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1. Scattering matrix and its transforms for an anisotropic ohstacle 

1,1. After \Yorld 'Vv' ar n, a great development has begun in micro-wave 
technics. Their theoretical progress was also very quick; e.g. the old STOKESIA:"1 

difference equations for the optical transfer through discrete glassplates in­
duced the researchers to find and evolve the algehra of ohstacles, to introduce 
the scattering matrix and to find its theory, later to make a generalization for 
continuous media hy functional equations and to use here the recent principle 
of inval'iant imhedcling, finally to extend the theory to the ohstacles with 2n 
contacts and to the HILBERT space and, last hut not least, to apply all these 
to the effect transfer along micro-wave chains etc. In these important investi­
gations, BELLl\IA:\":\" [2], CARLn [3], GULLE:.YII:"1 [6], REDHEFFER [8, 9], 
REID [lOJ, TWERSKY [ll] and many other authors have produced essential 
results. 

Nevertheless, this heautiful progress admits just hecause of its 
quickness - various complements; e.g. common direction of transfer and 
multiplication, dynamic transform algorithm (DTA)* of scattering matrices, 

* Our dynamic transform algorithm (DTA) for matrices is amply explained in [H-II] 
and other works. Its basic idea for n dimcn:5ional yectors and without proofs -- is the fol-
lo,,-ing. A linear algebraic Yector eqllation has the form 

P 
II == Eu li 1 el~'" _L 1: Uk'l el:'1-'-'" -'-un er; III e l ....:....··· '-:-El{ 111(...2-·.· -~11!: f?i; = 

q~l 

P 
X,fll~'" ];X!q{[Z, ... ~Xm(/m X'(/I-;-·.·-;-AVrL-;-···~Xl7lflm A(J.r. (E) 

q=l 

The bilateral change uJ( - AL XL is feasible, if pivot mbmatrix AJ(L =Ei<-4..L is reglllar, 

that is, det (Af(d == ' Af(L : 0 (Ch). The arrangement of (E) corresponding to (Ch) will be 
(with Bp =, Af(L ; ,= 0) 

Bpl:p == IlIe,~", -AvxL -;- ... ~llnei! x,a,~", -El(llJ(-;- ... --Xmflm A~ !Jp. (A) 

The transformed form Ap of Au on the new basis Bp and with it the solution L'p = Ap!Jp can be 
produced by our formulas (at, Af(L i ~ 0, and aWlq ~ 0) 

1* 
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inyestigations and operations with transformed matrices, generation of arti­
ficial matrix scmigroups and extension to ABELIA::,\ matrix groups etc. Such 
complements will here be given (and others in a subsequent paper) to elucidate 
certain problems. The complements must possihly he connected 'with known 
facts of the scattering algebra. These lattel's will he often interpreted ill sense 
of the excellent compilation [13 J. 

1,2. Let ns assume an effect (e.g. 'waye) to perme3.te a homogeneous 
ohstacle (e.g. network) 01 under the conditions of constant frequency and 
'wave form. This ohstacle can he characterized by the 4 scattering coefficients 
Sij; namely, coefficients S11 = t, S~l r are complex amplitudes of the trans-

0; 

Fig. 1 

ferring and reflecting 'wayes at the input unit wave-amplitude on the start 

(right) side (Fig. la); coefficients Sl~ q (for reflexion), S~~ ,(for transfer) 
are defined in reasonably analogous manner at the input unit waye-amplitude 
on the aim (left) side (Fig. Ib). By definition, and under the condition of 
affinity (sum and rate keeping), the relationships bet>l-een the (input) complex 
waye-amplitudes ;:;1 (right), ;:;.1 (left) and the output ones ;:;~ (right), ;:;3 (left) 
can he written as the in put - 0 ut put e q u a t ion (Fig. 2). 

or, ach-antageously, in Yector-matrix form: 

... iu a multiple (p-times) spring (DTA), or 

... in q = 0,1,2, ... p - 1 single steps (DT--\.a~l)' 
If AD is of n order and regular, at a possible choice 

Iq = kq k -;- 1 there is Bn 

1';:;1+';:;1(->-)' (la, h) 

(lc) 

(inverse). 
(I) 
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where So is the scattering matrix, Zill and Zout are the input and output vector, 
resp. Here it 'was supposed to exist a close (coupled to the obstacle) working 
'without reflexion (rl = 0). 

