GENERATION OF ABELIAN MATREX GROUPS FOR USE IN THE SCATTERING ALGEBRA

By
F. Fazeifas
Department of Transport Engineering Mathematics, Technical University, Budapest

(Received September 3, 1971)
Presented by Prof. Dr. G. Szász

1. Scattering matrix and its transforms - for an anisotropic obstacle

1,1. After World War II, a great development has begun in micro-wave technics. Their theoretical progress was also very quick; e.g. the old Stokesian difference equations for the optical transfer through discrete glassplates induced the researchers to find and evolve the algebra of obstacles, to introduce the scattering matrix and to find its theory, later to make a generalization for continuous media by functional equations and to use here the recent principle of invariant imbedding, finally to extend the theory to the obstacles with $2 n$ contacts and to the Hilbert space and, last but not least, to apply all these to the effect transfer along micro-wave chains etc. In these important investigations, Bellmana [2], Carlin [3], Guillemis [6], Redheffer [8, 9], Reid [10], Twersfy [11] and many other authors have produced essential results.

Nevertheless, this beautiful progress admits - just because of its quickness - various complements; e.g. common direction of transfer and multiplication, dynamic transform algorithm (DTA)* of scattering matrices,

[^0]The bilateral change $-\mathbf{E}_{K} \boldsymbol{u}_{K} \rightarrow-\mathbf{A}_{L} x_{L}$ is feasible, if pivot submatrix $A_{K L}=E_{K}^{*} \mathcal{A}_{L}$ is regular, that is, $\operatorname{det}\left(\mathrm{A}_{K L}\right) \equiv\left|\mathrm{A}_{K L}\right| \neq 0(\mathrm{Ch})$. The arrangement of (E) corresponding to (Ch) will be (with $\left|\mathbf{B}_{p}\right|=\left|\mathbf{A}_{K L}\right| \neq 0$)

$$
\begin{equation*}
\mathbf{B}_{p} \boldsymbol{v}_{p} \equiv u_{1} e_{1}+\ldots-\mathbf{A}_{L} \boldsymbol{x}_{L}+\ldots+u_{n} \boldsymbol{e}_{n}=x_{1} \boldsymbol{a}_{1}+\ldots-\mathbf{E}_{K} u_{K}+\ldots+x_{m i} \boldsymbol{a}_{m n} \equiv \mathbf{A}_{n}^{\prime} y_{p} \tag{A}
\end{equation*}
$$

The transformed form \boldsymbol{A}_{p} of $\mathbf{A}_{\mathbf{q}}$ on the new basis \mathbf{B}_{p} and with it the solution $v_{p}=\hat{A}_{p} y_{p}$ can be produced by our formulas (at $\left|A_{K L}\right| \rightleftharpoons 0$, and $a_{k q l}^{(q)} \neq 0$)

$$
\mathbf{A}_{p} \equiv \mathbf{B}_{p}^{-1} \mathbf{A}_{p}^{\prime}=\mathbf{A}_{0}-\left(\mathbf{A}_{L}+\mathbf{E}_{K}\right) \mathbf{A}_{K L}^{-1}\left(\mathbf{A}^{K}-\mathbf{E}^{L}\right) \ldots
$$

investigations and operations with transformed matrices, generation of artificial matrix semigreups and extension to Abelian matrix groups etc. Such complements will here be given (and others in a subsequent paper) to elucidate certain problems. The complements must possibly be connected with known facts of the scattering algebra. These latters will be often interpreted in sense of the excellent compilation [13].

1,2. Let us assume an effect (e.g. wave) to permeate a homogeneous obstacle (e.g. network) O_{1} under the conditions of constant frequency and wave form. This obstacle can be characterized by the 4 scattering coefficients $s_{i j}$; namely, coefficients $s_{11} \equiv t, s_{2_{1}} \equiv r$ are complex amplitudes of the trans-

Fig. 1
ferring and reflecting waves at the input unit wave-amplitude on the start (right) side (Fig. la); coefficients $s_{12} \equiv \varrho$ (for reflexion), $s_{22} \equiv \tau$ (for transfer) are defined in reasonably analogous manner at the input unit wave-amplitude on the aim (left) side (Fig. lb). By definition, and under the condition of affinity (sum and rate keeping), the relationships between the (input) complex wave-amplitudes z_{1} (right), z_{4} (left) and the output ones z_{2} (right), z_{3} (left) can be written as the input-outputequation (Fig. 2).

$$
\begin{equation*}
z_{3}=t z_{1}+0 z_{1}(--), \quad z_{2}=r z_{1}+\tau z_{1}(\rightarrow) \tag{1a,b}
\end{equation*}
$$

or, advantageously, in vector-matrix form:

$$
z_{\mathrm{out}} \equiv\left[\begin{array}{c}
z_{3} \tag{1c}\\
z_{2}
\end{array}\right]=\left[\begin{array}{ll}
t & 0 \\
r & \tau
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{1}
\end{array}\right] \equiv \mathrm{S}_{0} z_{i n}
$$

... in a multiple (p-times) spring (DTA), or

$$
\left.A_{q+1} \equiv B_{q+1}^{-1} \mathbf{A}_{q}^{\prime}=A_{q}-\left(a_{l_{q}}^{(q)}+e_{i_{q}}\right) a_{k o l}^{-1}\left(a_{q} i_{q}\right)-e^{i_{q}}\right) \ldots
$$

...in $q=0,1,2 \ldots p-1$ single steps (DTA $_{q+1}$).
If A_{0} is of n order and regular, at a possible choice

$$
\begin{gather*}
l_{q}=k_{q}=\mathrm{k} \div 1 \text { there is } \mathbb{B}_{n} \equiv-\mathrm{A}_{0}, A_{n}^{\prime}=-\mathrm{E} \text { and } \\
\mathrm{A}_{n}=\left(-\mathrm{A}_{-1}^{-1}\right)(-\mathrm{E})=\mathrm{A}_{4}^{-1} \text { (inverse) } . \tag{I}
\end{gather*}
$$

where S_{0} is the scattering matrix, $\boldsymbol{z}_{i n}$ and $\approx_{o u t}$ are the input and output vecior, resp. Here it was supposed to exist a close (coupled to the obstacle) working without reflexion ($r_{1}=0$).

