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1. In the thrombotic or degeneratic occlusion of arterias of medium size,
new, so-called collateral arteriolas are opened, which do not participate in
normal circulation. This phenomenon is assumed partly to be caused by the
svstolic pressure wave reflected at the thrombus placed in the lumen of the
arteria. so that a standing wave deveclops. A pressure pick by this standing
wave is formed proximally at the thrombus, which is significantly higher than
the physiological one, and so the collaterals are opened.

To analyse the effect of this phenomenon, the following mathematical
model has been established to inform of the quantitative picture. The blood is
a practically incompressible fluid. This fluid flows in a very elastic tube,
namely in the arteria to be analysed. The viscosity of the blood is too high to
be ignored. We assume in the following that the pressure and the velocity of
the flow are constant in a cross-section, and depend only on time and on length
coordinate. So the cffect of viscosity is determined by the mean velocity in
each cross-section and by the viscosity coefficient. The effective diameter of
the cross-section is, however, a function of the pressure at the moment, because
of the elasticity of the tube-wall. This effect has also to be considered. Accord-
ingly, the partial differential equations of flow [1] are:

’ ( ’ g ’Ug‘
pe=o i vt if(pid) - (1)

’

0¢* vy = p{—1py. (2)
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where x is the length coordinate, ¢ is the time, p(x, t) is the (absolute) pressure
and v(x, t) is the velocity; o denotes the density, 7 is the coefficient of viscosity
and ¢ denotes the local velocity of sound (notice that the meaning of ¢ is here

?

“the low-frequency” velocity of sound: the high-frequency velocity of sound

— in a strict sense — belongs to a much higher domain, because in expansion,
high-frequency pressure variations affect only the compressibility of the fluid,
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rather than the elasticity of the wall. The expansion of pulse wave-fronts is
characterized by the low-frequency speed of sound, and normally ranges from
180 cm/sec to 500 cm/sec, whereas the strict velocity of sound is about 100.000
cm/sec.) ¢ is assumed to be a constant of about 200—500 cm/sec, which is
approximately true at frequencies not higher than 100 to 200 Hz. f(p,d)
denotes the coefficient of the effective diameter; in first approximation it is
1/d, in second approximation we take it into consideration according to the
expression

1
flp.d) =—-(1—dyp), (d >0) 3)

though, theoretically, f(p,d) may be an analytical function of p, without
affecting the following mathematical investigations.

Let us assume that in the initial cross-section (x = 0) the normal pulse
wave can be described by

WE

p(0,1) = py + 3 (p,coskwi-+r,sinkot) = I(1) 4)
k

il

where the higher frequencies (k > K) are neglected as stated before for the
high frequencies. But if ¢ can be taken as a constant for any frequency, we
suppose that p(0,1) is a continuously differentiable function, periodic with a
period 27/w.

For the final cross-section (x = x;) we assume that the tube is entirely
closed:

L’(‘JCL7 t) =0 (58)

or it is nearly closed, i.c. the speed of outflow is proportional to the momentan-
eous pressure

v(x;, 1) = ap(x,. 1) . (5b)

(5a) and (5b) can be summarized in the final condition
v(xp. 1) =2 plrp. 1) )

where « is O or a very small value.

The system (1)-—(2) is hyperbolic, and so it has a unique solution in the
segment 0 =< x <{ x; for any pair of initial conditions p(0, 7}, ¢(0, #); if they are
continuously differentiable [2, 3]. We consider, however, the system with the
pair of initial-final conditions (4) and (3), resp. For this case we do not know
anything about the uniqueness or existence of the solution. In the following
it will be proved that the problem (1)—(2)—(4)—(5) has a solution, p(x, 1),
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v(x, t) periodic in ¢ for all fixed x in 0 < x <T «;, if 1 is small and ¢ great enough,
and has a single solution in the class of functions, periodic in ¢ for all fixed x in
0 < x < x;. To prove this fact, we use an approximative algorithm, giving an
effective approximation for p(x, t) and v(x, t) as well. Let us consider first the
method of approximation of the periodic solution.

