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For determining orientations in metal crytals Laue’s X-ray, back reflec-
tion method is mostly prevalent. In polycrystalline metals, however, deter-
mination by Laue’s technique is only possible in case the diameter of the
crystallites is greater than that of the X-ray beam. Upon decreasing beam
diameter the exposure time will increase which will result in a cumbersome
procedure, not even mentioning difficulties inherent in using a thin X-ray
beam.

The exposure time of one Laue film for a 0.1 mm diameter X-ray beam
is 8 to 12 hours depending on experimental circumstances. Even by such thin
X-ray beams orientations only in crystallites corresponding to ASTM grade 4
can be determined, since the respective particle diameter is 0.091 mm. Deter-
mining orientations even in such coarse grained material is, however, so labour
consuming that the orientation determination of all crystallites in a 100 100
mm?® viewing area with an enlargement of 1:100 would require 100 days.
The time of evaluation should be added which for an experienced analystwould
take 10 days. Hence it is the extraordinary labour consumption which is the
reason why no researchers are concerned with tasks connected to the solution
of orientations in polycrystalline metals in most cases. Thus for solving prob-
lems of this character another way should be sought for.

Determining dislocation density by the eteh pit method is becoming
more and more prevalent in the last two or three decades. The essence of this
procedure is that a carefully prepared metallographical surface is attacked
only on certain definite points by special etching reagents. These points define
the etch pit figures and are assumed to be the intersection points of disloca-
tions and the etched surface [1—3].

In the course of producing etch figures several etchihg reagents have
been developed that etch pits bordered by planes of specified (h'k'l) indices.
If a crystal is placed into the proper solvent or etching reagent those regions
which possess excess free energy dissolve at a faster rate than the rest. Thus,
sooner or later, etch pit figures will form in the crystal surface bordered by
planes of specified crystal indices. Their geometry will only depend on the
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(hkl) indices of the metallographic surface in which the etch figures were

formed. Etch figures of this kind are seen in the surface of a CdS crystal in
Figs 1 and 2.

It can be observed from those {igures that the ctch figures of the ervstal
are of well defined geometry. Now ia the following we shall proceed to show
that if an etching reagent is known such that will etch pits bordered by speci-
fied {hEkl} crystallographic planes for a material of hexagonal structure, then
it is possible to determine the Miller indices of the metallographical surface,
i.e., the orientation of the crystal using cteh figure datsa.

Before introducing details of the procedure delineated above it is worth
to note that for determining orientations of cubic crystals
geometric data of eteh figures [5]. This can also be solved — as we shall see
it in the following — for hexagonal crystals.

several authors used
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Let the etch pit be a triangle-based pyramid as in Fig. 3 with its base
as the orientation (HKL) tested, its sides bordered by (H,K,L,), (H,K,L,),
and (H,K,L,) crystallographic indices. The indices of the crystallographic plane
(HKL) should be determined. (Thus far, and further on as well, upper case
indices refer to hexagonal, while others in lower case to either general or to

cubic crystallographic system.)

/
[ [HKL  meiallographic plane

Fig. 3

Let vectors perpendicular to the side planes of the etch pit be n,, n,:
and 1, while n be the normal of the tested erystallographic plane. Provided
the preceding three normals are known, n can be determined as the vector
product of two arbitrary intersection lines of the etch figure, considering that
an intersection line is a cut between the plane of sample and the side plane
of the pit.

Hence the 1, normals in, vector product with the normal of a plane
parallel to the plane of sample will just give the intersection lines in question.

Using notation in Fig. 3
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The cosines of angles «, 5, and y as marked in Fig. 3 are given as the
scalar products of the vectors of appropriate intersection lines as

COsS & =

cosf = -
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In the last three equations values of the left sides can be determined
from the shape of the etch figures by measurement. This way, according to
the equations above, the (HKL) indices sought for can be calculated.

The calculation is but slightly complicated by the problem that for given
(H,K L)), (H,K,L,), and (H,K;L,) planes in a hexagonal system it is not so
easy to assign their normal vectors as in the cubic system. Therefore, we give
some relationships which provide the normal vectors belonging to an arbitrary

(HKL) plane.

For all ideal crystals the vectorial relation
T =T, -+~ ma -+ nb 4+ pc

holds, where T and ;o are vectors marking points of the same kind in the
crystal. If m, n, and p are integers then a, b, and ¢ will be the translational
unit vectors characteristic to the crystallographic system.

Thus an arbitrary r vector also signifies a line parallel to some crystallo-
graphic direction. If numbers m, n, and p are the smallest possible integers,
from innumerable possibilities, those are exactly the indices of the crystallo-
graphic directions which in square brackets [ ] are used for describing the

_appropriate crystallographic directions.

In a similar way the relation for an arbitrary crystallograhic plane can

be given as:

(r—T,)n=20
where -1:“ and r, respectively, mark a specified and an arbitrary point of a
crystallographic plane in question, while n is the normal of the same plane.