1,3. The scalar equation system ($1 a, b$) or the rector equation (lc) can be solved, e.g. by the right vector $z_{r}^{*}=\left[z_{1}, z_{2}\right]$ for the left vector $z_{l}^{*}=\left[z_{3}, z_{4}\right]$ too, through the change $z_{2} \leftrightarrow z_{4}$ provided $s_{22} \equiv \tau \neq 0$. It goes very elegantly by the help of the dynamic transform algorithm (DTA) (given in [14-17] and other works by the author) and at the chosen pivot element $s_{22} \equiv \tau \neq 0$, that is - in accord with the foot-note of item 1,1 -

$$
\begin{align*}
& z_{l}=\mathrm{S}_{1} z_{r}, \text { where } \mathrm{S}_{1}=\mathrm{S}_{0}-\frac{1}{s_{h l}}\left(\boldsymbol{s}_{l}+\boldsymbol{e}_{k}\right)\left(\mathbf{s}^{k}-e^{l}\right)=\mathrm{S}_{0}-\mathbf{D}_{h i}= \\
& =\mathrm{S}_{0}-\frac{1}{s_{22}}\left(s_{2}+e_{2}\right)\left(s^{2}-e^{2}\right)=\mathrm{S}_{0}-\mathrm{D}_{22}= \tag{2a-c}\\
& =\mathbf{S}_{0}=\frac{1}{\tau}\left[\begin{array}{c}
Q \\
\tau+1
\end{array}\right]\left[\begin{array}{cc}
r & \tau-1
\end{array}\right]=\left[\begin{array}{cc}
\frac{d}{\tau} & -\frac{Q}{\tau} \\
-\frac{r}{\tau} & \frac{1}{\tau}
\end{array}\right]
\end{align*}
$$

with the determinant

$$
d=\left|\mathrm{S}_{0}\right|=t \tau-r \underline{o}
$$

or, in the left-right equation (with $\tau \neq 0$)

$$
z_{i} \equiv\left[\begin{array}{cc}
z_{3} \tag{2d}\\
z_{\frac{1}{}}
\end{array}\right]=\left[\begin{array}{cc}
\frac{d}{\tau} & \frac{0}{\tau} \\
-\frac{r}{\tau} & \frac{1}{\tau}
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right] \equiv \mathfrak{s}_{1} z_{r}
$$

with the determinant

$$
\begin{equation*}
d_{1} \equiv\left|S_{1}\right|=\frac{1}{\tau^{2}}(d \cdot 1-r 0)=\frac{t \tau}{\tau^{2}}=\frac{t}{\tau} . \tag{2e}
\end{equation*}
$$

Fig. 2

There are further transformed forms of (le), $\binom{4}{2}=6$ in all, together with their permutational forms. For instance, with the simple change of the rows and columns of (2 d), we get the permutational form

$$
\tilde{z}_{l} \equiv\left[\begin{array}{c}
z_{4} \tag{2f}\\
z_{3}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{\tau} & -\frac{r}{\tau} \\
\frac{\varrho}{\tau} & \frac{d}{\tau}
\end{array}\right]\left[\begin{array}{c}
z_{2} \\
z_{1}
\end{array}\right] \equiv \tilde{S}_{1} z_{r}
$$

with the determinant $d_{1}=t / \tau$. Obviously, there are relationships between Eqs (1c), (2d) and (2e), in particular:

$$
\begin{equation*}
z_{\mathrm{out}} \rightarrow z_{l} \rightarrow \dot{z}_{1}, \quad \mathrm{~S}_{0} \rightarrow \mathrm{~S}_{l} \rightarrow \tilde{\mathbf{S}}_{i}, \quad z_{i t} \rightarrow z_{r} \rightarrow \tilde{z}_{r} \tag{3a-c}
\end{equation*}
$$

all three triples $\approx_{\text {out }}, \mathrm{S}_{0}, \approx_{i n} ; \boldsymbol{z}_{l}, \mathrm{~S}_{l}, \approx_{r} ; \tilde{\boldsymbol{z}}_{l}, \tilde{\mathrm{~S}}_{l}, \boldsymbol{z}_{r}$ characterize the same scattering circumstances in other forms, which are easily interchangeable. Remark that the left right equations (2d) or (2e) will later enable to find the composition of obstacles - on the basis of the matrix algebra.

1,4. Eqs (1c) and (2d) or (2e) and other transformed forms are known in micro-wave technics as four-pole (-terminal) ones for different given parameters under different names; e.g. for $z_{1} \equiv I_{1}, z_{2} \equiv I_{2}$, and $z_{3} \equiv U_{1}, z_{4} \equiv U_{2}$ there are impedance parameters $s_{i j} \equiv z_{i j}$; for $z_{1} \equiv U_{1}, z_{2} \equiv U_{2}$ and $z_{3} \equiv I_{1}$; $z_{1} \equiv I_{2}$ there are admittance parameters $s_{i j} \equiv y_{i j}$ etc.; evidently, there are $\binom{4}{2}=\frac{4.3}{1.2}=6$ forms in all.

The power of an obstacle is - as for the four-pole one - proportional to the square absolute amplitude of the effect. Accordingly, the effect propagates through the obstacle without loss or the obstacle is neutral (in both directions) provided:

$$
\left.\left|t_{1}^{2}+|r|^{2}=1 \quad \text { and } \quad\right| \tau\right|^{2}-|Q|^{2}=1:
$$

it remains so at the change of the dipoles with (t, r), and (Q, τ) too. On the contrary, the obstacle works with loss or it is passive (in both directions) for

$$
\begin{equation*}
t r^{2}+1 \text { and } \quad \tau+\underline{r^{2}} \leq 1 \tag{5a,b}
\end{equation*}
$$

The neutral and passive obstacles (four-poles) will come up again in the further discussion.

2. Composed scattering matrix got by transform for two or more anisotropic obstacles

2,1. To study the composition of the obstacles, we shall treat here the scattering of effects through two obstacles O_{1}, O_{2} directly connected (at zero spacing) and having the characteristical matrices $\mathbf{S}_{0}^{\prime}, \mathbf{S}_{1}^{\prime}, \mathrm{S}_{1}^{\prime}, \ldots$, and $\mathbf{S}_{0}^{\prime \prime}, \mathbf{S}_{1}^{\prime \prime}$, $\tilde{\mathrm{S}}_{1}^{\prime \prime}, \ldots$ For sake of simplicity, we choose the left-right equations of type (2d) with the left, middle, and right vectors

Fig. 3
(Fig. 3) and with the intermediary and product matrices $\mathrm{S}_{1}^{\prime}, \mathrm{S}_{1}^{\prime \prime}, \mathrm{S}_{1} \equiv \mathrm{~S}_{1}^{\prime \prime} \mathrm{S}_{1}^{\prime}$, respectively, and write in the composite left-right vector equation (with $\tau^{\prime} \neq 0$, $\tau^{\prime \prime} \neq 0$)

