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1. Scattering matrix and its transforms — for an anisotropic obstacle

11. After World War II, a great development has begun in micro-wave
technics. Their theoretical progress was also very quick; e.g. the old SToxEsia~
difference equations for the optical transfer through discrete glassplates in-
duced the researchers to find and evolve the algebra of obstacles, to introduce
the scattering matrix and to find its theory, later to make a generalization for
continuous media by functional equations and to use here the recent principle
of invariant imbedding, finally to extend the theorv to the obstacles with 2n
contacts and to the HILBERT space and, last but not least, to apply all these
to the effect transfer along micro-wave chains etc. In these important investi-
gations, Berima~xxy [2], Caroin [3], GumremiNy [6]. RepsEFFER [8, 9].
Reip {10], TweErsky [11] and many other authors have produced essential
results.

Nevertheless, this beautiful progress admits — just because of its
quickness — various complements; e.g. common direction of transfer and

o

multiplication, dynamic transform algorithm (DTA)* of scattering matrices,

Qur dynamic transform algorithm (DTA) for matrices is amply explained in [14—17]
and other works. Its basic idea — for n dimensicnal vectors and without proofs -— is the fol-
lowing. A linear algebraic vector equation has the form

P
= Bag = o N e = B e =
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The bilateral change —E . wy <+ — A @) is feasible, if pivot submatrix Ay :E[(AL is regular,
that is, det (Agz) = | Agp | == 0 (Ch). The arrangement of (E) corresponding to (Ch) will be
= 0)

(with | Byl = Agy |

Byvp=ue, ... —Apx;+. . Fuge, =xa+. . —Epugt o oxpa, = Apyp. (A)

The transformed form A, of A, on the new basis B, and with it the solution v, = A,y, can be
produced by our formulas (at | Ay, | == 0. and “g)zg = 0)

A, =BJ'A = A~ (4, +EAR (AK—EL) ...
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investigations and operations with transformed matrices, generation of arti-
ficial matrix semigroups and extension to ABELIAN matrix groups etc. Such
complements will here be given (and others in a subsequent paper) to elucidate
certain problems. The complements must possibly be connected with known
facts of the scattering algebra. These latters will be often interpreted in sense
of the excellent compilation [13].

1,2. Let us assume an effect (e.g. wave) to permeate a homogeneous
obstacle (e.g. network) O, under the conditions of constant frequency and
wave form. This obstacle can be characterized by the 4 scattering coefficients
sij3 namely, coefficients s,; =1, s,; = r are complex amplitudes of the trans-
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Fig. 1

ferring and reflecting waves at the input unit wave-amplitude on the start
(right) side (Fig. 1la); coefficients s;, == o (for reflexion), s,, = v (for transfer)
are defined in reasonably analogous manner at the input unit wave-amplitude
on the aim (left) side (Fig. 1b). By definition, and under the condition of
affinity (sum and rate keeping), the relationships between the (input) complex
wave-amplitudes z; (vight), z, (left) and the output ones =z, (right), z, (left)

can be written as the input-output equation (Fig. 2).

zy =1z, +~ 0z, (-—), 5, =%, - T3 (}—>)»7 {la. b)
or, advantageously, in vector-matrix form:
-~ — -~ — - P - a
Bor =[5 =1 91 5 = 8,%; . (1c)
A r T_JI z,

. ..in a multiple (p-times) spring (DTA), or

coinog=0.12....p—1 single steps (DTA,.,).
If A, is of n order and regular, at a possible choice

.
:

I, =Fky=Xk-+1 there is B, = —A, A, =—E and
o ﬁ , M
A, = (—ATD(—E) = A7l (inverse).
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where S, is the scattering matrix, z;, and 2, are the input and outpui vector,
resp. Here it was supposed to exist a close (coupled to the obstacle) working
without reflexion (r; = 0).