2. In the following it will be assumed that | 7 | is small enough and for
such 7 the solution of (1)—(2)—(4)—(5) is an analytic function of 7, i.e.

plx,t: 2) = pylx, 1) - 2py(x, ) + Ppo(x, t) +— . .. (6)

and
v(x, 13 4) = wvo(x, 8) + Zvy(x, 8) + Puy(x, 1) = ... (D)

are convergent in a circle | 4 | <7 7, for all t and 0 <{ » < x;, and are periodic
solutions of (1)—(2)-—(4)—(5). In this case the pairs of functions {p,(x, 1),
v,(x, t)} are continuously differentiable and periodicintforallxin 0 < x < %/,
and they must satisfy the boundary conditions

Po(0, 1) = p(0, 0); vo(xL, 1) = apo(x,. 1)
(8)

Pn(()’ t) = 0; Un(x'L’ t) = “Pn(va t); n= 19 2" A

Setting now (6)—(7) in (1)—(2}, we get the system of equations for the coeffi-
cients of the corresponding powers of Ai:

Plo.=o(v'o,— v t"0,) 9)
4 1 r I3
vo,=——(po.— 19" P'o.) (10)
gc
1 ( ’ ’ ’ 1 l% |
PuL= 0, =V v, — U Vo, 7(1_(11}70)";— (11)
’ 1 4 ! ’
vh,=—— (Pt P =1 P'o,) (12)
oc?

and in general

i

’ . ~, . - . .
Pn.=0 ((b UV n,—Vy" Vv 0;+90n(1’03 Vpveos

(13)
> Vp—1:Po> - - "Pn—-l))

’ 1 ’ ' ’

P J— N v . 1

Uon,— 5 (P Il[_LOP 'lx_l’n pOIT
c2

0

(14)

+ Pu(V0s V1o v v s Upgs Pos v v Prct))
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where
P . e T N g0 i
Frn= T V-1, Un_2, 7 - U Vi, —
1-d , . -
- — Sl (2vv, =20 0+ ) - (15)
2d
d
1 D0y [ JO ] 1 2
— —— (20t s +20 0 ) — s = =D 1
2d ° 2d
and
- ’ N ! . /— {
Yo=— 0 pn-,—tapn-2,—. .. —vy_ P1,- {16)

The svstems of Eqs (11)—(12) and (13)—(14) are now linear for the unknown
functions p,, v, and p,, v,, resp., no direct solution, satisfying also the houndary
conditions (8) in the form of Fourier-expansions can, however, be found
because there are unknown terms with variable coefficients, too. Let us
therefore consider the system (9)—(10) first, setting v',_in (9) through (10),
and solve the equations for p'y and v’y resp.:

x x

o 3‘ N l.() !
plo= ———lov's, — —-p's,

Lt R
o
c?
1
N ’ N ’
Vo= > (P 0~V P Oz)'
2c?

Now, if [vy! < ]¢! is true for all t and 0 = x <Z x;, and if v, and p, are

i i = =

analytic functions of ¢ = 1/¢* for | ¢ | small enough, i.e. if

po(x,tre) = PO(x, 1) L ePO(x, 1) =2 PO(x, 1) . .. (1%
and

vo(x.tre) = i, t) eV 00, ) =2 T P(x, 1) — . .. (18)
are solutions of (8)—(9)—(10) in the circle | ep forall t and 0 <« < x),

and the expansion

b= 1 e VO (PO 2 POy L

(P L2 PO L)L

is also convergent in this circle, then, setting the expansions above in (9)—(10)
and comparing the coefficients of the corresponding powers of & results in the
following system of equations:

PO — . 770

PO =0 V) (19)
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v =0 (20)
P = erfgz»' VIR VR~V Py (21)
B 1 _. ,
r= 2 pp— Ly po (22)
4 0
PO = oV oV VY o (VP L 2VP VN VY —
T 0/ ) . {0y ~0)2 g)7. .
— TP T P VT P
T ooy 1 ! 1 A ’ 1 b )/
W= PO VPP S TOPO L (24)
& 9 2
and in general
PO =y- I/"(I?)’+7,§§”(R)., P B T, .. V) (25)
VO = BOF By o P T Ve V). (26)

