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Introduction 

Lumped equivalent networks of transmission lines may be needed for 
simulation on analogue computer and in other tasks. Of course, an equivalent 
network can be used only in a finite frequency band at a prescribed accuracy. 
The problem of the low-frequency equivalent networks will be treated in detail 
here, but the presented procedure can be adopted to other frequency bands, 
too. 

The transmission line is characterized as a two-port by its impedance 
parameters. The impedance parameters of a uniform transmission line of length 
1, with characteristic impedance Zo and propagation coefficient p can be ex
pressed as 

where 

Zn = Z22 = Zocthpl 

Z12 = Z21 = Zocschpl, 

VR'-L SL' 
Z - --'--
0- G'+sC' 

and p = Y(R' +sL') (G' +sC') . 

(1) 

Here R', L ' , Gt and Ct represent the resistance, the inductance, the leakage 
conductance and the capacitance per unit length, respectively, and s is the 
complex frequency variable. Denote: 

R = Rt[ L = Ltl G = G'I C = Ctl and 
(2) 

g = pi = V(R sL)(G + sC). 

With these notations: 

(3) 

The equivalent network will be determined on the basis of these relationships. 

1* 
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The method of determining the equivalent network 

First a wholly equiyalent two-port is sought for, where the branch 
impedances are positiye real, but naturally, not rational functions. These imped
ance functions will be approximated by appropriate positive real rational 
functions, 'which can be easily realized by lumped net·works. Positive real 
impedance functions are wanted in the equivalent network, because a not posi
tive real function can be approximated along a given part of the imaginary 
axis by a positiye real rational function only to a defined accuracy. 

An equivalent network in form of a symmetrical lattice satisfies this con
dition. Symmetric passive two-ports, i.e. two-ports with symmetric positive 
real impedance matrix are known to have an equivalent network in form of 
symmetrical lattice in which the impedance functions are positiYe real. 

As some disadvantages of the lattice network are kno'wn, the question 
may arise, whether such an equivalent network in form of grounded t'w-o-port 
can be found, which satisfies at the same time the above-mentioned condition. 

This seems to be a rather hard, maybe unsolvable problem. It does not mean of 
course that a transmission line cannot be substituted in a given frequency band 
by a lumped, grounded two-port, but the accuracy can only be increased pre
sumably by way of using networks with ever more complicated geometries. 
In a lattice network the fundamental structure of the two-port does not change 
by increasing the accuracy, only the number of the elements in the single branch
cs increases, as it will be shown. In this paper only the equivalent networks 
in form of a symmetrical lattice will be treated. 

After this equivalent network has been found, the next problem is 

to approximate the involved positiye real impedance functions by appropriate 
positive real rational functions. By reason of (3) the impedance functions to be 
approximated are expected to assume the form: 

Z(s) = Zo(s)f[g(s)]. 

The functions f[g(s)] will not be approximated directly on the basis of the vari
able s, but g, to simplify the calculation. For lossless transmission lines (R 0 
and G 0) g = s VLC, i.e. the approximations made on the basis of sand g 
lead to the same result. It is known that the transmission lines practically 

used can be considered lossless except at very low (e.g. industrial) frequencies. 
As for lossless transmission lines Zo = V LIC and g = s VLC, f(g) must be a 

lossless immittance function, irregarded its dimension. Hence, f(g) is an odd 
function, so also the approximating rational function must be an odd one in g. 
Thus, the function f*(g) approximating f(g) can be written as a sum of partial 
fractions in the following form: 

f*(g) (5) 
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the approximating impedance function being 

n-l ai(R+sL) 
~ ( + un(R+sL). 
i=l (R+sL) G+sC) + bi 

Z*(s) = Zo(s) f*[g(s)] (6) 

If the function is required to be realizable independently of the given R, L, G 
and C values, and if the lossless transmission line is considered as a limiting 
case, it must be prescribed that Ui and bi are nonnegative real. The function 
Z(s) can be well approximated in the environment of one of its poles only, 

when Z*(s) contains the chief part of the Laurent seri~s belonging to this pole, 

Qi 
G 

5t L .2iR 
b; 

c 
OT 

Fig. 1 

As f(g) is an odd positive real function, it has poles only on the imaginary axis 
and at these poles its residue is positive, so in the sum (6) both U i and bi are 
positive for a term corresponding to a conjugated pair of poles. Now the advan
tage to have positive real impedance functions in the first equivalent network 
becomes clear. 