1.3. The scalar equation system (la, b) or the vector equation (1¢) can be

£

solved, e.g. by the right vector 7 = [z, 5,] for the left vector 2] = [z,, z,] too,
through the change z, < z; provided s,, = 7 == 0. It goes very elegantly by the
help of the dynamic transform algorithm (DTA) (given in [14—17] and other

works by the author) and at the chosen pivot element s,, = 7 == 0, that is

— in accord with the foot-note of item 1,1 —

[N

1
;=S,2,, where S, = 8§, — —(s;+e,)(s*—¢€!)=8,~D, =

Sir
1 1 o 9
= So— (s2€1) (s°—€?) = S;—Dyy = (2a—c)
S22
1 7 d 071
=S, =— 0 [r =—1]= —_ —~
T T T
T 1
7-+1 _—— e
L i T T
with the determinant d=15,=it—rp,
or, in the left-right equation (with 7==0)
™ 71 r d o T T -
z=| 5 |= l — — || = =353 (2d)
T T
‘ 1 1
%y | —— =
| I | L. T T d
with the determinant
‘ L T i
di= 8| =-—"( 1—~10)———q——— (2e)
72 T2 T
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There are further transformed forms of (1c). ( ) = 6 in all, together with

/7
their permutational forms. For instance, with the simple change of the rows

and columns of (2d), we get the permutational form

. | ] [ T | o
Fi=| g = — —— | = |=82% (2f)
T T
0 d
Za _— —— 2
1 7 L |

with the determinant d, = i/v. Obviously, there are relationships between
Eqgs (1e), (2d) and (2e), in particular:

Zoww— Z 2. Sp—=8, -8, &,z 2 (3a—e)

all three triples 2, 5o 2,3 &1, 81, 20 21, §.. 2z, characterize the same scattering
circumstances in other forms, which are easily interchangeable. Remark that
the left right equations (2d) or (2e) will later enable to find the composition of
obstacles — on the basis of the matrix algebra.

14. Eqgs (1¢) and (2d) or (2¢) and other transformed forms are known in
micro-wave technics as four-pole (-terminal) ones for different given param-
eters under different names; e.g. for z = U,

= U, 5,=0, and z; =1,

= I, and z,= U, =

there ave impedance parameters s, =

z, == I, there are admittance parameters s;; = v,; etc.; evidently, there are
4 1.3 .
o= = 0 forms in all.
2 1.2
The power of an obstacle is — as for the four-pole one — proportional to

the square absolute amplitude of the effect. Accordingly, the effect propagates

through the ohstacle without Ioss or the obstacle is neutral (in both directions)
provided:

it r*=1 and 7+ ' p?=1; (4a. b)

it remains so at the change of the dipoles with (¢, r), and {0, 7) too. On the
contrary, the obstacle works with loss or it is passive (in both directions) for

o a

(tf— r*C1l and v *L o1, (5a. b)

The neutral and passive obstacles (four-poles) will come up again in the further
discussion.
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2. Composed scattering matrix got by transform for two or more
anisotropic chstacles

2.1. To study the composition of the obstacles, we shall treat here the
scattering of effects through two obstacles 0,, O, directly connected (at zero

57 ”

spacing) and having the characteristical matrices 8;, 8{,8{,..., and §;, S/,
S, ... For sake of simplicity, we choose the left-right equations of tyvpe (2d)

with the left, middle, and right vectors

,*.__y"v}:__[, ~]- iy g QYL L SN U P ] - -]
A Bl B R LT L e (T Lo LIl U LIS e [‘lf ~2
I~

R i=0
et Y
i3 ¥ A7 DR
//, 7
- v —~ 7
o % N/ 7
-
Z 7
T
Zs By % e Zz
vz G,
Fig. 3

(Fig. 3) and with the intermediary and product matrices S, 87, §, = S] §;,
respectively, and write in the composite lefi-right vector equation (with 7’ == 0,

T” = O)

— s r~ d!/ [}” -1 d/ OI ——lr.. —
— - - bis — ” ’ - —_ - o - R e—
=1 ~ |~ S = Sl Si% = ” P , B ~1 | —
T T T T
r" 1 r’ 1
~6 - ” ” - ! ’ =2
L. 3 [ T T i T T . 4 (6)
(Z/ (Z// gl/ r/ d// Q, ) Q” _I l._ —] S .
- r_n - ’,._’T- [ E T ~1 i s
T7T T7 T7T T 7
r//d/ T’ Q/r” ‘ 1
— ————— = ——— ]z,
T’T” T/TI! T/TI/ T’T” 3 l_-

