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Let us define a non-negative measure du(0) on the unit circle z = ¢/® of
the complex plane. Such a measure is provided by a non-decreasing function
(@) having the following condition of periodicity:

1O, + 27) — p(O, + 27) = u(0,) — u(0y)

for any real numbers 0,, 0,.

Such a measure on the unit circle is called distribution function if u(0)
takes infinitely many values on an interval of length 2z, that is, support
Br(du) of du consists of infinitely many points.

Let such a distribution function be given on the unit circle of the complex
plane. For each distribution function there is a uniquely determined sequence
of polynomials {®.(du, z)} (z = €®) with the following properties:

1) The grade of the polynomial @p(du, z) = x,(du)z" + . .. is exactly n,

2) its leading coefficient x.(du) is positive.

3) For any pair n, m of non-negative integers the conditions of complex

orthogonality holds:

| B 0,00 ) 20(0) |
27

—T

1, if n=m

0, if nskm

(1)

{This is a Lebesgue—Stieltjes integral belonging to the distribution du.)

Let du be a distribution on the real line, the support Br(dz) C [—1,1]
of which consists of infinitely many points. For each distribution function of
this type there is a uniquely determined sequence of polynomials with the
following properties:

a) The grade of the polynomial pa(da, ) = ya(da)x™ + ... is exactly n,

b) its leading coefficient y,(dz) is positive.

(1) For proof see [1]
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¢) For any pair n, m of non-negative integers the following condition of
orthogonality holds:

v

l

Pul(x) P(x) d2(x) : (2)

0 if nskm

{ L. if n=m

le -+

I.

Let dx be a distribution function on the real line with Br(dz) < [—1, 1].
To any distribution function of this type we can define the function u(®) in
the following way:

1,(0) = ’ (1.1)

) <=
g(cos @) —a(l), f —a<LO<CO

20 that it provides a distribution function on the unit circle as described above.
Obviously, di;(0) = | dz(cos O) . If u(x) is absolutely continuous and «'(x) =
= 1(x) then u,(0O) is absolutely continuous and the weight function belonging
to du,(0) is flO) = w(eos O) |sin O |.

The connection between the orthogonal polynomials on the unit cirele
and those on [—1, 1] is well known: (1.1) is valid for 1,(0) and «(x).

Let x = cos O, z = ¢ then

prz(dy-?x) =

Let d3(x) = (1 — x*)d=z(x) then

D . —1/2
1 {1 4 Q)‘l'z(d‘Ulﬁ O) ] [:——n CD:,»;((ZHl; :)_]__:rz ®2:z(d.u1; ;—1)] . (12)

Fanldpty)

i

Pn(df‘_;'? .\') = ] —

(1.3)

N

The purpose of this work is to investigate the asymptotic properties of
the orthogonal system on the unit circle corresponding to the Jacobi-poly-
nomials.

Szec§ mentions in [2] that the orthogonal polynomials on the unit
circle corresponding to the Jacobi polynomials can be expressed, using suitable
constants, as linear combinations of certain Jacobi polynomials but he does not
indicate these constants.

So let du(x) = (I — x)%(1 + x)" dx, where a >—1, b > —1.

(2). (1.2), (1.3) For proof see [1]
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Multiplying by suitable factors the orthogonal polynomials p,(dx, x) on
[—1,1] belonging to the distribution du(x) give the Jacobi polynomials
P (x). Further, let dp(x) = (1 —a%du(x) = (1 —x)*"' (1 + )P dx. As
usually, let us denote the orthogonal polynomials on [—1, 1] belonging to the
distribution d3(x) by p,(d3; x).

In the following we shall work with orthogonal polynomials on the unit
circle belonging to dy, that has been defined in (1.1). If no confusion is risked
we shall use the simpler notations @p(du,; z) = Dn(s), xn(du,) = =n.