- . . 1 i . & { .
Now in the cirele ¢! -7 | e, the pairs of functions P, ¥ are continuously
differentiable, periodic in ¢ for all 0 <7 x < x, and Qau:f} the boundarv con-

ditions
P({;!)(O’ I) = (03 1'); j,‘w')(xu ,-) = D(m (x, l‘) (3—)
zi
PY0,1) = 03 TP(pt) = 2 PPy, ) k=12,
Now, applying the same procedure for (11)—(12), we get the system
1 , 2v,v v
p'.I: P 0 1_})/0'5_“““1_])/0 o
5 g c? c* c?
1
2
5 v
21— dy L
’ 1 7 ’ ’
v, =— (P —vp P )
e
In the cirele | ¢ <7 " &, |, we use the expansions
pilxats ) = PP(x, 1) —ePO(x 1)+ . .. (28)
vty e) = V(x, t) L VO(w, 1) -
and after substitution we get the system
P = V' + (1 dlpo) (29)
Vi =0 (30)

PO = 0 V' +ovg V' —ug PR +20, VP po.—



]
V]

T. FREY and G. VAS

4
— VPPt (1 —dyp) 2 D
d 2
PO = 1 pyr . Yo pay 1 O p, (32)
x 9 Q £ Q X
PO = 0- VO Lo P L oud VO g, PO — o} PO
(33)
+ 2050, po. — VP plo~ V(P plo 4 —-—~(1 dlpo)
pw—1 poy_ Yo opoy_ Loy, ' (34)
0 o T )
and in general
P = oV 0 pyy v PO ., PRV, . T D)
i = BD(pgs v, PO, PP, ..., PO LTVE, L T D). (35)
The boundary conditions are the following:
PO0,6)=0; VP (xp.t)=o-PP(xz,1);
E—0,1,2. ... (36)

Using the same procedure for (13)—(14), we get

14 14 /l‘ ’ ! ' L‘ 7 ’ 1
P = |2t S (p m—Vn P Ox“f"ﬂz) - I,I (p 0, Vo P 0:) - 8%n
1.5 c* c .
2
L.e. by expanding p, and v, in the circle | & | < { &, |
P = 0V 2 0@, (V0 Use v o2 Ve gs Pos « « o Priei)e (37)
=0, (38)
P'= o Vi 0 wf Vi v P 20, (Y plo, — (39)
— Y g{_ Vf)”)PIOx 0 lﬁ s
()t 1 (n)y’ Yo ()’ 1 (n) /
Vid'= — P — — P — —po.V ——EU (40)
e e 0
P — oT e T ord P — 0, P20, P 0, —
— e P 2031 0p o, — ) E =TV {p o — (41)
— g T potov g,
r ’ ]‘ ’ v 7 1 e I
17.(_,’2’) — _Pgl) — _LLP&I} I 7 gn)p 0. » (42)

0 o
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and in general

’ 7 ’
POV = o VI LoDy vy, ooy gy Pos - - -

(43)
ce s Paeps PO L, Pg’}}l, |2 L Vi.”)l),
I/-A(R!L)l: /’-};:n)(,vo’ -2 VUy1:Pos ++ -2 Pn—1- P((J”)= s (44)
L) P§@1‘ I/—(()”): AR ] If}clgl) .
The boundary conditions are the following:
P(,f)(O, H)=0; Vﬁj’)(xL, ) =o PP (xp.t): Ek=0,1,2... (43)

Now if all our previous conditions are valid, i.e. the functions P{ (x,1),
Vi (x, t) satisfying (19)—(45) are continuously differentiable and periodic in
t for all fixed x in 0 < & < x;, then we can find them in form of Fourier-
expansions:

Pi(x, 1) = () + 3 (s{57(x) cos fcot +1{(x) sin ioor) ; (46)
=1

/8

Vi(x, t) = ufo(x) -+ 3 (ub)(x) cos imt+wl(n) - sin iowt). (47)

i

H

Setting these expansions into Eqs (43)—(44), we get immediately integrable
differential equations in closed form for the unknown functions s (x),
B (x), wlP(x), w®™ (x), and the boundary conditions (27)—(36)—
(45) can be met, too: namely, if « = 0, then the initial values (x = 0) of s;
and t; and the final values (x == x;) of u; and w; are prescribed. On the other
hand, if ¢ = 0 (z > 0), then we have to deal with a system of unknown con-
stants

sm(x;) = uE () = 0y i En=0,1,2,... (48)

9 (x,) = wh(x )= o4m; 1 =1,2,...; (49)

k,n=20,1,2,...

which must be chosen so that the initial values of s; and ¢, satisfy the con-
ditions defined by (27)—(36)—(45). These conditions, however, separate the
system of equations, defining the unknown constants so that each equation
contains one and only one unknown y;, or §; in the form of a term " (x — x)
or 8 (x — x,) resp., i.e. we get one and only one solution for each term in
(46) and (47) resp. We shall give an example of practical interest in 4.

3. To discuss the theoretical problems of the uniqueness and existence
of the solution of (1)—(2)—(4)—(5). we note first that the problem of wnique-
ness cannot be treated in general. The method of approximation, given in 2
proves, however, that our problem has one and only one solution in the class
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of functions, continuously differentiable and periodic in ¢ for all fixed x in
0 < x < xp, if for (6)—(7) there exists a circle of convergence | 1| < 4, for
allz, 0 < x<{x,and ¢! =1/ ¢*| small enough and for the expansions of p,
and v, there exists a common cirele of convergence "¢ < &. Finally, the
algorithm for approximation, given in 2, demonstrates the existence of a
periodic solution of (1)—(2)—(4)—(5), and also the uniqueness of this solution

in the class of periodic functions, if we prove that this periodic solution is an
analytic function of e = 1/¢® near to ¢ = 0 for all 1, 0 <{ x < x; and for all 7.
with | 7 small enough, and is an analytic function of 7 near to /. = 0 for all ¢,
0 <<x < x; and for all ¢, with ! ¢ | small enough.

Now, considering Eqs (1)—(2) with fixed, continuously differentiable
initial conditions p(0, #) and (0, 1), and with fixed (complex) parameters / and
e == 1/¢%, resp., then the sclution of this prohlem is uniquely determined and
continuously differentiable in 0 < x -

xp (sd.e. [2, 3]). We can immediately
prove that the system

fayues ~ o~ 7 a
op; or; , ov er; 1 -
g v 3 Nalya L
= = Vi v— x (1—d, p) 3
ox ol ox ox Z (30 )
>
J d,
! 21 . 1.2, 4
+—{1—dyp)v-vi—7 54 v p,} ,
/
or; Bp; o op; -
Q . £ — p/ l’;. p . p/ ()1)
~ ~ A ~
ax ot ox ox

has a uniquely determined pair of continuous sclutions, satisfying the initial
conditions

pi(0. 1) = 1;(0, 1) =0

for all t and 0 < x < x;, and that these solutions are the partial derivatives of
plx, 3 2) and of v(x, #; 2) resp., for the given value of /: in the same manner
it can be proved that the svstem

o/ f Lt n Payns - - o 5
op. ov, , ov ov, , A , Lo, -
=g =t v — —v——+ —(1=dip)vrvi— ——pi. di). (52)
Bx ot ox dx d d 2
Py o o .l o !
ov; g gp op. o op. -

oo % 8P (oL %  Bp (53)
ox ct dx ot Sx dx

has a uniquely determined pair of continuous solutions, satisfying the initial
conditions