From this, we get again by our dvnamic transform algorithm (DTA) at the

"o

pivot element s,y = (1 — o' r")/7" 7" = 0 (that is, for o' " == 1, because of

physical circumstances for |[o'r" 1 < 1) the composite input-output vector

equation
- . 1 .
-~ - - - s s (1) & 252y
Zowt = Sp &, where Sg= 8§ — S (s +es) (S(I) e?) =
4
‘ 1 dl d”*’)” r/ d/r 0 ="
— S DW= _ " 2 9’0" -
- SI Dij - o gt 1 o (13.1))
T | =" d =1 1—0p"s
1 d// OILO’ L
o - - w [ [:_l.ﬂd/_r/:‘1‘-_.9/,‘/!—_,Z T/]’
(1*9’ r/)T/ T' ]_—'er”—i—T’T”
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that is {7e)
o 0o ¢ Y "o’ " a1 L
Fout =| 5 | = T 9 T — 75 | =8p%n =
1—-o'r 1—o's S =
(SO # 0) ~in
, ; tITI r/[ T/ T”
‘2 r .T.- 1 I4 4 14 " ~0
Lo 0 1—0o

where Sp is the compesite scattering matrix of both obstacles (marked by " and ),
then e.g. zg=1r"+t" ' 1" - (1 — o' r")7 is the left composite reflexion at
z; =1 and 3, = 0 (and zero spacing).

2,2. Obviously, an isomorphism can be established betw een two
special matrix algebras; the first one has the matrices Sj, S, S),... (the
dynamical transformed of S(, Sy, Sy, ...) as elements, the ordinary matrix
multiplication §; = 8] 8] as the amcle operation (composition) with the asso-
ciativity 87 (8] §{) = (S’”S 1)8{ (and without the commutativity S} 8] = 8] 87);
the second one has the scattering matrices S;, S, Sy, ... as elements, the
artificial matrix multiplication Sp == S = S; (the dynamical transformed of S;)
as the single operation (composition) with the associativity Sy = (S = S¢) =
= (S, # Sp) + S; (and without the commutativity Sj= S;= S;= S;). Hence,
both isomorph algebras are semigroups with the correspondences

1 }
Se=|t o| — —| d ¢o|=8,, (8a)
T
Lrotl (v5=0) —r 1
. . , 1 r f/ trr C}//(1 . Q' 7‘")%1‘" T”QI
50550%80:7" - el
11—, Lo ") e ' on
0" 7 (L—0pn"1 1T TT
d/d//_i_lgr/ C)/dﬂ —‘E"Q” R Q, o (8}))
.—.ZI V/_T/ —O,I'/,—v—l :Sl Nl:SI’

JeS) eSSBS =T8S (80)
It must be remarked that swe gemeraie from the given matrix set &, =

o b 0

o o N , PR . . . —~
= 1&6, 8;. 8, ...}, through DTA (2b) the isomorphic matrix set &, =

74 . . . o~
== lb,. ST, Sy ... } them from its (ordinary} production set I =
= {5/ 8....} C ©, again through DT;& (7ly) the isomorphic (artificial) com-
position set sought for. €o= {§,+ S/. ...} € &,. Hence, DTA can be con-
sidered as a generator of isomorph matrix semigroups, namely here at st} =0

and also at all possible nivot elements s') == 0.
P I k1

2,3. Composing an obstacle of S§{= 8§ = [t, o:7, v] with its mirror
image of Sj= S- = [r,r;0,1] at O spacing, we get the composite scaftering



GENERATION OF ABELIAN MATRIX GROUPS 9
mairix after (Tc)

(1 — 52)
So=Scasypo—l T UL

2= lr(l—0%)+ito Tt

this is obviously svmmetric. The double has the composite transfer maximal in
absolute value at the case (neutral) being without loss after (4a, b), namely

o el
(1=)max jtp) = ———

i me Ty (9b)

1— o [ 1—ir?

