. Including 
the other variables into a matrix y, they can he expressed in terms of the state 
variables and the exeitations as: 

y(t) = Cx(t) Dz(t). (2) 

The problem is, on the one hand, the selection of the state variables x, on the 
other hand the elaboration of a systematic process for the determination of 
matrices A, E, C, D and of Eqs (1) and (2). 

2. The network elements 

The examined net'work may contain the following lineal' invariant ele­
ments (the symbols in hrackets denote both the respective element and the 
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number of the respective element; the meaning of the capitals will be clarified 
later). 

a) Voltage sources (v = T/l 
b) Current sources (a = A) 
c) Resistances (r = R + G) 
d) Condensers (c = C + D) 
e) Uncoupled or coupled inductors (I = L + T) 
f) Resistive two-ports (p P + Q, s = S + T, p = s). 

The voltage sources are assumed not to form a loop, the current sources not to 
form a cut-set, further the two-ports are regarded two-ports with justification 
(they are not general four-poles). 

The individual elements are characterized by the following equations: 

where f and g are given functions; 

'where G" = 1jRI;; 
ick = Cl; ucI: 

lln = L" ill: and llll: 

(3) 

(4) 

(5) 

(6) 

(7) 

where p indicates the primary port of the two-port, while s the secondary 
port. (For details see [1].) Parameters denoted by a capital letter are time­
independent constants. 

3. The state variahles 

As known, state variahles of linear invariant networks are very simple 
to choose, if there are no capacitive (c + v) loops and inductive (I a) cut-sets. 
In this case the state variables are the voltage of condensers and the current 
of inductors. 

In a more general case there are two ppssihilities. On the one hand, 
independent condenser voltages and independent inductor currents can he 
regarded as state variables. This means that in each independent capacitive 
loop the voltage of one of the condensers, and in each independent inductive 
cut-set the current of one of the inductors is not regarded as state variahle. 
Let C and Ddenote those condensers, the voltage of which is, or is not a state 
variahle, respectively, and similarly Land T those coils, the current of 'which 
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is, or is not a state variable, respectively (c = C + D, 1= L r). In this 
case a proper tree can he chosen in the graph of the network in such a way 
that all C and r branches are twigs, and all D and L hranches are links. 

On the other hand, the charge of the cut-iSeLiS generated hy twigs C and 
the flux at loops generated hy links L, or the volt ages and currents, respectively, 
proportional to these, can also he chosen as state variahles. 

The first mentioned method is simpler, though it has the disadvantage 
that the continuity of state variahles is not ensul'f~d if the time-function of 
the excitations contains jumps. 

For the sake of comprehensihility, the case without capacitive loops or 
inductive cut-sets will he examined first, thereafter the more geneTal case. 

4. The "regular" network 

The Kirchhoff laws for voltages and currents are: 

Bu = 0, Qi 0 (8) 

where B denotes the loop matrix and Q the cut-set matrix. If the fundamental 
loop and cut-set system generated hy a tree is chosen, then, as known, 

B = [F 1], Q = [1 E], E = (9) 

wheTe 1 is the unit matrix and T denotes the transpose. 
Let us first examine the case wheTe there are neither capacitive loops, 

nOT inductive cut-sets in the network. Choose a tree in the following way. 
All v and c }Jl'anches are twigs (v = V, c = C, D = 0), all a and I hranches 
aTe links (a A, I = L, r = 0), what is possihle, according to the condition. 
We should select maximal numher of r hranches as twigs (R-hranches) and 
minimal numher as links (G-branches). Among the p-hranches (pTimary ports), 
in turn, possibly minimalnumheT should he chosen as twigs (P-hranches) and 
maximal numheT as links (Q-hranches). Among the s-bTanches (secondary 
pOTtS) those designed as t'wigs are denoted hy S, those designed as links hy T. 

AccOTdingly, the fOTm of matrix F interpreted in (9), partitioned to 
hlocks is found to he 

.- F.-'\\, 

F LV 

F FQv 

F TV 

LFGV 

V 

The structuTc of matrix E 
etc.). 