1,3. The scalar equation system (la, b) or the vector equation (le) can he 

soh-ed, e.g. hy the right vector z~ = [zl' Z2] for the left vector z~ = [Z3' ::4] too, 
through the change Z2 -- Z.1 provided S22 = i "' O. It goes very elegantly by the 
help of the dynamic transform algorithm (DTA) (given in [14.-17] and other 
works by the author) and at the chosen pivot element S22 = i ~' 0, that is 
- in accord 'with the foot-note of item 1,1 -

Z/ = SI Zr, 'where SI = So _1_ (s/+eJ (sk_e l ) = So-Du = 
Su 

(:la - c) 

I r -I r 
[r i-I] = d 

i 

I 
r 

L L i 

with the determinant d = ! So i = ti - rl} , 

or, in the left-right equation (with T.' 0) 

r I r cl '2 -Ir I 
Zl- ::3 =1 Z1. = SI Z r (2d) 

i i 

I 
r 1 

~, ... :.) 

L ...J L i T ...JL ...J 

with the determinant 

, 1 _ ti t 
d1 -, S11 =-(d·I--'-ro)=--=-. 

,! .) '- .) 
Y- Y- T 

(:le) 

z~ Z2 

Fig. 2 
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There are further transformed forms of (lc), (~J = 6 in all, together with 

their permutational forms. For instance, with the simple change of the rows 
and columns of (2d), 'we get the permutational form 

• -I .- 1 r • • • iz= =4 """) SI Zr (2£) 
T T 

d 
Z3 Z1 

L -.I L T T -.I L -.I 

with the determinant d1 = tlr. Oln'iously, there are relationships het'ween 
Eqs (lc), (2d) and (2e), in particular: 

(3a-c) 

all three triples Zout' So' Zi"; Zf, SI, zr; if, SI, Zr characterize the same scattering 
circumstances in other forms, which are easily interchangeable. Remark that 
the left right equations (2d) or (2e) will later enable to find the composition of 
ohstacles - on the hasis of the matrix algehra. 

1,4. Eqs (lc) and (2d) or (2e) and other transformed forms are known in 
micro-'waye technics as jour-pole (-terminal) ones for different giyen param­

eters under different names; e.g. for. Zl = 11, Z2 1~, and Z3 F 1, ':.1 - U2 

there are impedance parameters siJ = .:u; for Zl = [J1, Z2 = F2 and ':3 === 11 , 

Z.l === 12 there are admittance parameters Sf! = Yu etc.; eyidently. thcre are 
4.3 

1.2 
6 forms in all. 

The pOlrer of an ohstacle is as for the four-pole onc proportional to 
the square absolute amplitude of the effect. Accordingly, the effect propagates 
through the obstaclc 1cithout loss or the obstacle is neutral (in both directions) 
proyided: 

it; :! i r 1 and T 12 12 = 1 ; (-la, h) 

it remains so at the change of the dipoles with (t, r), and (12, r) too. On the 
contrary, the obstacle works zcitlz loss or it is passiye (in both diTeetions) for 

: t r 1 and 1 . (5a, b) 

The neutral and passiye obstacles (four-poles) 'will come up again in the further 
discussion. 



GE:YERATIOS OF ABELLLY MATRIX GROUPS 

2. Composed scattering matrix got by transform for two or more 
anisotropic obstacles 

7 

2,1. To study the composition of the obstacles, we shall treat here the 
scattering of effects through two obstacles 0 1, O2 directly connected (at zero 
spacing) and having the characteristical matrices S~, S~, S~, ... , and S~, S~, 
S~, ... For sake of simplicity, we choose the left-right equations of type (2d) 
"with the left, middle, and right vectors 

"!7"* 
~l 

02 0,-

Fig. 3 

(Fig. 3) and "with the intermediary and product matrices S{, S{, SI S~ S{, 
respectiyely, and "write in the composite left-right vector equation (with " "' 0, 
TI! " 0) 