The realization of the terms of the sum (6) is shown in Fig. 1. So in the 
case of lossless transmission line the first Foster network of the approximating 
impedance function Z*(s) is obtained. 

Fig. :2 

Of course, also the admittance functions of the branches of the equivalent 
network can be approximated, to obtain a different network. A. reasoning simi
lar to the previous one leads to the conclusion that the approximating admit
tance funetion takes the following form: 

n-l 

Y*(s) = ~ + cn(G+sC). 
i=l (R+sL) (G+sC) + di 

(7) 

The realization of the terms of the previous sum is shown in Fig. 2. This net
work is similar to the second Foster network. 



238 A .. 1IAGOS 

Equivalent network in form of symmetrical lattice 

The following impedances figure in the equivalent network in form of 
symmetrical lattice (see Fig. 3): 

Za 

Fig. 3 

Zo (cthg csch a ) = Z cth-.L 
'-" b 0 2 

cschg) = Zo th JL . 
2 

The admittances of the lattice are expressed as: 

1 
Y4=-th 

. Zo 2 

1 cth JL . 
Zo 2 

(8) 

(9) 

Obviously, the functions th(gf2) and cth(gj2) must be approximated in both 
cases. Their Mittag-Leffler series can be ·written as: 

th 
2 

(10) 
') = 

cth = ~ + ~---"'---
2 g r:'l g2 + (2i:TF 

If the approximation has to be valid in the region I g <: Q and in the corre
sponding frequency band, the approximating function has to contain the terms 
of the preceding series the poles of which are ·within a circle of radius Q around 
the origin. Accordingly, the functions th(g/2) and cth(gj2) are ·written in the 
following form: 

I 

th JL = :>' -----='---- + t1(g) 
2 ~g2+(2i 1)2;z;2· u 

(11) 

cth 
2 
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where (2l + 1):-z: > Q and (2k 2):n; > Q. As it has been shown, the terms in the 
preceding sums, except t/(g) and Tk(g), lead to the circuits in Figs 1 and 2. The 
functions t/(g) and Tk(g) are zeroed at g = 0 and are analytic throughout the 
circle of radius Q and so in a sense they can be considered small compared to 
the other terms. The functions t/(g) and Tk(g) are to be approximated in form 
(5). At g = 0, some derivatives of the approximating function should equal the 
corresponding derivatives of the original function. As both the original and the 
approximating functions are odd, the first m derivatives of odd order are 
necessarily equal. The approximating function and its Taylor series around the 
point g 0 take the following form: 

"" m/2 
h(g) = n:g Ai g 

1='1 g2+Bi 
= ;E (_I)P-1 g~p-1 ;E , if m is even 

p=l i=l Bl1 

(m-1)/2 A. 
h( u) = A u -L 'Y ~ = 

Cl OCl I _. ry I B 
i=l g-, i 

_ a (A -L (m~/2 Ai) -L ~ (_I)P-1 a2p-1 (m~/2 Ai • 
-Cl - 0 I ..-;;;;" B 1"-;;;;" Cl -7 . 

. i=l i p=2 t:i Bl1 

if m is odd. 