F AC FAR PAS F AP -, AI 
F LC FLR F LS F LP L 

Fqc FQR FQS Fop Q (OP' 
Ji\c F-fR F TS FTP T 
FGC FGR FGS F GP -' G 

0 R S P -(- cut-sets 

-F+ already follo'ws fTom this (EVA 

(10) 

1 '~ 

- 'Av, 
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It follows from the structure of the trce that there are no S- and P-twigs 
in the loops generated hy the G-hranches (resistive links), and no T-links in the 
cut-sets generated by the P-branches (primary t'wigs), accordingly 

FGS 0, F GP 0, F TP 0, 

EsG=O, EpG=O, EpT=O. 
(ll) 

The first group of Kirchhoff laws, on the basis of A-loops and V-cut-sets 
is found to he 

uA. = - (l~.w Uv T FA.c Uc FAR uR FAS Us 11~4P up) , 

iv -(E~"A~4 -7- EVLiL-T-EvQiQ+EvTiT+EVGiG)' 
(12) 

These can he calculated in knowledge of the quantities in the right-hand side. 
The second group of Kirchhoff laws is given hy the loops Q, T, and G, and cut­
sets R, S, and P. Taking also (ll) into consideration, 

UTTFTRUR FTSus 

uG FGR uR 

(FQv Uv + FQcue) , 

(FTV Uv F TC ue), 

(FGV Uv + FGcuc) , 

iR T ERQiQ T ERTiT 

is ESQiQ --;- EST iT 

ip + EpQiQ 

ERG iG = -- (ERAiA ERLid, 

(ESA iA -+- ESL id , 

Branch rules (4) and (7) can he written in the following form: 

UR = RiR , iG GuG , 

[{: j lUPs 11PT Hps 
I{PT 1 

U; 1 
HQS HQT HQS HQT 
llIps T~IPT ·!'IT ps ~VPT 
.]lQS lllQT lVQS l\-QT 

(13) 

(Ha) 

(14h) 

Matrices Rand G arc diagonal, 'W hile hlocks H, H, 1l1, and N contain only 
one non-zero clement in each row and column. 

Upon suhstituting Eqs (14) into (13) 'we obtain (r + p + s) equations 
for the same numher of unkno'wn quatities iR, uG' us' UT' is, iT' thus these can 
be expressed by means of the given excitations (uv' i A ) and state variables 
(uc, i L ). These linear functions, further the linear functions "which can be pro­
duced by substituting the former into (12), represent the linear function given 
under (2). 

The equations on loops L and cut-sets Care 

(15) 
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The branch rules (5) and (6) are 

U L = LIL' (16) 

where C is diagonal, but L is diagonal only in the ease where there are no 
coupled inductors. If L is not singular then on the basis of (16) and (15) 

FLRUR + FLSus (17) 
UC= ( '-I (E . . E . 

, CA lA -t- CL 1L 

Substituting the linear functions obtained by solving (13) and (14), state 
equation (1) has been produced. 

5. The generalized network (1st method) 

Let us now consider the more general case, namely 'where the net work 
can contain both capacitive loops and inductiye cut-sets. 

In choosing the tree, all v-branehes are chosen as twigs, all a-branches 
as links (v = V, a = A). Hereafter a maximum luimher of c-branch!'s are 
ehosen as twigs (C-branches), while the rest become links (D-hranehes). 
Similarly a maximum number of I-branches are ehosen as links (L-brunches), 
while the rest become twigs (r-branches). The same is done for r, p and S 

branches. For the sake of understanding, the symbols of branches are tabulated. 

Table 1 

Branch Twig Link 

v V 11\1 =f(t) 

a A. i.,'I = g(t) 

c C 
lie Cee il C 

D liD CDD liD 

L r filL = LLL iL LLr ir 
lllr=LrL i~ T Lrr i'r 

r R G (14a) 

p p 

s S 
Q 

}(14b) 
T 

A systematic method of selecting the maximum number of twigs is the 
following. Consider the partial graphs v, v c, V --L crone by one. (The 
other branches are substituted by open circuits.) Branches eonsidered pre­
viously as twigs are completed to a forest, thus we obtain branches C and R, 
while the remaining branches become branches D and G, respectively. The 
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maXImum number of links can he formed analogously by exammmg partial 
graphs a, a 1, a -;- I p (hut in this case the other hranches are to be sub­
stituted by a short-circuit). 