pL(0,8) = 010, 1) =0 (54)
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for all ¢ and 0 < x < a7, and that these solutions are the partial derivatives of
plx, t; ¢) and of v(x, 1; ¢), resp., for the given values of &. It means that the
initial value problem, connected with (1)—(2), has a regular, and thus, ana-
Ivtical pair of solutions in the parameters 4 and e for all values of 7 and e.
Though, a mixed, initial-final boundary problem is considered and to prove
the existence of an analytic solution of this problem means some difficulties,
as against the previous problem, because a change of 7 or ¢ causes a change in
plxp, ) and in v(x,, 1) at fixed initial functions p(0, t) and v(0. 1} — the infini-
tesimal change of p(x;. t) and of #(x;, t) vesp. can be characterized by pi(x,, 1)d/;
vi{x,. )di and by pl(x;. f)de: v){x;. t)de, resp. these derivatives being sclutions
of (50)—(51) and cf (532)—(533), resp., — and after this change the condition
v(x,. 1) = «p(x,. 1) is not vet satisfied. We must therefore prove, that for
given 4, £, and solutions p(x, 1; 7, ¢). v{x, i1 4, ) of (1) —(2)—(4)—(5). belonging
A2y Au(0, 11 7, g3 de) can be

to this pair of parameters, a change v(0, 1; 7, ¢;
given to a given variation 4/ and _le, resp. so that the solutions

connected with the svstem (1)—(2) for parameter values 7, e; 2 — 2/, ¢; or
7, e - e satisfy the final condition

v, 1) = ap®(x . ) v (xp, 1) =2 pt (a0

and that the functions

pFE ¥ wa —p

; lim —o— ¢ lim S
di=0 AL de= de

exist for all t and 0 << x < x;, and are continuous in / and &. Now it is clear,
that all the differences p** — p™; v¥¥ — ¢*; p*** — p*, v*** —¢* can be
divided in two parts; ; p**, A, v**; A, p*** and
p¥* — p¥y ¥ — ¥ p*EF — p*r 0*** ¥, caused by the change of the
initial value of v* with 7 and e, resp., unchanged in (1)—(2), whereas the

is the part of
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other part of these differences, 4, p**, 4,v** and A, p***, 4, v*** is caused
by the change of A and ¢, resp., in (1)~—(2) with unchanged initial values
p**(0,1), v**(0, t) and p***(0, 1), +**%(0, 1), resp. We must now prove on one
hand that Au(0, 1 2, €35 A2) and Av(0, t; 2, 25 /le) can be chosen so that the final
condition is still satisfied, and on the other hand, that the functions

lim 4y p** ; lim 4y p
=0 AL s=0 A2

exist for all t and 0 <{ x < x,, and are continuous in / and ¢. In proving these
properties we shall make advantage from the fact, that p and v are continuously
differentiable and periodic in ¢ for all fixed & (more exactly, that we consider
the existence and uniqueness of the solutions only in this class). That means
practically to consider in constructing selutions for (1)—(2)—(4)—(5) only
those solutions of the initial value problems — with variable initial values —
for which p(0,1) and 2(0, f) are continuously differentiable and periodic in 2.
Thereby v(0, f) must be continuously differentiable and periodic, too, and so it
can be chosen in the form of a convergent Fourier-expansion:

8

O

dv = py -+ (4 cosimitv, sin iomt) . (56)

ih

H

Now, (56) can satisfy the final condition (55) for | 42 | and | Jde | small enough,
if p(x.¢) and v(x, 1) are differentiable functions of the Fourier coefficients
tos i vy (E=1,2,...), and if the partial derivatives

g
@
Q
<

~ ~ ‘ Dy
alL; o, ov; oy

are continuously differentiable and periodic in ¢ for all fixed x, and, applying
the notations

°P aid)(x) 4 > (ag")(;\‘) cos jor+bld(x) sin jor)

SlLli J=1

DNas
:O—b— = c{(x) 4+ N () cos jor-+dP(x) sin jor) ;
O j=1

f = e)(x)+ X (el(x) cos jort-+f1O(x) sin joot) ;
oY, J=1

dv

— = gi(x)+ 3 (gP(x) cos jor +-hP(x) sin jor) ;
4 =



REFLECTION OF PRESSURE WAVES 27

the sequence of matrices (57)