$$
\begin{align*}
& z_{l} \equiv\left[\begin{array}{c}
z_{j} \\
z_{0}
\end{array}\right]=\mathbf{S}_{1}^{\prime \prime} z_{n}=\mathbb{S}_{1}^{\prime \prime} \mathbb{S}_{1}^{\prime} z_{r}=\left[\begin{array}{cc}
\frac{d^{\prime \prime}}{\tau^{\prime \prime}} & \frac{Q^{\prime \prime}}{\tau^{\prime \prime}} \\
-\frac{r^{\prime \prime}}{\tau^{\prime \prime}} & \frac{1}{\tau^{\prime \prime}}
\end{array}\right]\left[\begin{array}{cc}
\frac{d^{\prime}}{\tau^{\prime}} & \frac{Q^{\prime}}{\tau^{\prime}} \\
-\frac{r^{\prime}}{\tau^{\prime}} & \frac{1}{\tau^{\prime}}
\end{array}\right]\left[\begin{array}{c}
z_{1} \\
z_{2}
\end{array}\right]= \tag{6}\\
&=\left[\begin{array}{cc}
\frac{d^{\prime} d^{\prime \prime}}{\tau^{\prime} \tau^{\prime \prime}}-\frac{Q^{\prime \prime} r^{\prime}}{\tau^{\prime} \tau^{\prime \prime}} & \frac{d^{\prime \prime} \underline{Q}^{\prime}}{\tau^{\prime} \tau^{\prime \prime}}+\frac{Q^{\prime \prime}}{\tau^{\prime} \tau^{\prime \prime}} \\
-\frac{r^{\prime \prime} d^{\prime}}{\tau^{\prime} \tau^{\prime \prime}}-\frac{r^{\prime}}{\tau^{\prime} \tau^{\prime \prime}} & -\frac{Q^{\prime} r^{\prime \prime}}{\tau^{\prime} \tau^{\prime \prime}}+\frac{1}{\tau^{\prime} \tau^{\prime \prime}}
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right] \equiv \mathbb{S}_{1} z_{r} .
\end{align*}
$$

From this, we get again by our dynamic transform algorithm (DTA) at the pivot element $s_{22} \equiv\left(1-\varrho^{\prime} r^{\prime \prime}\right) / \tau^{\prime} \tau^{\prime \prime} \equiv 0$ (that is, for $\underline{o}^{\prime} r^{\prime \prime} \neq 1$, because of physical circumstances for $\left.\left|\varrho^{\prime} r^{\prime \prime}\right|<1\right)$ the composite input-output vector equation

$$
\begin{align*}
z_{\mathrm{out}} & =\mathrm{S}_{0} \approx_{\mathrm{in}}, \text { where } \mathrm{S}_{O}=\mathbf{S}_{1}-\frac{1}{s_{22}^{(1)}}\left(s_{2}^{(1)}+e_{2}\right)\left(s_{(1)}^{\prime 2}-e^{2}\right)= \\
& =\mathrm{S}_{\mathrm{I}}-\mathbf{D}_{22}^{(1)}=\frac{1}{\tau^{\prime} \tau^{\prime \prime}}\left[\begin{array}{cc}
d^{\prime} d^{\prime \prime}-\varrho^{\prime \prime} r^{\prime} & d^{\prime \prime} \varrho^{\prime}+Q^{\prime \prime} \\
-r^{\prime \prime} d^{\prime}-r^{\prime} & 1-\varrho^{\prime} r^{\prime \prime}
\end{array}\right]- \tag{7a.b}\\
& -\frac{1}{\left(1-\varrho^{\prime} r^{\prime \prime}\right) \tau^{\prime} \tau^{\prime \prime}}\left[\begin{array}{c}
d^{\prime \prime} \varrho^{\prime}+\varrho^{\prime} \\
1-Q^{\prime} \tau^{\prime \prime}+\tau^{\prime} \tau^{\prime \prime}
\end{array}\right]\left[-r^{\prime \prime} d^{\prime}-r^{\prime}, 1-\varrho^{\prime} r^{\prime \prime}-\tau^{\prime} \tau^{\prime \prime}\right]
\end{align*}
$$

that is

$$
\boldsymbol{z}_{\text {out }}=\left[\begin{array}{c}
z_{\mathrm{z}} \tag{7c}\\
z_{2}
\end{array}\right]=\left[\begin{array}{cc}
\frac{t^{\prime} t^{\prime \prime}}{1-\varrho^{\prime} r^{\prime \prime}} & \varrho^{\prime \prime}+\frac{i^{\prime \prime} \varrho^{\prime} \tau^{\prime \prime}}{1-\varrho^{\prime} r^{\prime \prime}} \\
r^{\prime}+\frac{t^{\prime} \tau^{\prime} r^{\prime \prime}}{1-\varrho^{\prime} r^{\prime \prime}} & \frac{\tau^{\prime} \tau^{\prime \prime}}{1-\varrho^{\prime} r^{\prime \prime}}
\end{array}\right]\left[\begin{array}{c}
z_{1} \\
z_{6}
\end{array}\right] \equiv \mathrm{S}_{0} z_{i n} \equiv
$$

where S_{0} is the composite scattering matrix of both obstacles (marked by ' and "), then e.g. $z_{10} \equiv r^{\prime}+t^{\prime} \tau^{\prime} r^{\prime \prime} \cdot\left(1-\varrho^{\prime} r^{\prime \prime}\right)^{-1}$ is the left composite reflexion at $z_{1}=1$ and $z_{2}=0$ (and zero spacing).

2,2. Obviously, an is o morphis m can be established between two special matrix algebras; the first one has the matrices $S_{1}^{\prime}, S_{1}^{\prime \prime}, S_{1}^{\prime \prime \prime}, \ldots$ (the dynamical transformed of $\mathrm{S}_{0}^{\prime}, \mathrm{S}_{0}^{\prime \prime}, \mathrm{S}_{0}^{\prime \prime \prime}, \ldots$) as elements, the ordinary matrix multiplication $\mathbb{S}_{1} \equiv \mathbb{S}_{1}^{\prime \prime} \mathbb{S}_{1}^{\prime}$ as the single operation (composition) with the associativity $\mathbf{S}_{1}^{\prime \prime \prime}\left(\mathbf{S}_{1}^{\prime \prime} \mathbf{S}_{1}^{\prime}\right)=\left(\mathbf{S}_{1}^{\prime \prime} \mathbf{S}_{1}^{\prime \prime}\right) \mathbf{S}_{1}^{\prime}$ (and without the commutativity $\left.\mathbf{S}_{1}^{\prime \prime} \mathbf{S}_{1}^{\prime}=\mathbf{S}_{1}^{\prime} \mathbf{S}_{1}^{\prime \prime}\right)$; the second one has the scattering matrices $S_{0}^{\prime}, S_{0}^{\prime \prime}, S_{0}^{\prime \prime \prime}, \ldots$ as elements, the artificial matrix multiplication $S_{O} \equiv \mathrm{~S}_{0}^{\prime \prime} \approx \mathrm{S}_{0}^{\prime}$ (the dynamical transformed of S_{1}) as the single operation (composition) with the associativity $\mathfrak{S}_{0}^{\prime \prime \prime} *\left(\mathrm{~S}_{0}^{\prime \prime} * \mathrm{~S}_{0}^{\prime}\right)=$ $=\left(\mathrm{S}_{0}^{\prime \prime \prime} \div \mathrm{S}_{0}^{\prime \prime}\right) \div \mathrm{S}_{0}^{\prime}$ (and without the commutativity $\mathrm{S}_{0}^{\prime \prime} \div \mathrm{S}_{0}^{\prime}=\mathrm{S}_{0}^{\prime} \div \mathrm{S}_{0}^{\prime \prime}$). Hence, both isomorph algebras are semigroups with the correspondences