The structure of matrix F (upon immediately considering the zero 
blocks) is now the following: 

r FA\" F AC F"'R F AS F AP FAT -I 

F LI· F LC FLR F LS F LP F Lr 

PQ\. Fqe FQR F F Qp 0 
(13) }<' = QS 

F TV F TC FTR fiTS 0 0 
FO\! Foc FOR 0 0 0 
F DV F Dc 0 () 0 0 -1 

Choose nO\\· \-oltages Uc and currents iL as state variables. The construc­
tion of the state equation can be performed in the same way as previously. 
On the hasis of loops A and cut-spts V, u A and iF can he expressed in terms 
of the other variables. On the basis ofloops Q, T, and G, further of cut-sets R, S, 
and P, as ,\·ell as of Eqs (14) the yoltages and currents with the indicated sub­
scripts can he pxpressed by the state yariables and exeitations. On the basis 
of loops D and cut-sets T, uD and ir can be expressed by the state variables 
and excitations, and so can iD and UT hy means of relationships giyen in the 
table. Finally, on thp hasis of loops L and cut-sets C, and eliminating the 
previously expressed variahles ,rc obtain the state equation. 

6. The generalized network (2nd method) 

Let ns choose the tree and the indiyidual branches in the manner de­
scribed prcYiollsly. Let the state variables be 

U _~ U e -,- Cc~ ECD ('DD U D ' 

(19) 

(We have assumed that LLL is not singular.) It can be easily conceived that 
Cccu is the total charge of cut-sets generated by branches C, and LLLi is the 
total flux of loops gcnerated hy branches L. Cut-set charge and loop flux are 
continuous in thc case of bounded excitation, thus U and i are themselves 

continuous. 
The equations 011 loops D and cut-scts T arc 

UD FDF UF 

ir + ErAiA 

o 
O. 

(20) 
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Substituting the expressions for uc and iL from (19), ·we have: 

(21 ) 

where 

(22) 

(If there are no coupled coiles, then En En and LLr = Ln = 0.) 
Substituting variables u D and ir from (20) into (19), we obtain: 

( - )-1 (- ) lIc = .1 - ECD F DC . ECD F DV lIv --'- 1I , 
(23) 

where 

ECD (24) 

The state equation can he produced in thc '.my descrihed under item 5, since 
lIc and iL are expressed by the state yariahles and excitations according to (23). 

In writing the state equation, the terms u L FLr lIr and ic ECD iD 

occur in the equations pertaining to loops L and cut-sets C, respectively. These 
can he expressed simply in terms of the state variables, according to (19) in 

the forms LLL i and Ccc n, respectively. Accordingly, the derivatives of excita­
tions are not figuring here and just this ensures that net) and i(t) are continuous 
in the case of bounded excitation. 'Vith thr 1st method this is not ensuTrd. 

7. On the solvahility of the equations 

For the sake of completeness it should be mentioned that our process 
for choosing the state variahles and for constructing the state equations takes 
only the topology of the network into consideration. In the ease of degenerate 
two-ports, however, it may happen that the independellce of the designated 
state variables and the soh-ability of equations (the inn~rtibility of matriees) 

is not ensured. 
A problem may arise if hoth a primary and a seeondary quantity of some 

of the two-ports are state variables, and the two-port itself is degenerate. 
It is easy to prove that if some of the two-port parameters are zero, then some 
termination pairs are not permitted, in this case one of the state variables 

Fig. 1 

's -
Us~ 
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would determine the other, hence only one of them can be regarded as state 
variable. The forbidden terminations are the following (Fig. 1): 

Parameter Primary Secondary Relationship 

H 0 Cl L~ Ut = -Ki~ 
K = 0 Cl C~ Ul = HU2 
JI = 0 Lt L~ i l ]Vi~ 

]V 0 Ll C~ i l -lvlu 2 

In the following the permitted termination pairs are summarized for the 
typical degenerate two-ports: 

:\"ullor (H = O. K = 0, M = O. N = 0) 

Voltage controlled voltage source (H "'" 0) 

Voltage controlled current source (K"", 0) 

Current controlled voltage source (JJ =' 0) 

Current controlled current source (,'V "'" 0) 

Ideal transformer 
} (H "'" 0, N =' 0) 

:\" ega tive cOllverter 

Gyrator (K =' 0, }[ "'" 0) 

Primary 

C 

C 

L 
L 

J L 
l c 
r L 
l c 

Secondary 

L 
C 

L 
C 

C 

L 

L 
c 

The construction of the state equation by the described method is ensured 
only if the gIven conditions are satisfied. 

Summary 

A method is given for the systematic construction of the state equation of linear net­
works containing sources, condensers, uncoupled and coupled inductors, resistors, and resistive 
two-ports. The two-ports can be degenerate too. The cases where there are, or are not capacitive 
loops and inductive cut-sets in the network, are examined separately. 
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