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The transmission probability in any direction through a duct connecting 
two large vessels is defined as the ratio of numbers of emerging to 
entering molecules. Usually it is determined under the following assumptions: 
the molecules pass through the duct independently of each other, their inter
collision is negligible, the reflection on the walls of the duct is diffusive (the 
angle of the reflection is independent of that of the incident). These assump
tions are seldom realized in real physical circumstances, but the deviations 
can generally be taken into account, for this reason it is worth to determine 
the transmission probability under the assumed "clear" circumstances. Theo
retical computations are, however, rather laborious even under these restrict
ing assumptions and only a few results are available even for the relatively 
simple case of a cylindrical tube. A usual computation method is by a Monte 
Carlo model on a computer, but on account of the high computing time it 
must be restricted to a few parameters. Therefore it is worth to search for 
simple methods giving acceptable results either by interpolation between 
available results or by tracing the problem back to the results on cylindrical 
tubes. 

OATLEY [1] was the first to show an acceptable method for computing 
the transmission probability of t",-o interconnected cylindrical tubes. The 
application of his method to combinations of cylindrical tubes of different 
cross-sections or to combinations of a tube and an orifice of different cross
sections is a little difficult. BALLANCE [2] presented an additive formula as 
the generalization of OATLEY'S result considering that the transmission proba
bilities through an element in direct and in the opposite direction generally 
are different. He takes the ratio of the two kinds of transmission probabilities 
equal to the ratio of the entrance areas of the element. It appears that his 
generalization is not consistent in every respect. In the following a descriptive 
model of the addition of transmission probabilities is shown, emphasizing the 
basic assumptions, to make the deviations from the OATLEy-BALLANCE 

method obvious. 
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The new computing method 

The transmission probability can be defined as follows: 

I, (1) 

where I is the net number of molecules per unit time that flow from a large 

reservoir into another one; NI and Nz are the numbers of molecules per unit 
time per unit cross-section that enter the openings of the system; A is the 
opening area. 

Our assumptions for the computation of the transmission probability 
of a complex system from those of their elements are the following: 

1. Along the junction area of the connected elements the distribution 
of the molecules is uniform as if coming from a large reservoir. 

2. For each connected element it is true that 

(2) 

where Rand L mean right and left and O'.R means the transmission probability 
of the element to the right. 

In computing the transmission probability of a complex system, nota
tions in Fig. 1 are applied where elements 1 and 2 are not necessarily cylindrical 
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Fig. 1. Diagram of composite system 

tubes, but any element with known transmission probability; AB is the junc
tion area. 

O'.R can be determined by (1) as follows: 

(3) 

where N' is the number of molecules per unit time and unit area that flows 
to the right through the junction area. 

On the right side of (3) the number of molecules N' AB is composed of 
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two parts, the one that arises from NlAL and the other from N 2A R. The part 
from NlAL is 

(N' A B)1 = Ni AL x1R 

+ Nl A L x lR(l 

N1 ALxlR (1 - x 2R) ( 1- x1d + 
x2R )2 (1 - x1L)2 + ... = 

1 
NI AL x lR --------- (4) 

The sum in (4) means that in equilibrium, among the molecules crossing 
AB at any time there are the ones crossing for the first time, the ones crossing 
for the second time and so on. 

Similarly, the part from NzA R considering (2) is 

(5) 

Eq. (3) considering (4), (5) and (2) is 

1 
(Nl - Nz) AL cxR = (lVl - Nz) AB ---::1;------:;1;----

--+-- 1 
cxIL cx2R 

Thus the transmission probability of the system is 

(6) 

(6) gives the known Oatley formula if AL = AB, CX1L = cx1R = Xl and XzR = 
= CXzL =X2' that is true for cylindrical tubes. 