$$
\begin{align*}
& \mathbf{S}_{0} \equiv\left[\begin{array}{ll}
t & \varrho \\
r & \tau
\end{array}\right] \underset{(\tau \neq 0)}{\rightarrow} \frac{1}{\tau}\left[\begin{array}{rr}
d & \varrho \\
-r & 1
\end{array}\right] \equiv \mathbf{S}_{1}, \tag{8a}\\
& \mathrm{~S}_{0} \equiv \mathrm{~S}_{0}^{\prime \prime} * \mathrm{~S}_{0}^{\prime}=\frac{1}{1-\underline{Q}^{\prime} r^{\prime \prime}}\left[\begin{array}{cc}
t^{\prime} t^{\prime \prime} & \underline{Q}^{\prime \prime}\left(1-\underline{Q}^{\prime} r^{\prime \prime}\right) \div t^{\prime \prime} \tau^{\prime \prime} \underline{Q}^{\prime} \\
r^{\prime}\left(1-\varrho^{\prime} r^{\prime \prime}\right)-t^{\prime} \tau^{\prime} r^{\prime \prime} & \tau^{\prime} \tau^{\prime \prime}
\end{array}\right] \rightarrow \\
& \xrightarrow[\substack{1-q^{\prime} r^{\prime} \neq 0 \\
\tau^{\prime} z^{\prime} \neq 0}]{\longrightarrow} \frac{1}{\tau^{\prime} \tau^{\prime \prime}}\left[\begin{array}{rr}
d^{\prime} d^{\prime \prime}-r^{\prime} Q^{\prime \prime} & \underline{Q}^{\prime} d^{\prime \prime}+Q^{\prime \prime} \\
-d^{\prime} r^{\prime \prime}-r^{\prime} & -\varrho^{\prime} r^{\prime \prime}+\mathrm{I}
\end{array}\right]=\mathrm{S}_{1}^{\prime \prime} \mathrm{S}_{1}^{\prime} \equiv \mathrm{S}_{\mathrm{I}}, \tag{8b}\\
& \mathrm{~S}_{0}^{\prime \prime \prime} \div\left(\mathrm{S}_{0}^{\prime \prime} * \mathrm{~S}_{1}^{\prime}\right)=\left(\mathrm{S}_{0}^{\prime \prime \prime} * \mathrm{~S}_{0}^{\prime \prime}\right) \div \mathrm{S}_{0}^{\prime} \leftrightarrow \mathrm{S}_{1}^{\prime \prime \prime}\left(\mathrm{S}_{1}^{\prime \prime} \mathrm{S}_{1}^{\prime}\right)=\left(\mathrm{S}_{1}^{\prime \prime \prime} \mathrm{S}_{1}^{\prime \prime}\right) \mathrm{S}_{1}^{\prime} . \tag{8c}
\end{align*}
$$

It must be remarked that we generate from the given matrix set $\mathbb{E}_{0}=$ $=\left\{\mathrm{S}_{0}^{\prime}, \mathrm{S}_{0}^{\prime \prime}, \mathrm{S}_{0}^{\prime \prime \prime}, \ldots\right\}$, through DTA (2b) the isomorphic matrix set $\mathbb{S}_{1}=$ $=\left\{\mathrm{S}_{1}^{\prime}, \mathrm{S}_{1}^{\prime \prime}, \mathrm{S}_{1}^{\prime \prime \prime}, \ldots\right\}$, them from its (ordinary) production set $\Theta_{1}=$ $=\left\{\mathrm{S}_{1}^{\prime \prime} \mathrm{S}_{1}^{\prime}, \ldots\right\} \subseteq \mathbb{S}_{1}$ again through DTA (Bb) the isomorphic (artificial) composition set sought for. $\mathscr{E}_{0}=\left\{\mathrm{S}_{0}^{\prime} \neq \mathrm{S}_{0}^{\prime \prime} \ldots\right\} \subseteq \widehat{\bigotimes}_{0}$. Hence, DTA can be considered as a generator of isomorph matrix semigroups, namely here at $s_{-2}^{(i)} \equiv 0$ and also at all possible pivot elements $s_{i: l}^{i j} \neq 0$.

2,3. Composing an obstacle of $\mathrm{S}_{0}^{\prime} \equiv \mathrm{S}_{0}=[t, Q: r, \tau]$ with its mirror image of $\mathrm{S}_{0}^{\prime \prime} \equiv \mathrm{S}_{\beth}=[\tau, r ; \underline{o}, t]$ at 0 spacing, we get the composite scattering
matrix after (7c)

$$
\mathrm{S}_{O} \equiv \mathrm{~S}_{=}=\mathrm{S}_{0}+\frac{1}{2-\underline{g}^{2}}\left[\begin{array}{cc}
t \tau & r\left(1-\varrho^{2}\right)+\tau t Q \tag{9a}\\
r\left(1-Q^{2}\right)+t \tau Q & \tau t
\end{array}\right]
$$

this is obviously symmetric. The double has the composite transfer maximal in absolute value at the case (neutral) being without loss after (4a, b), namely

$$
\begin{array}{r}
(1 \geqq) \max \left|t_{O}\right|=\frac{|t||\tau|}{1-|Q|^{2}}=\frac{|t|}{|\tau|}=\frac{\left|\tau_{1}\right| t}{1-\mid r_{1}^{2}}=\frac{|\tau|}{|t|}=1 \tag{9b}\\
(|t|=|\tau|) .
\end{array}
$$

For getting $\vartheta_{t} \equiv \operatorname{arc}(t)=\operatorname{arc}(\tau) \equiv \vartheta_{\tau}$, consequently the reciprocity $t=\tau$, it must look at the double of spacing x; the modified composite transfer has its maximum in absolute value

$$
\begin{equation*}
\max \left|t_{O}\right| \equiv \max \frac{\left|t \tau e^{j x}\right|}{\left|1-\varrho^{2} e^{2 j x}\right|}=\max \frac{|t||\tau|}{\left|1-|\varrho|^{2} e^{2 j}\left(\delta_{\underline{Q}}+x\right)\right|}=\frac{|t||\tau|}{1-|\varrho|^{2}}=1 \tag{9c}
\end{equation*}
$$

at $x=-\delta_{o} \equiv-\operatorname{arc}(\varrho)$. Hence, the modified composite reflexion must equal zero, that is:

$$
r_{O} \equiv r+\left.\frac{t \tau \underline{0} e^{2 j x}}{1-\underline{Q}^{2} e^{2 j x}}\right|_{\delta-\underline{\varrho}=x}=|r| e^{j o r}+\frac{|t||\tau| Q^{\prime}}{1-|\underline{ }|^{2}} e^{j}\left(\vartheta_{i}+\theta_{\tau}-\delta_{\varrho}\right)=0
$$

and from it

$$
\varphi_{0} \equiv \hat{v}_{i}+\frac{t_{\tau}}{u_{\tau}}-\left(\delta_{r}+\delta_{0}\right)=(2 n+1) \pi .
$$