, , dl! r/' .r d' I, -1 

Zl= =5 == S~ Zm S{ S~Zr = ," ," T' " 
'::;1 

r " 1 r 
, 

1 
=11 ," " " 

=2 
(6) L .....J L , ....JL ....JL ....J 

d'd" r 
, 

d" r/ I, 1 
--- -rs

-[ r'r 
T'T" T'T'! 'I' y" 

:' == h 

-~ r e'r" 1 
T'T" T'T" T'T" T'T" 

"'2 
....JL 

From this, we gct again hy our dynamic transform algOTithm (DTA) at the 
piyot element S22 - (1 - Q' r")/,' T" " 0 (that is, for Q'rl! ,'" 1, because of 

physical circumstances for : Q' r" i < 1) the composite input-output L'ector 
equation 

r' d" 0' ..J.....O"J - ,_ 
1 f}' r" 

(7 a,b) 
r' 

Q ,Q [.I'd' '1 '" -' "] -) -T. -0 r -, T , 1 [d" 'I ' J 
(I-C' r"),' ," I-Q'r" +T'," ..-



8 F. FAZEKAS 

that is (7 c) 

r I r t' t" 

=l" 
1 r 11 

t'r'r" 

1 '" -' -I]r 

11 • I] I 

L l-I]'r" 

where So is the composite scattering matrix of both obstacles (marked by , and "), 

then e.g. ':20 - r' + t' 7:' r" . (1 - Q' r")-l is the left composite reflexion at 
Zl = 1 and ':2 = 0 (and zero spacing). 

2,2. ObYiously, an is 0 m 0 r p lz ism can be established betwecn two 
special matrix algebras; the first one has the matrices Sf, S~, S~', ... (the 
dynamical transformed of S~, S;, S~', ... ) as elements, the ordinary matrix 
multiplication SI = S~ Sf as the single operation (composition) with the asso­
ciatiYity S~'(S~ S~) = (st SDS~ (and 'without the commutativity S~ S~ = S~ Si); 
the second one has the scattering matrices S~, S;, S;', ... as elements, the 

artificial matrix multiplication So - S~ * S~ (the dynamical transformed of SI) 
as the single operation (composition) 'with the associativity S~' * (S~ * S~) = 

= (S~' * S~) * S~ (and without the commutativity S~ * S~ = S~ * S~). Hence, 
both isomorph algebras are semigroups with the correspondences 

So - r t Q] + [ d Q] == SI . 

L r 7: ( T +0) - r 1 

(Sa) 

1 r t' t" 
So = S~ * S~ = ------l 1 r" r'(I-I]'r")-t'T'r" 

~/' (1 r/ r") 
T'T" 

1 l cl' d" -r' 'l' r/ el" -'_I]IIJ 
7'T" -cl'r" _rt -f}'r"-l 

(Sb) 

(S;' * S~) * S~ ...... St (S~ S~) = (S~' S{) S{. (Se) 

It must he remarked that we generate from the given matrix set ':::0 = 

{S~, S;;, S;' .. ,. J. through DTA (2h) the isomorphic matrix set;::;1 = 
{S~, S{, ";', ... }, them from its (ordinary) production set ~I = 
{S~ S{, ... } ~ 51 again through DTA (7h) the isomorphic (artificial) com-

position sct sought for. 50 = {S~ * S;;, ... } c '::2:)0' Hence, DTJ .. can be con­
sidered as a generator of isomorph matrix semigroups, namely herc at S~iJ -~ 0 
and also at all possihle pivot elements sIn o. 

2,3. Composing an obstacle of S~ = So [t, Q; r, T] with its mirror 
wwge of S~ = S- = [T, 1'; Q, t] at 0 spacing, we get the composite scattering 



matrix aftcr (7c) 

S 
° 
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S- * So + _1_ [ tT 
- 2 r(I-92)+tT9 

r(l 

9 

(9a) 

this is o}n-iously symmetric. The double has the composite transfer maximal in 
absolute yalue at the case (neutral) being ll;ithout loss after (4a, b), namely 

(1 'TI --'-'--'-- = -'- = 1 
1 ir:~ it\ 

(9b) 

(it: = ITl). 