Transmission probabilities computed by (6) are equal to those obtained 
by OATLEY or BALLANCE for simple geometries. However, deviation can be 
found in the most complicated geometry examined by BALLANCE, that of 
a cylindrical pipe ·with restricted openings and a central blocking plate (Fig. 2). 
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Fig. 2. Cylindrical pipe with the openings at both ends restricted and with a central blocking 
plate 
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The transmission probability for this system can be determined in the 
following steps with the new formula (6): 

A1 [ a) O'.Ra of the system in Fig. 3a from (6) - as X 1L = IX, xZR = - Eq. 
A2 

(2) being true for both elements: -':11· = -"'-2· - is expressed as: A 1 .1 A1] 
A2 

1 1 
l. 

b) O'.Rb of the system in Fig. 3b 

IX2R is given by (7) is 

1 
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Fig. 3. Diagram for the construction of the system shown in Fig. 2 

(7) 

(8) 

c) The transmission probability of the cylindrical pipe ·with restricted 
orifice and central blocking plate in Fig. 2 as X 1L XzR is given by (8) 
and AB = A2 - A1 - is 

F
A.) 

where =-~ 

A1 

141 _. __ ...L __ _ 

FIX F I F-l ' 

BALLANCE'S formula for this geometry is 

1 3 1 1 --=2--+--+---
x B F Fx' (F -- 1) 0'. 

(9) 

(10) 
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The difference of (10) and (9) is 

1 1 l--x 
(ll) 

F(F -1)x 

(ll) is positive for all values of F> 1 and 0: < 1, therefore (XR > (XB' 

The (X values obtained from (9) and (10) for the geometry in Fig. 2 are 
shown in Figs 4a and 4b as compared to the Monte Carlo data of DAvIS [3]. 

A proper approximate fl?rmula for short cylindrical tubes is [4] 

2 
(12) (X=----

L/R+2 

which approximates the exact values from below, for this reason it can be 

IX 0,5~ 

0,50 
\: 
\ 

0,~5 

O,~O 

0,35 

0,30 
0 

IX 0,24 

0,20 
\ 

0,15 

0,10 

0,05 

0,0 
o 

\ 
\ 

0 

"
"-

\ 
~ 

2 

"-0 
"-

"-
"-
" 

" 0 o ", 0 0 

2 

'--

-- [q.uation (9) 

- - Eq.uation (10) 
o Monte Carlo-Davis 

6 8 LIR 

-- Equation (9) 

- - Equation (10) 

o IV/ante Carlo-Davis 

o 
o 

-------

6 8 LIR 

Fig. 4. Transmission probabilities of the system shown in Fig. 2. a) F = 2.25; b) F = 1.25 
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used in (9). From (9) and (12) 

2F(F -1) 
CXR = ---------'----'------

(F 1)(4F+LjR)-2(F--2) 
(13) 

if LjR is given according to Fig. 2. 

Correction for short tubes 

The transmission probabilities of composite systems, obtained from (9), 
(10) or (13) are inadequate for short geometries. The reason of this is the 
assumption in the derivation of (6) that the distribution of the molecules along 
any crosl"-section of the system is uniform, which is far from true in the case 
of short systems. 

To consider the real distribution is far more diffieult and a simple method 
to get suitable r0sults is to correct the formulae obtained by (6). The correction 
can be done by interpolation, prescribing the known values ofcx. [For example 
for ex = 1, that is LjR = 0, let CXR = 0 in (9).] A correction of (10) by this 
method fairly approximates the known Monte Carlo data [5]. 

A proper correction for (13) can be given by the factor 

LjR 
(14) 

LjR + 0,2 

The results are shown in Figs 5a and 5b compared to DAVIS's data. To get 
the suitable factor, our intention was to find a simple formula for ct.R = 0 

where L/R = 0 and 't.R will be unchanged if LjR -+ =. 

Conclusions 

To obtain proper formulae for the computation of the transmISSIOn 
probabilities of complex systems of various geometries it is necessary to define 

clearly the physical assumptions in the derivation. This gives the possibility 
to determine the range of validity of the formula, and the influence of the 
approximation upon the final result. 

The evaluation of the obtained result is most effective, if it is possible 
to compare it with some Monte Carlo data. 

In the knowledge of the limits of the formulae obtained from simple 
physical assumptions it is possible to derive correction factors extending their 
practical validity. 
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Fig. 5. Transmission probabilities of the system shown in Fig. 2 calculated by (13) corrected 
by (14). a) F = 2; b) F = 1.5 

Summary 

A general procedure is given to compute the transmission probability of composite 
systems from data of cylindrical tubes. The obtained results are compared to known Monte 
Carlo data, and to the results of other approximate methods. The errors of the procedure 
are explained and corrected with proper interpolation formulae. 
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