In the cubic crystallographic system a (hkl) plane is always perpendicular
to the hEl direction, in non-cubic systems, that, however, is only maintained
under special conditions.

In the hexagonal svstem a, b, and ¢ translational vectors are related as
follows

and

&bl ndbe—ta—o
i b 2

In other words, vectorsa and b are of equal magnitude and include an
angle of 120°, whereas the magnitude of vector ¢ is different from the previous
two ones, but perpendicular to those.

Provided m crystallographic direction perpendicular to (HKL) plane, or
the indices of a crystallographic. plane perpendicular to an arbitrary [HKL]
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line are known in a hexagonal system, then it is possible to determine the
orientation of crystals in a hexagonal crystallographic system on the basis
of etch figure geometry, a task we have previously outlined.

Let v be a crystallographic direction given by the vectorial equation

Ha - Kb Lc

v

I

in the hexagonal system, furthermore vector r of a cubic system be parallel
to vector v defined by

where components parallel to the unit vectors e; are either components of
vector v or vector I. The expression may simply be written in matrix form

or

El=|k, & | |K
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On the strength of the above mentioned, the corresponding hexagonal
vector of a cubic system vector can be calculated without difficulty from the
relationship

¥=4'r.

Calculation is especially simplified if the relation between the co-ordinate
systems is properly chosen. Hence. for example, in case of vectors b and ¢
being parallel to unit vectors e, and ey, respectively, then the matrix of tensor

‘—a/“?T o ol

A becomes

2
A= 2 a O
2
i 00 cJ
and that of the inverse matrix
2)3¢ V3¢ 0
A4r=| 3 3
0 c 0
0 0 a

It is seen that a correspondence can be established between cubic crys-
tallographic directions [hkl] and those [HKL] of a hexagonal system, thus
after conversion, relations between directions of the hexagonal system are as
simple as in the cubic system.

Now, there remains only one problem to be solved, to determine the
orientation from etech figures, namely to deeide which (HKL) erystallographic
plane is perpendicular to any crystallographic direction, or to show which
(HKL) hexagonal system plane corresponds to any (hkl) plane in the cubic
system and vice versa.
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According to Fig. 6, for an arbitrary (HKL) crystallographic plane three
1 1

1 - - - .
oints —, —, and —. or vectors g,, P,, and marking those points are
1Y K P1r P2 P3 g P

known in a hexagonal system. Thus

1 _ 1= -

The difference of any two out of these three vectors is in the crystallo-
graphic plane in question. Let these three be marked by {I;, t,, and ;.

Then
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Evaluating the vector product we obtain

0 = [H(kyl, — kl;) + K(k I, — kol.) -+ L(kl, — k sla)] &
+ [H(hdy — hyl.) + K(hol, — hl,) -+ L hbl — hly) ]Ez
~+ [H(hoke —h.ky) + K(hko—hok,) + L{hoks—hok, )] &

this can be written as

or
h kole — Ry kd,—kJ.  Ely — k| [H
El=hdy — hel, hl, — hl, hyl,— hly] | K
l hok,—hky Rk —hok.  hoky— hykd LL

Here vector

§—Ha+KbLIe

should be considered as an auxiliary vector enabling to determine the per-
pendicular direction to the (HKL) crystal plane in the cubic system and its
corresponding crystallographic plane. On solving this problem another ques-
tion arises, namely, which (HKL) hexagonal system plane corresponds to
a given cubic system plane. This is given as

§=Bln.

Here auxiliary vector p has three [HKL] indices which are identical to the
indices of the hexagonal ervstallographical plane sought for.

Simplifyving ealculations we should counsider relations given in Fig. 5,
thus the latter expressions are reduced to

i=Bg
or
h 1 Lo H
2
k|=]0 L? 0 K
al3
! 0 0 ——||{L

similarly as the expression of hexagonal plane indices

5=B'%
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corresponding to

1
| -= 1
K 5 0
L 0 0o =
— - usma a—-

Hence, all relations have been given for determining orientations in
crystalline surfaces on the basis of etch pit figures of hexagonal crystals.

The author considers it to be his pleasant obligation to thank his colleagues Odén
Lendvai and Gyodrgy Andor that they were so kind as to have made Figs 1 and 2 available
from their research work on CdS single crystals.

Summary

A method has been presented for determining crystal orientations in metals of hex-
agonal structure that is based on etch pit figures. When some solvent forms pits in the crystal
surface which are bordered by crystal planes of the same kind on all sides, then the (hkil)
Miller indices of the plane parallel to the surface can be determined from measured data of
angles produced by intersection lines of etch figures and the surface plane of the sample.
Provided that an appropriate etching reagent is available this procedure is also suitable for
orientation determination of individual crystallites in polycrystalline metals, in cases where
the X-ray method is already practically useless.
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