For getting Ut = arc (t) = arc (T) """ t\, consequently the reciprocity t = T, 
it must look at the double of spacing x; the modified composite transfer has its 
maximum ill ahsolute yalue 

max ! t ! = m ax = max ---'--'--'--'---
, 0, 11-02 e~jXI 11- 10;2 e~j(6 

t ... I. _ I Q 

at x = -be - arc (Q). Hence, the modified composite reflexion must equal 
zero, that is: 

and from it I);r . 

This phase relation (based on energy situation) is valid also for cBi " {J". 

2,4. For the double (passiye) being zrith loss, the conditions (Sa, h) arc 
not n;;cessary (hut sufficicnt) for the composition So = S~ "* S~. To complete 
them, ,q' cun \nite the incqualities 

(1 Qu,h) 

(hecausc the output lw"wer cannot hc higher than th.; input one), or hy their 
addition, the necessary condition 

(10c) 

Such an other onc can he ohtained from (le) as the inequality 

rT t~'~ /'" (1 r ,~) (l - : T i~ - ! Q2) = a2 :.:2 (lla) 
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(where aZ, 702 are the power-absorption coefficients) and from it the inequalities 

I I a70 I (Fo'. <-' -- ,cos -i 
T [tT[ I 2 , 

ax 
(llh,c) 

where for ax = 0, : t i iT! and (ge). 
2,5. Take into (7c) now S~ = So' then r" = z (the close reflexion as 

complex yariahle) and Zl = I, z6 = 0, so for the left-side composite reflexion 
the function can he written: 

lfr == R(z) r 
tTZ 

I-'2z 

r+dz 

I '2z 
(d = tT-r'2, ;;; 1/'2) . (I2a) 

In reasonahly similar way, for S~ = So, 1/ = Z, Z1 = ° and ""6 = 1, 'I"e get the 
analogous function of the right-side composite reflexioll 

Ttz n --'- ___ = -C:-__ 

~ . I-rz I rz 
(d = tT T, Z / I/T). ( 13a) 

Both are linear fractional function of complex variable, ,,-hich are - as well 

kno,m - circle keeping. R(z) map 011 the circle line . ~ I = a < I; '2 I to 
another one with centre and radius 

a2 a 
Co = r -;- , and Ra = -----'--, resp., 

I-a2 ic 2 I- a2 C 2 
(I2h,c) 

;rherc arc 

[(ca - r) r] arc (tT) - arc (re) = Ut ...:.... {lr - br - 1\ 7 . (I2d) 

These circular points gi,-e the answer to the close reflexion z = aeiT (with 
constant modulu~ and yariahle phase) and the centre Ca to the z" a2ij. 

Oln-ionsly, the mappings on (I2a), (l3a) haye lIeo fixed points; and ;* 
(possibly coincidcnt) written as ; = R(;), and ;* = Pc;,,), resp., or in detail, 
by the quadratic equations (with 2b = d I = tr - re -1) 

=0. (I3a,h) 
r r 

Their zeros or fixed points are: 

~lJ:.!== (I3c,d) 
r 
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where 

1, 

(13e,f) 

henee C 1 and ;~, then ;~ and ;~ are reciprocal yalues. The special close reflexions 
;1 and ;~ become - without change in the ohstacle - into left-side composite 
reflexion. 

The fixed points ;1' ;2 are defined after (13a, c) by two parameters 
(coefficients) 2.b = 26/Q, c = rlQ and also inYersely, as 

(13g,h) 

If two obstacle with S~ = [t', 'i'; r', Q'], and S~ = [t", Q"; r", y"] haye 
equal parameters 2b and c, namely 

t'y' - 1 
2b' - ------'---

Q' 

r' 
c'=--

c/ 
then 7.) their fixed points are common: 

t"r" 1 
-----=--- = 2b" , 

'}" 

" r " -=c, 
r/' 

';--!I 

~l ,,=,1 ') "!'~ == ''::'~; 