This phase relation (based on energy situation) is valid also for $\hat{\vartheta}_{i} \neq \hat{v}_{\tau}$.
2,4. For the double (passive) being with loss, the conditions (5a, b) are not necessary (but sufficient) for the composition $\mathcal{S}_{0} \equiv \mathrm{~S}_{0}^{\prime \prime}=\mathrm{S}_{0}^{\prime}$. To complete them, we can write the inequalities

$$
\begin{equation*}
z_{2} 1^{2}+z_{3}{ }^{2} \leq\left. z_{1}\right|^{2}+\left|z_{1}\right|^{2},\left.\quad z_{1}\right|^{2}+\left|z_{5}{ }^{2} \leq\left|z_{1}\right|^{2}+\left|z_{6}\right|^{\prime 2}\right. \tag{10a,b}
\end{equation*}
$$

(because the output power cannot be higher than the input one), or by their addition, the necessary condition

$$
\begin{equation*}
\left|z_{2}\right|^{2}+\left|z_{5}\right|^{2} \leqq\left|z_{1}\right|^{2}+z_{0}^{2} \tag{10c}
\end{equation*}
$$

Such an other one can be obtained from (1c) as the inequality

$$
\begin{equation*}
|r \bar{\tau}+t \bar{\varphi}|^{2} \leq\left(1-|t|^{2}-|r|^{2}\right)\left(1-|\tau|^{2}-|Q|^{2}\right) \equiv a^{2} \alpha^{2} \tag{11a}
\end{equation*}
$$

(where a^{2}, α^{2} are the power-absorption coefficients) and from the inequalities

$$
\begin{equation*}
\left|\frac{r}{t}-\left|\frac{g}{\tau}\right|\right| \leqq \frac{a x}{|t \tau|}, \left.\quad \cos \frac{\varphi_{0}}{2} \right\rvert\, \leqq \frac{a x}{2 \mid \text { trg| }} \tag{11b,c}
\end{equation*}
$$

where for $a \%=0,|t|=|\tau|$ and (9e).
2,5. Take into (7c) now $\mathrm{S}_{0}^{\prime}=\mathrm{S}_{0}$, then $r^{\prime \prime}=z$ (the close reflexion as complex variable) and $z_{1}=1, z_{6}=0$, so for the left-side composite reflexion the function can be written:

$$
\begin{equation*}
u_{r} \equiv R(z)=r+\frac{t \tau z}{1-\varrho z}=\frac{r+d z}{1-Q z} \quad(d \equiv t \tau-r \varrho, \quad z \neq 1 \varrho) \tag{12a}
\end{equation*}
$$

In reasonably similar way, for $\mathrm{S}_{0}^{\prime \prime}=\mathrm{S}_{0}, Q^{\prime}=z, z_{1}=0$ and $z_{6}=1$, we get the analogous function of the right-side composite reflexion

$$
\begin{equation*}
u_{\varrho} \equiv P(z)=\varrho+\frac{\tau t z}{1-r z}=\frac{\varrho+d z}{1-r z} \quad(d \equiv t \tau-r, \quad z \neq 1 / r) . \tag{13a}
\end{equation*}
$$

Both are linear fractional function of complex variable, which are - as well known - circle keeping. $R(z)$ map on the circle line $|=a<1 / Q|$ to another one with centre and radius

$$
\begin{equation*}
c_{a}=r+\frac{a^{2} \imath \tau \bar{\varrho}}{1-a^{2}|\varrho|^{2}}, \text { and } \quad R_{a}=\frac{a|\tau \tau|}{1-a^{2}|Q|^{2}}, \text { resp. } \tag{12~b,c}
\end{equation*}
$$

where are

$$
\begin{equation*}
\left[\left(c_{a}-r\right) r\right]=\operatorname{arc}(t \tau)-\operatorname{arc}(r \varrho)=\hat{v}_{i} \div \hat{u}_{r}-\delta_{r}-\delta_{e} \equiv \vartheta_{t} . \tag{12d}
\end{equation*}
$$

These circular points give the answer to the close reflexion $z=a e^{i r}$ (with constant modulus and variable phase) and the centre c_{a} to the $z_{a}=a^{2} \bar{Q}$.

Obviously, the mappings on (12a), (13a) have two fixed points ζ and $\zeta_{\%}$ (possibly coincident) written as $\zeta=R(\xi)$, and $=P(\%)$, resp., or in detail, by the quadratic equations (with $2 \delta \equiv d-1=t \tau-r \varrho-1$)

$$
\begin{equation*}
Q_{r}(\zeta) \equiv \zeta^{-2}+\frac{2 \delta}{Q} \zeta+\frac{r}{Q}=0, \quad R_{Q}\left(\zeta_{\%}\right) \equiv \zeta_{*}^{2}+\frac{2 \delta}{r} \zeta_{*}+\frac{Q}{r}=0 \tag{13a,b}
\end{equation*}
$$

Their zeros or fixed points are:

$$
\begin{equation*}
\zeta_{1,2}=-\frac{\delta}{\varrho} \pm \sqrt{\frac{\delta^{2}}{\varrho^{2}}-\frac{r}{\varrho}} . \quad \zeta_{1,2}=-\frac{\delta}{r} \pm \sqrt{\frac{\delta^{2}}{r^{2}}-\frac{Q}{r}} \tag{13c,d}
\end{equation*}
$$

where

$$
\begin{equation*}
\zeta_{1} \zeta_{2}^{*}=\zeta_{2} \zeta_{1}^{*}=\frac{\delta^{2}}{r \varrho}+\delta\left(\sqrt{\frac{\delta^{2}}{r^{2} \varrho^{2}}-\frac{1}{r \varrho}}-\sqrt{\frac{\delta^{2}}{r^{2} \varrho^{2}}-\frac{1}{r \varrho}}\right)-\left(\frac{\delta^{2}}{r \varrho}-1\right)=1 \tag{13e,f}
\end{equation*}
$$

hence ζ_{1} and ζ_{2}^{*}, then ζ_{2} and ζ_{1}^{*} are reciprocal values. The special close reflexions ζ_{1} and ζ_{2} become - without change in the obstacle - into left-side composite reflexion.