Since
el@_L o—1i0 1
x=cos@ = : = )
2 2
we hawve

-~ a1\

oo

: on

Let us apply (1.3) to n — 1, from this and from (1.2) we get by comparing
the coetficients:

o,

[1 + 20 }" [0 By (0)],

&
o =
9

g):’.rz(

1 al0) ]" [t — D, (0)].

veadd) 12
Rl

Sr1—1 =

Hay

Solving the system of equations we have
L I} n  (dA
zip = ?[m(( %) +ya-1(d)]-

and since x,, 13 positive,

\I‘

vy = | TR T 7P (L4)

@ll(()): ‘1'7 :’I‘I(dy‘)_:);h-l(dp) . (15)

2” lA :"/!1((17') ";-‘:"rzz—l(dﬁ)

Since the equality

S P (0)F =2 (3)
holds, swe also have -
21 = #ipre— |Dones(0)}? (1.6)
and
](—D_’ *1(0)12 = z%n*—l /gr: (l 7)

(3) For proof see [1]
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Since the coefficients of @,(dy,; z) are real we get _ 4)

]@”n+2(0) = @%n+2(0) .

Using equalities (1.4) to (1.7) we obtain that

T Yan(dx) vi(dB)
4" yhea(dx) +yi(dp)

22 —
“2n+1 T

and since #y,.; is positive,
Y7 yra(d9)7.(df)
2" Vyhea(de)+- v2(dP)

b (o) [ P AR o }
By (0)]2 = yi(ded)~92_,(dB) . 1.9
[@a042(0)] 4,,[%(‘1“)%(@) 4(de)~}2(dP) (1.9)

Hopty =

(1.8)

It should be mentioned that @,,.; (0) can be determined up to its sign
from (1.9) since @,,., (0) is a real number.
The values yn(dz) are known (see Szec6 [2])

o (d2) = _L 2nta+-b-4+1 I'(n+1)(n+a+b+1) ll"z I(a+b+2n-+1)
T gn 2a+6+1  [(nta+1) Nn+b+1) |  I'(r+1)I(a<btn+1)
1

(1.10)

n:l,z,...

Taking into consideration the equalities (1.4}, (1.5), (1.8), (1.9) and
(1.10) we obtain

2 o T 1 I(a+b-+2n-+2)
T e 20704 [p1) Da+b+n+2) Dnta+1) [(n+b+1)
(1.11)
@3,(0) = 7 (a+b-+1)2 Ya-+b-+2n-+1)
o (4m2 207041 [(n+1)(a-+btn-+2)T(ntat1)(ntb-1)
(1.12)
s = 1 I(a+b+2n--3)
LT (gry2 20508 Platbtn2) D(nt1)I(n-ta+2)(ntb+2
(1.13)
, o 1 I2(a+b+2n-+2) )
03,.4,(0)= , ,
(472 2040+ [(q+b+n-+2) M(nt1) Nn+a+1)I(n+b+1)
(a—b)* (1.14)

d(n+a+1) (n=b+1)

(4) For proof see [1]
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Iz) = e 711227 {1+0 (—}—]] (largz|<<m)
n |

we obtain from (1.11)-—(1.14):

#iy = 207071 [1 +0 [—-1— } (1.15)

I

ga-+b—1 ! ! 2
R [1 +0 L” (1.16)

9a<b—1(, __j)2 /
n- n

s, = 204051 [1 L0 (LH (1.18)

n

We should like to estimate @,(s) using Jacobi polynomials. For this
purpose let us apply equalities (1.2) and (1.3) whence

QT)M(CIAUI; Z) - %i[l/zjrpn(dzz 5\3) (1 "1’ %&J 1/2_:_
- 2n g (1.19)
7 @‘) 12 .
@233(‘1/11; :_1) = ~:)n PZ—TPr(d:'., -l) (1 _:_ (I)Q”(O) ]1/2 .
: - (1.20)
@Zrz(