For getting ¥: = arc () = arc (1) = ¥, consequently the reciprocity t = 1,
it must look at the double of spacing x; the modified composite transfer has its
maximum in absolute value

ltre| le} (7] T
max |fp| = max ————— = max ——— =4l l‘_j =1 (%)
HL—g?e™| H—lo2ed(0,+x)|  1—of?
at x = —0, = — arc (0). Hence, the modified composite reflexion must equal

zero, that is:

170 e4* . RN .
r E]~—~e—— — ,],I ejar_\_ 12‘ l.-L'{ 12, e] (8___19‘___0 ) — 0
o T 2 _2jx | i i 1 > P Y o
_'Q—e f‘s—g=x “‘Oi—
and from it Go=10; 4 8. — (0, + 5, = (2n 4 I)m.

This phase relation (based on energy situation) is valid also for §; == 4..
2,4. For the double (passive) being with loss, the conditions (5a, b) are
not necessary (but sufficient) for the composition S¢ = S = §]. To complete

them, we can write the inequalities

[E

. (10a.b)

(because the output power cannot be higher than the input one), or by their
addition, the necessary condition

I3

A

AR (10¢)

133

[

Such an other one can be obtained from (le¢) as the incquality

-
N
—
e
|
(“‘“
e
Q
e
I
o
¥
<
1o
—_
foend
ot
jos3
Z
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(where a2, o® are the power-absorption coefficients) and from it the inequalities

Co ,
o fo ax | Ty ! ax
el | : Cos &i = (11b.c)
P T lez] 2.7 21 ol

where for az = 0, [t{= {17! and (9e¢).

2,5. Take into (7c¢) now S; = 8§, then r” == z (the close reflexion as
complex variable) and z; = 1, z; = 0, so for the left-side composite reflexion
the function can be written:

N,',ER(:):;"T —

(d

I

it—ro, z==1/0). (12a)

In reasonably similar way, for Sf = §,, 0’ = 5, z; = 0 and z; = 1. we get the
analogous function of the right-side composite reflexion

Ttz o~—dz ,
w,=Pz) =0+ = d=ir—r, z==1r). (13a)
) 1—rz 1—rz
Both are linear fractional function of complex variable, which are — as well
known — circle keeping. R(z) map on the circle line 'z =a -1 o] to
another one with centre and radius
a’teo a 7] 5
¢, =1+———, and R, = — , rTesp., (I2h.c)
1=atg? I—atg
where arc
[(ca — 1), r] = ave (t1) — are (rg) = &; — 6, — 6, — b, =17 . (12d)

These circular points give the answer to the close reflexion z = ae® (with
constant modulus and variable phase) and the centre ¢, to the z, =«

Obviously, the mappings on (12a), (13a) have two fixed points { and {,
(possibly coinecident) written as £ = R({), and [, = P(l.), resp.. or in detail,
by the quadratic equations (with 20 =d —1 =11 —r10—1)

20 . g - 20 .
2 o D20, R(L)=0+ -2 =0, (13a)b)
0 0 B r T
Their zeros or fixed poiunts are:
. fj "’r 52 a - (5 , i (52 IS
bp=——2%| ==, G=——= [ G F P )
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T A D
——)#( 1J (;e,f)

hence £, and ¥, then J, and ] are reciprocal values. The special close reflexions
¢, and {, become — without change in the obstacle — into left-side composite
reflexion.