The fixed points ζ_{1}, ζ_{2} are defined after (13a, c) by two parameters (coefficients) $2 b \equiv 2 \delta / \underline{o}, c \equiv r!\underline{0}$ and also inversely, as

$$
\begin{equation*}
2 b \equiv \frac{2 \delta}{\varrho}=\frac{i \tau-r \varrho-1}{\varrho}=-\left(\zeta_{1}+\zeta_{2}\right), c \equiv \frac{r}{\varrho}=\zeta_{1} \zeta_{2} . \tag{13g.h}
\end{equation*}
$$

If two obstacle with $\mathrm{S}_{0}^{\prime}=\left[t^{\prime}, \tau^{\prime} ; r^{\prime}, \underline{Q}^{\prime}\right]$, and $\mathrm{S}_{0}^{\prime \prime}=\left[t^{\prime \prime}, \underline{Q}^{\prime \prime} ; r^{\prime \prime} ; \tau^{\prime \prime}\right]$ have equal parameters $2 b$ and c, namely

$$
\begin{gather*}
2 b^{\prime} \equiv \frac{t^{\prime} \tau^{\prime}-r^{\prime} Q^{\prime}-1}{Q^{\prime}}=\frac{t^{\prime \prime} \tau^{\prime \prime}-r^{\prime \prime} Q^{\prime \prime}-1}{Q^{\prime \prime}} \equiv 2 b^{\prime \prime} \tag{14a}\\
c^{\prime} \equiv \frac{r^{\prime}}{Q^{\prime}}=\frac{r^{\prime \prime}}{Q^{\prime \prime}}=c^{\prime \prime} \tag{14~b}
\end{gather*}
$$

then α) their fixed points are common:

$$
\begin{equation*}
\because 1=\underset{=1}{\prime \prime \prime}, G_{2}^{\prime}=彑_{2}^{\prime \prime} ; \tag{14c}
\end{equation*}
$$

B) the composition (artificial multiplication) of their scattering matrices is commuitative:

$$
\begin{equation*}
\mathrm{S}_{0}^{\prime \prime} \div \mathrm{S}_{0}^{\prime}=\mathrm{S}_{0}^{\prime} \div \mathrm{S}_{0}^{\prime \prime} \text { and vice versa. } \tag{14~d}
\end{equation*}
$$

The first fact follows from (13c); the second one flows from (7c) as:

$$
\begin{gather*}
\frac{t^{\prime} t^{\prime \prime}}{1-Q^{\prime} r^{\prime \prime}}=\frac{t^{\prime \prime} t^{\prime}}{1-Q^{\prime \prime} r^{\prime}} \Rightarrow Q^{\prime} r^{\prime \prime}=Q^{\prime \prime} r^{\prime}(=C) \Rightarrow \frac{r^{\prime}}{Q^{\prime}}=\frac{r^{\prime \prime}}{Q^{\prime \prime}}(=c): \\
r^{\prime}+\frac{t^{\prime} \tau^{\prime} r^{\prime \prime}}{1-Q^{\prime} r^{\prime \prime}}=r^{\prime \prime}+\frac{t^{\prime \prime} \tau^{\prime \prime} r^{\prime}}{1-\varrho^{\prime \prime} r^{\prime}} \\
\Rightarrow r^{\prime}+\left(t^{\prime} \tau^{\prime}-r^{\prime} Q\right)=r^{\prime \prime}=r^{\prime \prime}+\left(t^{\prime \prime} \tau^{\prime \prime}-r^{\prime \prime} Q^{\prime \prime}\right) r^{\prime}: C \\
\Rightarrow \frac{1}{Q^{\prime \prime}}+\frac{t^{\prime} \tau^{\prime}-r^{\prime} Q^{\prime}}{Q^{\prime}}=\frac{1}{Q^{\prime}}+\frac{t^{\prime \prime} \tau^{\prime \prime}-r^{\prime \prime} Q^{\prime \prime}}{Q^{\prime \prime}}\left(=2 b+\frac{1}{Q^{\prime}}+\frac{1}{Q^{\prime \prime}}\right): \text { q.e.d. } \tag{1+e}
\end{gather*}
$$

On the basis of the former, it can be stated: the (artificial) matrix, semigroup \mathscr{S}_{0} defined by the formulas $(8 a, b, c)$ will be a commutative matrix semi-
group, if all its matrices $\mathbf{S}_{0} \in \widehat{\S}_{0}$ have common parameters $2 b$ and c after ($13 \mathrm{~g}, \mathrm{~h}$), cousequently common fixed points $=_{1}$ and ζ_{2} after $(13 \mathrm{c}, \mathrm{d})$.

2,6. A commutative matrix semigroup Ξ_{0} turns into a commutative or Abelfat matrix group, if any matrix $S_{0} \in \mathbb{S}_{0}$ is invertible by the artificial multiplication * into its reciprocal (inverse) ${ }^{*} \mathrm{~S}_{0}^{-1}$ after the definition

$$
\begin{equation*}
* S_{0}^{-1} \approx S_{0}=S_{0} * * S_{0}^{-1}=E . \tag{15a}
\end{equation*}
$$

Now, the condition and the formula of this inversion are to be found.
According to the relationship $\mathbf{S}_{0} \rightarrow \mathbf{S}_{1}$ after (3b) [realized from \mathbf{S}_{0} by the DTA for $s_{22} \neq 0$ after $\left.(2 \mathrm{~b}, \mathrm{c})\right]$, the inverse ${ }^{*} \mathrm{~S}_{0}^{-1}$ can be interpreted through the relationship $\mathbf{S}_{1}^{-1} \rightarrow * \mathrm{~S}_{0}^{-1}$ [realized from $\mathbf{S}_{1}^{-1} \equiv \mathbf{R}_{1}$ by the DTA for $r_{22} \neq 0$, reasonably after ($2 \mathrm{~b}, \mathrm{c}$)]. Now, look at the single $D T A$-steps to produce sequentially the matricial transfers $\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1} \rightarrow \mathrm{~S}_{1}^{-1} \rightarrow * \mathrm{~S}_{0}^{-1}$, then unit into a multiple $D T A$-spring [14] to produce directly the matricial transfer $\mathrm{S}_{0} \rightarrow * \mathrm{~S}_{0}^{-1}$. It can be written that

$$
\begin{align*}
* \mathrm{~S}_{0}^{-1} \equiv \mathrm{~B}_{4}^{-1} \mathrm{~S}_{01}^{\prime} \equiv & {\left[\mathrm{E}-\left(e_{2}+\mathrm{s}_{2}\right) e^{2} \mid-\left(e_{1}+s_{1}\right) e^{1}+\left(s_{2}+e_{2}\right) e^{2}-\left(e_{2}+s_{2}\right) e^{2}\right]^{-1} } \\
\cdot & {\left[\mathrm{~S}_{0}-\left(s_{2}+e_{2}\right) e^{2}\left|-\left(s_{1}+e_{1}\right) e^{1}+\left(e_{2}+s_{2}\right) e^{2}\right|-\left(s_{2}+e_{2}\right) e^{2}\right]=} \\
= & {\left[\mathrm{E}-\left(e_{1}+s_{1}\right) e^{1}-\left(e_{2}+s_{2}\right) e^{2}\right]^{-1} . } \\
& \cdot\left[\mathrm{S}_{0}-\left(s_{1}+e_{1}\right) e^{1}-\left(s_{2}+e_{2}\right) e^{2}\right]=\mathrm{S}_{0}^{-1} \mathrm{E}=\mathrm{S}_{0}^{-1} \\
& \text { where } \mathrm{S}_{0}^{-1} \mathrm{~S}_{0}=\mathrm{S}_{0} \mathrm{~S}_{0}^{-1}=\mathrm{E} . \tag{15b}
\end{align*}
$$

After this result, the inverse ${ }^{*} \mathrm{~S}_{0}^{-1}$ concerning the artificial multiplication and the inverse S_{0}^{-1} concerning the ordinary one are identic; their common formula and condition are the following:

$$
\mathbf{S}_{0}^{-1} \equiv * \mathbf{S}_{0}^{-1}=\frac{1}{d}\left[\begin{array}{rr}
\tau & -\varrho \tag{15c}\\
-r & t
\end{array}\right] \quad(d \equiv t \tau-r \varrho \neq 0) .
$$

We can control after the product rules (6) and (7c), that in fact, $\mathrm{S}_{0}^{-1} \mathrm{~S}_{0}=$ $=* \mathrm{~S}_{0}^{-1} * \mathrm{~S}_{0}=\mathrm{E}$. Our DTA can be considered as a generator of ABELiAN matrix group, too.