Bn o= A};l; An e (llj)n: l.j e 1., 2, PR 271"1“1,

i1

1 =1
x-ai(_i )(-"L)”Ci(:i-) (x), if i,j=2k+1; E=0,1,...,n;

a

a-by2 M (xp)—dVy2/(xy), if i =2k k=1,...,n and
L B Bl J=2k-+1; k=0.1,...,n; _
= ; ; (58)
o e.(?) (x) ——g.(T) (xp), if i=2k+1; k=0,1,....n and

: j=2k k=1.2,...,n;:

xf("Jf) (L[)‘—}l(j?) (x), if 4.j=2k k=1,2,...,n,

converges to a matrix B = (b;): 7,7 = 1,2, ..., and this B has the feature
that to each continuously differentiable function

o(t) = kg + > (k;cosiot—+I;sinicot)
i=1

another differentiable function corresponds, defined as follows:

B[G(t)] = ‘é? (I/' bl,zj;]"j—1 bl,ij—l) +

j:
L 2 {(2 l/ bii"’l,:?/;—j'kj~1 bﬂf‘f‘l,i’f—l) cos iC’)f —‘ (59)
=1 [\j=1 /

-‘—{2‘ (Lbysoy+hiy bzz".zj—l)) sin ia)t} .
=1
Namely, if all the above conditions are satisfied, then to each unbalanced, but
nearly balanced final condition
£ 3y
o plap, 1) —v{xg, t) = A0 - (,[1(,— N cos jort—v; sinjwt)’ =0,

= j
continuously differentiable in t(.¥ denoting either -/ or Je) the initial de-
viation v in the form (56) is uniquely determined by

AU(') 4U'0 ‘Zl(}

" 7y i

1 - [ ‘ - iy

Sl =42-B- ‘Lfl -+ o(d42)-B- "":1 . (60)
Ya Vo Va

Ha tho Lia
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where the features of B safeguard that v is continuously differentiable in ¢
for all 2, | 4% | small enough. (60) implies too, that

il—, lim dip :
A8 10=0 b di==0 A8

exist. (Note that the existence of lim - "B;* ; lim —F——; ete. follows from
Ai=0 Az AS=0 LA

the analvticity — in 7 and in ¢ — of the solutiens of the correspoading initial

value problems). Now it remains only to prove the facts used above with
g 6p ©r ©ov

. b

——;—;——and to the matrix B.
Bu; Sy, By o

respect to the ¢ eri\‘ati\'e'

i

For this reason, let us consider the following initial value problems

) == cos i,

and
&p.. e; . & ae, ; L d] e 6
=0 S (/R L P S — e a1 2 Z
Erll U ar U Th 7 (L—dyp)ve; — 2 K (62)
P (O t)=0; ©,(0,1) ==sinior.

respectively. It is now o'r)vious. that solutions of (61) and (02) are just the
partial derivatives p,,,. r..and p/, v/, resp. and so their existence and their
continuous dlffelelltldbthV have })CLH proved (the coeflicients in (61) and (62)
are the solutions of the corresponding initial value problems related to p(x, t)
and v(x, 7), resp. and hence they are continuously differentiable). Now the
conditions, related to the matrix B can only be treated directly for ¢ = /4 = 0.
In this case (1)—(2) is reduced to

-5 — =05 p(0. 1) = I(1); v(xr, 1) = 2p (x1. 1)
t ox

- A A
15 av ov 87;
2P, v

Ox

(o))

o) = o(t); ple. )= o -’ (0)+1(1). .