The fixed points {,

are defined after (13a,c¢) by two parameters
(coefficients) 2b = 20/0, ¢ = r/o and also inversely, as

0 0

=4

If two obstacle with Sj = [t',7";7", 0], and S; = [t", ¢"; 1", "] have
equal parameters 2b and ¢, namely

:)b/z IIT,“‘“T’Q/"—I B t”f”‘—T”Q”ﬂ—l . b” (143)
= ’ - " - - ’
0 0
r/ Tr/
(== =, (14b)
I L
o 4

then z) their fixed points are common:

P

19~

u

[
se

1 = =1y b

(14e)

7) the composition (artificial multiplication) of their scattering matrices is
commuiative:

55+ 5, = 8;= 8; and vice versa. (144d)

The first fact follows from (13¢): the second one flows from (7c¢) as:

t/ t// i” t/ r/ T”
= s = (=02 L = D (=0
1—o'r 1—0"1 o' "
’ ron 0w 1n_r
, LT Y t't'r
P — =r"+ —
1 _ [}Ir// l Ql! "
= ]/”_ (f g IO) — 'r/ — Tn_;__ ([/ITI/ rﬂorl) 7 1‘: C
1 , trT/ . r/ Q/ 1 ‘ t”T”"T”Q” R , 1 ‘ 1 3
e e + . q.e.d,
Ql/ Q Ql Q// Q/ g”
(14e)

On the basis of the former, it can be stated: the (artificial) matrix, semi-
group &, defined by the formulas (8a, b, ¢) will be a commutative matrix semi-
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group, if all its matrices S; € €, have common parameters 2b and c¢ after
(13g, hh). consequently common fixed points 1| and I, after (13¢, d).

2,6. A commutative matrix semigroup &, turns into a commutative or
ABELIAN matrix group, if any matrix S, € &, is invertible by the artificial
multiplication = into its reciprocal (inverse) *S; ! after the definition

*§ 7ls S, = 8,2%5;1=E. (15a)

Now, the condition and the formula of this inversion are to he found.

According to the relationship S, « 8, after (3b) [realized from S by the
DTA for s,, 5 0 after (Zb, ¢)], the inverse *S;! can be interpreted through the
relationship S{' <= *Sy! [realized from S;'= R, by the DTA for ry == 0,
reasonably after (2b, c)]. Now, look at the single DT A-steps to produce se-
quentially the matricial transfers S, — S, — S{' — *S;%, then unit into a
multiple DT A-spring [14] to produce directly the matricial transfer S, — *S;*.
It can be written that

*Syl=Br'S, = [E —(e, -+ s)e?| —(e, - s,)el (s, - e)e* —(e, - s,)ex] ~1-
©[Sy— (8.t e)et | —(s, -+ eel - (e, + s,)e | —(s, -+ e,)e?] =
= [E — (e; - s)el — (e, + s,)e’]~1 -
" [Sg—(s; + e)el — (s, + e)e’] = 57 E = S77,
where 8718, =S,5; = E. (15h)
After this result, the inverse *S;! concerning the artificial multiplication and

. -1 . . . . R .
the inverse S5 concerning the ordinary one are identic; their common formula
and condition are the following:

Sgl="*Syl=—"| T =—n| (d=tr—r0=0). (15c)

We can control after the product rules (6) and (7¢), that in fact, §;° S, =

=*§;7'+ S,=E. Our DTA can be considered as a generator of ABELIAN

3o

matrix group, too.

2,7. A chain O of the cbstacles O, (coupled in series) and given by their
scattering matrices S§ = [, o®; 7%, ¢¥] can he characterized by its
composite scaltering mairix (Fig. 4)

Sgu=11t, 0.]=80xSI Vs, .5 8Dxs8M=

H Tn

1 ) n 15

= gf sp="7 [ o). 1)
k=1 k=1

¢ T(k~’

i
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Instead of generalizing, it will do here to make some special remarks:

z) As for n = 1,2 there are t/7, ¢ " (1 — o' ")} 7" (1 — o' ¢") 1 =

=t't"{7' 7", in general the ratio

e

—ﬁﬂh':]gw—]j o (16a)

,vz k=1 foe=1 S

prevails.
5) If two obstacles are connected by a line of length x propagation coef-
ficients heing k and », they can be considered an obstacle (without reflexions)

with the seattering matrix S, = [ej"‘x, 0; 0, e/].

i
<
W
()

Zin+1 } Z2n-1 § Z2n-3 L2241 Z2 Z7
2Zn+2 & IZn Ziurl 25 Z: 7
- o) A Is S
Un Un-1 L 2 r
Fig. 4

») If the chain O, of Sp, has all its obstacles O, without loss, it is itself
1

without loss and the conditions are valid again:

S

(/782) = ‘29(“/1) ; ggz)_ (()(”) ,)(n ) — 7.