2,7. A chain O_{N} of the obstacles O_{i} (coupled in series) and given by their scattering matrices $\mathbb{S}_{0}^{(k)}=\left[t^{(k)}, Q^{(k)} ; r^{(k)}, \tau^{(2)}\right]$ can be characterized by its composite scattering matrix (Fig. 4)

$$
\begin{align*}
& \mathrm{S}_{0 n} \equiv\left[\begin{array}{ll}
t_{n} & Q_{n} \\
r_{n} & \tau_{n}
\end{array}\right]=\mathrm{S}_{0}^{(n)} \div \mathrm{S}_{0}^{(n-1)} \div \ldots \div \mathrm{S}_{0}^{(2)} \div \mathrm{S}_{0}^{(1)} \equiv \\
& \equiv * \frac{n}{L_{k=1}} \mathrm{~S}_{0}^{(k)} \equiv \frac{n}{\frac{n}{H=1}}\left[\begin{array}{ll}
t^{(k)} & Q^{(k)} \\
r^{(k)} & \tau^{(k)}
\end{array}\right] . \tag{15}
\end{align*}
$$

Instead of generalizing, it will do here to make some special remarks:
$\alpha)$ As for $n=1,2$ there are $t / \tau, t^{\prime} t^{\prime \prime}\left(1-\varrho^{\prime} r^{\prime \prime}\right)^{-1} / \tau^{\prime} \tau^{\prime \prime}\left(1-o^{\prime} r^{\prime \prime}\right)^{-1}=$ $=t^{\prime} t^{\prime \prime} / \tau^{\prime} \tau^{\prime \prime}$, in general the ratio

$$
\begin{equation*}
\frac{t_{n}}{\tau_{n}}=\prod_{k=1}^{n} t^{(k)}: \prod_{k=1}^{n} \tau^{(k)}=\prod_{\ell=1}^{n} \frac{t^{(k)}}{\tau^{(k)}} . \tag{16a}
\end{equation*}
$$

prevails.
β) If two obstacles are connected by a line of length x propagation coefficients being k and $\%$, they can be considered an obstacle (without reflexions) with the scattering matrix $\mathrm{S}_{0}=\left[e^{j k x}, 0 ; 0, e^{j \times x}\right]$.

Fig. 4

1) If the chain $O_{n 1}$ of $S_{O_{n}}$ has all its obstacles $O_{l l}$ without loss, it is itself without loss and the conditions are ralid again:

$$
\begin{gather*}
\left|t_{n}\right|^{2}+\left|\tau_{n}\right|^{2}=\left|\tau_{n}\right|^{2}+\left|Q_{n}\right|^{2}=1, \quad\left|t_{n}\right|=\left|\tau_{n}\right|, \tag{18}\\
\varphi_{0}^{(n)} \equiv \vartheta_{t}^{(n)}+\vartheta_{\stackrel{(n)}{(n)}-\left(\delta_{r}^{(n)}+\delta_{o}^{(n)}\right)=\pi .} .
\end{gather*}
$$

d) If all the obstacles O_{k} (their $S_{0}^{(b)}$) are commutative, their chain O_{N} (its $\mathrm{S}_{O_{n}}$) is commutative again, with the specialitics

$$
\begin{equation*}
\frac{t_{n}}{Q_{n}}=c=\zeta_{1} \zeta_{2}, \quad \frac{t_{n} \tau_{n}}{\varphi_{n}^{2}}=c \frac{\tau_{n}}{Q_{n}}=Q_{n}^{-2}+2 b Q_{n}^{-1}+c \tag{19a,b}
\end{equation*}
$$

if $\tau_{n} \rightarrow 0$ (dissipation), so $Q_{n}^{-2}+2 b \varrho_{n}^{-1}+c \rightarrow 0, \varrho_{n}^{-1} \rightarrow=2$ and $t_{n} \rightarrow=$, which are the common fixed points.

2,8. Let us take the chain O_{N} of n identic obstacles $O_{k} \equiv 0$ (coupled in series) given by their common scattering matrix $S_{0}^{(0)}=S_{0}=[i, \varrho ; r, \tau]$. The composite scattering matrix is now obviously

The commutativity is valid again (because $S_{0}^{(k)} \geqslant S_{0}^{(t)}=\boldsymbol{S}_{0}^{2}$). The associativity is also valid (as ever in the semigroups), consequently
$\left.\mathbf{S}_{0}^{m+n} \equiv \mathbf{S}_{O, m \div n} \equiv\left[\begin{array}{ll}t_{m+n} & m+n \\ r_{m+n} & m+n\end{array}\right]=\left[\begin{array}{ll}t_{m} & Q_{m} \\ r_{m} & \tau_{m}\end{array}\right] \ddot{\because} \begin{array}{ll}t_{n} & Q_{n} \\ r_{n} & \tau_{n}\end{array}\right] \equiv \mathbf{S}_{O m} \div \mathbf{S}_{O n} \equiv \mathbf{S}_{0}^{m} \cdots \mathbf{S}_{0}^{n}$.
On the model of (8a), we can write for t_{m+n} and r_{m+n} (and by analogy, for τ_{m+n} and ϱ_{m-n}) the difference equations

$$
\begin{equation*}
t_{m \div n}=\frac{t_{m i} t_{n}}{1-Q_{m} r_{n}}, \quad r_{m \div n}=r_{n}+\frac{t_{m} \tau_{m} r_{n}}{1-Q_{m} r_{n}} \tag{21b,c}
\end{equation*}
$$

For $n=1$ the same becomes into recoursing formulas by which we can count all the $t_{m+1}, r_{m+1}\left(\right.$ and $\tau_{m+1}, 0_{m+1}$) starting from their initial values

$$
\begin{equation*}
t_{1}=t, \quad r_{1}=r \quad\left(Q_{1}=o . \quad \tau_{1}=\tau\right) \tag{2ld}
\end{equation*}
$$

In this way, we get e.g.