wrg x v (t) Lo I(1); v(t) = ceer - Y ez [(7) dv
b

I
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where ¢ must be 0, because we consider only periodic solutions of our problem.
So. in the case of J = ¢ == 0 we have

toi-t X i1

v(x, 1) = | ez I(z)dr; p(x, 1) = I(1) - { ez I(7) dr,

h CAX

for 2 = 0 and

v(x, t) =0 plx, t) = I(t)

for « = 0
(61) is then reduced to
’, aa ~L
3p..; av,, By,
Do — syl Q—p—L |
Sx S| o ox
o ./
Ol’_ui ’ . ’ o o
— =0 pL(0,1)=0; v,(0,1) = cosiot,
ox
i.e. v, (v, 1) = cos im t; pl (v, 1) = —iwox sin imt. (63)
(62) is reduced to
ap. g
e/ R i B B

ty=0; 1,(0,1) ==siniot

f.e. o (v, ) == sin oty p;(x. 1) == iwox cos Lol . (64)

From (03) and (64) it appears that matrices A, are blockdiagonal with blocks

—1 ALOX]
—oiomox;  —1
i.c. the sequence of the matrices B., = A~! converces to a blockdiasonal one
I n o hoy
with blocks
[ 1 oimox;
1+02i2 2 p? x7 1-+22i? 0w p? af B
] . (63)
ALDOX 1
1222 2o ay 1422w p?at

Now the form of B guarantees that the expression in (59) is the Fourier-
expansion of a differentiable function, because the i-th Fourier coefficients of
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B[o(t)] are linear combinations of the i-th Fourier coefficients of ¢(¢) with
factors of O(1/i) and O(1/i%), resp. Now, if 1 or ¢ is near enough to 0, then the
solutions of (61) and of (62) lie near to (63) and to (64), resp., i.e. matrices
A, are nearly blockdiagonal; denoting the change of A, by A, so all the
elements of 1A, are of the order O(} 1| + | ¢!). Now if | 7 | and | ¢ | are small
enough, then

(An - AAn)_l = A;l__A;l ) AAn ) A;z—l_:_(A;l [JAH)Z A;l_ T (66)
~AZL AT A AL,
Using now (65) and (66), we get the relationship
1 .. . -
bij:e[f] for izkj—1, j+1 (67)
ry
whereas
b,,:e(l‘_] for i=j—1, j+1, (68)
1

and also this guarantees the differentiability of B{o(¢)]. Q.E.D.

TreoREM. The initial-boundary-value problem (1). (2), (4), and (5) with
continuously differentiable and periodic initial function I(t) = p(0, t) has one
and only one continuously differentiable solution, periodic for fixed x in the
domain 0 << x <{«x; if | 7| and | e | = 1f]¢*| are small enough. This periodic
solution can be then approximated by the algorithm given in 2. to the desired
accuracy.

4. To characterize the method of approximation on one hand, and the
effect of the frequency on the other hand, let us consider the problem for the
case

I(t) = 100 + 25 cos 107 + 10 cos 40¢ ;

(3]

o=1:; 7=02; ¢=500; x,=50; d=02;

=¥

L =10.005; 2=0;

truly representing a thrombosis occurring in a normal arteria.

Now, from (19) and (20)
Vo, 6) = 0; P(x,8) =I(2).
And from (21) and (22)

VO(x, 1) = (50 —x) (250 sin 10t-400 sin 401);
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POz, t)E[ag" _ (‘“'0_?—‘”)“](2500 cos 10t -16.000 cos 40¢) —

- —:—-_ (100 —x) (2500 cos 10t-+16.000 cos 407)

=

and so

.
By ~ {i sin 10+ —— sin 40t),
‘ & b

500
Po ™ 100 + 25 cos 10z -+~ 10 cos 40r +
100 —x

=00 (5 cos 10t 4-32 cos 401) .
b)

Summary

An algorithm is given for the approximation of a solution, periodic in ¢ for all fixed
0 < x < x; of the initial-final boundary preblem

p(0.t) = py, + S(_pkcoskwt +rpsinkwt);
k=1

v

2

ph=o(vi—v kS0 D)

4
o c*vy = p1— v pxs

o

v{xp. t) = a-p(xp. th

The theorem is proved, too, that the above problem has one and only one solution in the
class of the periodic functions, if p(0, t) is continuously differentiable.
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