The @.(du;: 5) of odd indices can be expressed by those of even ones. To
do so, we use the following identity:

%, P, (z) —D,(0)D(z) = #,_1 5D, 1(5) (1.23)
where @%i(z) = " D (z71).
Thus
i Bl = D (0) 2 By () = gy 5Py, (2)
and
“%an @°'l 0 3
By (3) = —2 5720, (z) — 22O g, (o) (L.22)
#a 1 7'2,'1—1

(1.21) For proof see [1]
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The asymptotic behaviour of the Jacobi polynomials P@? (x) is known (see
Szect [2]).

a/ Vo i 2 b1y a
(sing !cosﬂ P (cos O) = n#a—b#—:!] X
2 |72 | 5
NP 12 . —T—- L \
y ]"(n;a,l)( O Jo[n_fﬂab,ll@+ (1.23)
n! sin @ | 2

OOy i enTt <O <La—e

T - . :
O+ 0(n%) if 0<<O<en™?t

where J,(3) denotes the Bessel function of the first kind with index 0, ¢ and ¢

are fixed positive numbers. On the interval [7 — ¢, 1) a symmetric formula

can be obtained by interchanging the roles of a and b.

For

pald ) = {

2n-a-bt + —a—=b+1) M7
2n+a-+bt1 I(n+t1l)I(n-—a-+b- 1)} Ped(x),  (1.24)

9a+b-1 I'(n+a+1)I(n+b-+1)

we get
12 '
paldo, x) = 7:,._b [1 +0 (—1— )] P@v)(y). (1.25)
272 nl
Using (1.23) we obtain that
nl/‘ . @ 2 —b-172
p.{dz, cos O0) = an (~ —é- } %
973
: b1 T 1 '
Jo {{n L 8 ] @} [1 ~0 ‘L” + (sin —QJ v (1.26)
2] l n 2 ‘
o (c Oy IO 0™ if ent <L O Lk
- 2 |04 20(n*12) if 00 < cn?
2 ) i —a—372 3y —b—=32
paldi. cos @) = Zzih O ‘siu% {cos —?—) X
= = { Z

—a--1

< Jo [[n -+ a;b:f—_fi OJ [1 -0 {j—” . (sin—g—
2 n | 2

cos _(')_) ~b~lI9]‘;‘) O(n™) if en1<<Oa—¢
i |03 0(ne2) if 0O <Lent '

9
In fact, we have proved the following theorem by using results (1.15)—

(1.18) and putting the estimates (1.26), (1.27) into equalities (1.19), (1.20).
(1.2

[
[ R
—
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Theorem

134

Using the notations introduced above, let

. e n® ntl? . Oy-a-iz @\-o-12
D, (duy: e'®) = 127 [% o2 sin —- cos — b
: {
2

5 ! a+b=l
- < B)

-+ b —a—172
% Jo ([n - —‘3—-—1’—1—} @) (1-4i)L- O (Sm .O_J y

9 2

@ y-bo-12 ——b-—z—l —1/2\
S
-+ 10 (n~1;’2))+ [sin g - [cos g} ) P

N/

{(91/3[0(71-_1){——1'0(72“1)] if en1<COL :r-—e}

- @2720(ne11) (1 —j—i@O(n)) if 0<CO<en™?
iln-ho ____ 172 ) y —a—12
D,,_(duy;e®) = £ 5 | 27[ Z;bq ORE (sin —?—} X
2 s )

J@“[O(n H=i0(n™)] if en'<{O a5
T e 0me ) [0(1) = i60(n)] i 0 O < en? l

Let us also mention that interchanging the roles of ¢ and b we obtain a
svmmetric formula on the interval (7 — &, 7).

Summary
The purpose of this work is to examine the asymptotic properties of the orthogonal

system on the unit circle corresponding to the Jacobi-polynomials; we give an asymptotic
expansion in closed form for the ahove mentioned system of orthonormed polynomials,
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