$$
\begin{align*}
& t_{1}=t, t_{2}=\frac{t^{2}}{1-\emptyset r}=t\left(\frac{t}{\tau}\right)^{1 / 2} \cdot \frac{\operatorname{sh} \delta}{\operatorname{sh} 2 \delta-T \operatorname{sh} \delta} \cdot \cdots, \tag{22a}\\
& t_{n}=\left(\frac{t}{\tau}\right)^{\frac{n-1}{2}} \cdot \frac{\operatorname{sh} \delta}{\operatorname{shn} \delta-T \operatorname{sh}(n-1) \delta} \\
& r_{1}=r, \quad r_{2}=r+\frac{t \tau r}{1-\varrho r}=\frac{r \operatorname{sh} 2 \delta}{\operatorname{sh} 2 \delta-T \operatorname{sh} \delta} \cdots \tag{22b}\\
& r_{n}=\frac{r \operatorname{shn} \delta}{\operatorname{shn} \delta-T \operatorname{sh}(n-1) \delta} .
\end{align*}
$$

notations being

$$
\begin{gather*}
2 \dot{d} \equiv d+1 \equiv t \tau-r \underline{l}+1, \quad T \equiv \sqrt{t \tau} \\
\operatorname{ch} \delta=\frac{\hat{d}}{T}(\geq 1), \quad \operatorname{sh} \delta=\frac{\sqrt{\hat{d}^{2}-T^{2}}}{T} . \tag{22c}
\end{gather*}
$$

2,9. In the former treatment, homogeneous and anisotropic (i.e. with different scattering properties in the opposite directions) discrete (thin) obstacles have been considered throughout, further, their anisotropic discrete chain of inhomogeneous or homogeneous composition (by different or identic, homogeneous discrete obstacles). The former contributions - based on our dynamical transform algorithm (DTA) as generator of various matrix algebraic structures, at last one of Abelian matrix groups - were given for the algebra of such obstacles and their chains. They could perhaps raise some ideas to set out certain problems in this domain.

In a subsequent paper, investigations of discrete obstacles with $2 n$ contacts (where our DTA in hypermatrix form is essentially more advantageous). of the continuous media with $2 \cdot 2$ and $2 n$ contacts (treated by matrix- and hypermatrix-functional equations) and other specialities will be treated.

Summary

After World War II, quick development began in the theory of micro-wave technics. Among others, the algebra of obstacles or the scattering algebra was evolved for discrete obstacles, then for continuous media. with the application of various mathematical methods, and though the works written by Carlin, Redheffer, Twesky and by many others (see References [1-13]).

Nevertheless. this beautiful progress admits-just because its quickness-various contributions. Such complements will be here given (and others in a subsequent paper) based on our dynamic transform algorithm (DTA) of matrices and hypermatrices [14-17]. It can be considered as a generator of ceriain matrix semigroups and groups, e.g. the Abelfans ones. Our contributions are connected possibly with known facts of scattering algebra; these latters are often interpreted in sense of [13].

References

1. Ambarzumat, V.: Diffuse Reflection of Light by a Foggy Medium. - Compt. rendus Acad. Sci. U.R.S.S., 38, 229-232, 1943.
2. Bellans, R. and Kalaba, R.: Random Walk, Scattering and Invariant Imbedding. I. One-dimensional Case. - Proc. Nat. Acad. Sci. U.S.A., 43, 930-933., 1957.
3. Carlin, H. J.: The Seattering Matrix in Setwork Theory, - I. R. E. Trans. on Circuit Theory, CT-3, no $3.88-97 . .1956$.
4. Chandrasekhar, S.: Radiative Transfer. - Oxford University Press, New York. 1950.
5. Desoer, C. A.: On the Characteristic Frequencies of Lossless Xonreciprocal Networks. I.R.E. Trans, on Circuit Theory, CT-5, 374-375., 1958.
6. Gullemin, E. A.: Synthesis of Passive Neiworks. John Wiley \& Sons, New York 1957.
7. Montgomery, C. G.: Dicke, R. H. and Purcell. E. M.: Principles of Microwave Circuits. - Mc Graw-Hill Book Company. Tew York, 1948.
8. Redheffer. R. M.: Microwave Antennas and Dielectric Surfaces. - J. Appl. Phys. 20, 397-411. 1949.
9. Redhemfer, R. MI.: On a Certain Linear Fractional Transformation. - J. Math. Phys 1961.
10. Reid, W. T.: Solutions of a Riccati Matrix Differential Equation as a Eunction of Initial Values. - J. Math., Mech., 8, 221 -230., 1959.
11. Twersky, V.: Scattering Theorems for Bounded Periodic Structures. - J. Appl. Phys., 27, 1118-1122., 1956.
12. Ypula, D. C., Castmota, L. J. and Carlis, H. J.: Bounded Real Scattering Matrices and the Foundations of Linear Passive Xetwork Theory. - I. R. E. Trans, on Circuit Theory, CT-6. 102-124., 1959.
13. Redherfer. R.: Difference and Functional Equations in the Theory of Feed-Lines: E. F. Beckenbach. Modern Math. for Eng., Chapter 12. - Mic Graw-Hill, New York. 1961.
14. Fazekas. F.: Matrixalgorithmen für die mathematische Optimierung mit Beziehung zur Approximation. - ZAMM 46 (1966) 95-98, Akad. Verlag, Berlin.
15. Fazekas, F:: Optimierung mittels matrixalgorithmischer Methoden (MAD). - Int. Series f. Num. Math. I2 (1969) 35-45, Birlhhäuser Verlag, Basel und Stuttgart.
16. Fazekas, F.: Ergebnisse über Matrixalgorithmen zur Lösung linearer und nichtlinearer Ungleichheiten. - Per. Polytechn. No. 2, Vol. 14 (1970): 131-146, Techn. Univ. Budapest
17. Fazekas, F.: Mathematical Programming [by Matrix Algorithmical Methods (MAN)] [in Hungarian language. 312 p.] - Publisher of University Books, Budapest, 196 i.

Dr. Ferenc Fazeris; Budapest, XI. Müegyetem rkp. 9, Hungary

[^0]: * Our dynamic transform algorithm (DTA) for matrices is amply explained in [14-17] and other works. Its basic idea - for n dimensional vectors and without proofs - is the following. A linear algebraic vector equation has the form

 $$
 \begin{align*}
 u & =\mathbb{E} u \equiv u_{1} e_{1}+\ldots+\sum_{q=1}^{p} u_{k_{q}} e_{k_{q}}+\ldots+u_{n} e_{n} \equiv u_{1} e_{1}+\ldots+\mathbf{E}_{K} \mathbf{u}_{K}+\ldots+u_{n} e_{n}= \\
 & =x_{1} a_{1}+\ldots+\sum_{q=1}^{p} x_{l_{q}} a_{l_{g}}+\ldots+x_{m!} u_{r i} \equiv x_{1} a_{1}+\ldots+\boldsymbol{A}_{L} x_{L}+\ldots+x_{m} a_{m!} \equiv A_{\|} \cdot \boldsymbol{x} .(\mathbb{E} \tag{E}
 \end{align*}
 $$