(Ha) 

(Hb) 

(He) 

ri) the composition (artificial multiplication) of their scattering matrices is 

COTnl1111tati re: 

s~ " S~ = S~ "S~ and yice Ycrsa. (I-id) 

The first fact follo-,v-:, from (l3c); the sccond one flows from (IC) as: 

t' t" (' t' , 11 

______ =>- f)' r" = 0" r'(=C)=>-_r_ = _1"_ 

1-r/'r'.... - c:/ tJ." 1- 1/ r" 

t'T'r" t"r"r' 
r' -:- ---- = r" ~ ----

I q'r" l-q"r' 

=>- r' (t'y' r'q) = r" = (t"y"-r"o")r'i:C - , 

1 t'y' - r' 1 t"T" 
=>--+ , 

1 ' -

n' 0" Q" IJ q' 
---=--- ( = 2b 

Q" 
_ ---'- _1-_) , q.e.d. 

- - (He) 

On the hasis of the former, it can he stated: the (artificial) matrix, ;:;emi­
group 3 0 defined hy the formulas (Sa, h, c) will be a commutatire matrix semi-
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group, if all its matriccs So EEo ha..-c common parameters 2b and c after 
(I3g, h), consequently common fixed points ;1 and ~2 after (l3c, d). 

2,6. A commutati..-e matrix semigronp Eo turns into a commutati..-e or 
ABELIA:.\' matrix group, if any matrix So E \5 0 is invertible by the artificial 
multiplication * into its reciprocal (inverse) *5;1 after the definition 

E. (15a) 

Now, the condition and the formula of this in..-ersion are to be found. 

According to the relationship So - SI after (3b ) [realized from So hy the 
DTA for 8 22 # 0 after (2h, c)], the in..-erse *S01 can hc interpreted through the 
relationship SI" -- *Sol [realized from SI" = RI hy the DTA for 1'22 ~ , 0, 
reasonably after (2b, c)]. Now, look at the single DTA-steps to produce se­
quentially the matricial transfers So ->- SI ->- S1 1 ~ *S01, then llnit into a 
multiple DTA-spring [14] to produce directly the matricial transfer 50 -+ *501

• 

It can he written that 

*S-1 - B- 1 5' - [E ( , ) 2' ( , ) 1 ' ( o = 4 04 = - e 2 , 8 2 e 1- e1 ,81 e ~ 8 2 

. [5 0- (82 + ez)e
2: -(81 -'- (Jl)e1 + (ez + 8 z)e2: -(82 + eJe2] 

= [E - (e l + 8 1)e" - (ez -'- sz)eZ]-l . 

[So - (81 + e1)e1 (8z ez)e
2] = Sol E = SOl, 

(ISb) 

After this result, the inyerse * So 1 concerning the artificial multiplication and 
the inverse Sol concerning the ordinary one arc identic; their common formula 
and condition are the follo\\'ing: 

+[ T -r;:] (d 

-1' t 

tT-rr;: 0) . (15c) 

'.Vc can control aft'?r the product rules (6) and (le), that in facL So = 

*So" * So = E. Our DTA can he considered as a generator of ABELIA:.\' 
matrix group, too. 

2,7. A chain ON of the obstacles Of: (coupled in series) and given by their 
scattering matrices sf') = [t(l') , 12(1:); r(k), r(!')] can be characterized by its 

composite scattering matrix (Fig. 4) 

r1 [ :;:~ 
(15 ) 
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Instead of generalizing, it -will do here to make some special remarks: 

7.) As for Tt = 1,2 there are t!r, t' t" (1 
= t' t

n 
/ T' T", in general the ratio 

Q' r")-J/ r' TN (1- '1' r")-l == 

(I6a) 

pre..-aih. 
(3) If t,ro ohstacles are connected hyaline of length x propagation coef· 

ficients heing k and %, they can he considered an ohstacle (-without reflexions) 
'with the scattering matrix So = [eikX, 0; 0, ej%x]. 