&) If all the obstacles O, (their SY) ave commutative, their chain O,
. K o N

(its Sp,) is commutative again, with the specialities

i~:c:,l;l. I—I—:c T = o>+ 2bo;t+c (19a,b)

9, Cn o
if 7, — 0 (dissipation). so g ° -+ 2b o7t —¢—0, 0" — I,and t;, — [, which
are the common fixed points. (1S¢)
2.8. Let us take the chain O of n identic obstacles O, = 0 (coupled in
series) given by their common seattering matrix S = 8§, = [t, 03 7. 7]. The

composite seattering matrix is now obviously

2

i, 0 ESO,::SO;—‘SOﬁ...:—:SU:: ,;VL;/S“ d=1t o] . (20)

2 ‘ 3
r, T, rT

{12
(=
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. . . . 3 2 - . .
The commutativity is valid again (because S » S = S}). The associativity
is also valid (as ever in the semigroups), consequently

[ (Rt p— — — . — . . Qm . Qn
S() = SO.77:+11—" tnt+n m+n| = | In Om | | Iy QnJ = SOm - SO:z - SO P
I'm+n m-+n 'm Tm Ty Tn (2 1 a)

On the model of (8a), we can write for ¢
) the difference equations

men and r. . (and by analogy, for

and o

T <m--n

m-+n

f b t, T

,
) . ) mtmIn c
. Ty, =T, — —— 1, (21b.c)

1-o0

sm'n wm r!!

For n = 1 the same becomes into recoursing formulas by which we can count
all the tpoy, Fmyy (and T . 0m.y) starting from their initial values

h=t, rp=r (op=0. T,=T71). (21d)

2 t e ho
=1 1= — =t|—] —~~—-&——«-——;, {(22a)
1—or T sh20—Tsho
— (1 )”:1_ sho )
Tl shno--T sh(n—1) o '
- - sh 20
PpET, =T & f = 7§l 0 e, (22b)
1 por sh20-—-T shd

r shnd "
shno =T sh(n—1)9 '

notations heing

2]=d+l=1tt ro-+1, T=Vit:
N d I
chd = } (=-1), sho=— *‘“T“"l“ ) (22¢)

2,9. In the former treatment, homogeneous and anisotropic (i.e. with
different scattering properties in the opposite directions) discrete (thin) ob-
stacles have been considered throughout, further, their anisotropic discrete
chain of inhomogeneous or homogeneous composition (by different or identic,
homogeneous discrete obstacles). The former contributions — based on our
dynamical transform algorithm (DTA) as generator of various matrix algebraic
structures, at last one of ABELIAN matrix groups — were given for the algebra
of such obstacles and their chains. They could perhaps raise some ideas to set
put certain problems in this domain.
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In a subsequent paper, investigations of discrete obstacles with 2n con-
tacts (where our DTA in hypermatrix form is essentially more advantageous),
of the continuous media with 2-2 and 2n contacts (treated by matrix- and
hypermatrix-functional equations) and other specialities will be treated.

Summary

After World War 11, quick development began in the theory of micro-wave technies.
Among others, the algebra of obstacles or the scattering algebra was evolved for discrete
obstacles. then for continuous media. with the application of various mathematical methods,
and though the works written by CarriN, REpEEFFER, TWESKY and by many others (see
References [1—13]).

Nevertheless. this beautiful progress admits—just because its gquickness—various
contributions. Such complements will be here given (and others in a subsequent paper) based
on our dynamic transform algorithm (DTA}) of matrices and hypermatrices [14—17]. It can
be considered as a generator of certain matrix semigroups and groups, e.g. the ABELIANS ones,
Our contributions are connected possibly with known facts of scattering algebra: these latters
are often interpreted in sense of [13].
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