/=0 

Z2n+1 Z2n-1 

C n 0,2 

Fig. 4 

1') If the chain Of! of SOn has all its obstacles Ok zrithout loss, it IS itself 
-without loss and the conditions are ..-alid again: 

, t rl i ! I : TT: , , (18) 

;T. 

0) If all the obstacles 0le (their S~')) are cOllwwtati1:c, their chain Ot,; 

(its SoJ is cOlllmutati..-e again, with the specialities 

t,. 

Q" 
c (l9a,b) 

if Tn -+ 0 (dissipation), so Q,~ 2b QI~I c -, 0, QI~1 -+ ;~ and tll -, (I' whieh 
are the common fixed points. (19c) 

2,8. Let us take the chain 0,\; of n identic obstacles 0" = 0 (coupled in 
serics) given hy thC'ir COlllmon scattering matrix S~!:) So [t, Q; r, r]. The 
composite scattcring matrix is now ohyiously 

[
t Q1". 
r r 

(20) 
11 
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The commutatlnty is yalid again (because S~:) * S~I) = S~). The associativitv 
is also valid (as ever in the semigroups), consequently 

Sm-n - S - [t o = O,m-:-n= ~m-.: n 

l171...!-n 

m.;.nJ 
Tn+l1 

O 

J 
- S ., S - srn " Sll ill = Om To On = 0 To o· 

Tll (21a) 

On the modcl of (8a), we can write for tm'ell and J"m+n (and by analogy, for 

Tm-'cll and Qm-.n) the difference equations 

r 
tr1l7n == , f m +n == fm + -"-'...-:.:.:.--"... 

1-Q.71 rn 1-Qm r ll 

(21h,c) 

For n = 1 the same becomes into recoul"sing formulas by which we can count 

all the tll1-'-1' rm+l (and T m + 1, Q!Il-'-l) starting from their initial values 

In this way, we get e.g. 

sh r5 

1 - Qr slz 2r5 -T sh 6 

slz 6 

Shllr5 T slz(n-1) 6 

r 1 r 

r sh 116 

tTr 

1 - 2r 

r=--- " 

notations heing 
sh nr5 -T sh(n -1) () 

ch 6 

2,/ d --1 = tT 1"2 

r1 
T 

1) , 

r slz 26 

slz 26 T sh6 

(21d) 

(22a) 

(22h) 

(22c) 

2,9. In thc former treatment, homogeneous and anisotropic (i.e. with 
different scattering properties in the opposite directions) discrete (thin) oh­
stacles have been considered throughout, further, their anisotropic discrete 
chain of inhomogeneous or homogeneous composition (by differcnt or identic, 
homogeneous discrete obstacles). The former contributions hased on our 
dynamical transform algorithm (DTA) as generator of yarious matrix algehraic 
structures, at last one of ABELIAl\' matrix groups - 'were giyen for the algehra 
of such ohstacles and their chains. They could perhaps raise some ideas to set 
out certain prohlems in this domain. 
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In a subsequent paper, investigations of discrcte obstacles with 2n COll­

tacts (where our DTA in hypermatrix form is essentially more advantageous), 
of the continuous media with :2.:2 and 2n contacts (treated by matrix- and 

hypermatrix-functional cquations) and other specialities will be treated. 

Sunullary 

_·\.fter \Yorld \Yar H, quick del'e!opment began in the theory of micro-waye technics. 
_·\tnong others. the algebra of obstacles or the scattering algebra was evoh'ed for discrete 
obstacles. then for continuous media, with the applicatiol~ of ~'arious mathematical methods. 
and though the works written by CARLIX, REDHEFFER, TWESKY and by many others (see 
References [1-13]). 

:'\eyertheless. this beautiful progress admits-just because its quickness-yarious 
contributions. Such complements will be here gh'en (and others in a subsequent paper) based 
on Ont c(vrlllmic transform algorithm (DT.-1) of matrices and hypermatricei' [14-17]. It can 
he considered as a !<eneTa/OT of' c(,Tlain matTix semi!<TOllpS and !<rOllps. e.g. the A.BELIAXS ones. 
Our contributions ;re cOIlnected possibly with kno\\'Il facts of~scattering algebra: these latter,; 
are often interpreted in sense of [13]. 
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