(12) 

Similarly, the functions t/(g) and Tk(g) are expanded to Taylor series around the 
point g = 0: 

t/(g) = ~ Dpg~P-1 
p=l (13) 

T .(u) = ~ E u2p .. 1. 
11. C ..-;; pe 

p=l 

The detailed calculations give the following expressions for the coefficients of 
these Taylor series: 

Dp= 
4 

~ 
1 

:n;2P (2i-l)2P i=/+l (14) 

Ep 
4 (_I)P+1 

'" 
1 

7[2P ..-;;;;" (2iFP i=k+1 

The first In coefficients of the pO'wer series (12) and (13) arc to be made equal 
and so a nonlinear system of equations is got for the m unknowns Ai and B i. 
It is rather difficult to solve this system of equations for a high m value. As it 
has been shown for the sake of realizability it is necessary that Ai > 0 and 
Bi > 0, furthermore for the validity of the approximation throughout the 
circle of radius Q it is necessary that Bi > Q2. In the general case these condi-
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tions cannot be proved to be satisfied. Simple calculations show that for low m 
values (for m = 1, 2, 3 and presumably for m = 4, too) these conditions are 
always met, independent of the value of k and l. 

Obviously, the choice of k, 1 and m plays an important role in many re
spects. It influences the number of the circuit elements used in the equivalent 
network, the error of the equivalent network and the width of the frequency 
band in which the equivalence is acceptable. 

The number N of the reactive circuit elements used in the lattice network 
is given by the following relationship: 

N = 4(k + 1 + m) 2. (15) 

The same number of resistors is necessary, if the transmission line is not loss
less. 

The region of the g-plane where the presented approximation of the func
tions th(gJ2) and cth(gJ2) is valid has already been indicated. As a consequence 
the frequency band, in 'which the approximation is acceptable, fulfils the fol
lowing condition: 

1);r] . (16) 

The choice 1 = k or I = k + 1 is seen to be generally suitable. 
The error of the approximation under the impact of k, I, m and other 

factors will be now investigated in detail. 

The error of the approximation 

The error of the approximation will be investigated for a transmISSIOn 
line terminating in an impedance Z2' In this case the input impedance of the 
network in Fig. 3 is given by 

Zll = - .. -'-'--'''---'--'---'-'---='--''-

.2.4+Z B+2Zz 
(17) 

The error of the input impedance is 

" aZll _ , 
LlZll PS az Ll.2.4 T az B = 

A aZB (18) 
2 

------ [(ZB+Z.,)2LlZA+(ZA+Z.,)2LlZB]· 
(ZA+ Z B+2Zz)Z - -

Denote the error of the approximation of the functions cth(g/2) and th(gf2) by 
.::11 and L1 z, respectively; if the branch impedances of the lattice are approxi-
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mated, then: 
and (19) 

If the admittances are approximated, then: 

1 ~ Ll~ Z;' 
~-- -- =- --Ll? and 

~ y~ Zo ~ 
(20) 

Z~ Ll 
1 • 

Zo 

All these substituted into (18), the follo·wing expressions arise for the error in 
the two cases: 

LlZ' rs 0 th~..L ~ Ll..L cth ..L ~ Ll Z3 [( a Z . 2 r Z)2 J 
11 2(Zocthg+Z

2
)2 2 1 Zo) 11. 2 1 Zo 2 

(21) 

and 

[( 
Z a )2 / Z a)2 J 1 + ~ th -:'- Ll1 +[1 + ~ cth ~ Ll2 ,resp. (22) 
Zo 2 Zo 2 

The expressions in square brackets are now compared with each other for equal 
Ll1 and Ll z. As cth(g/2) and th(g/2) may have values much greater than unity, 

so if 1 Zz 1 > 1 ZO I, then generally 1 LlZ{l 1 < I LlZ{l I. On the other hand, if 
1 Zz 1 < 1 ZO I, then generally I LlZ{l 1 > I LlZ{l I. If the terminating impedance 
is great compared to the characteristic impedance, it is likely to be advisable 
to approximate the branch impedances, in the opposite case the branch admit
tances. 

The transfer impedance is investigated now. If the short circuit current 
of the current generator at the input terminals is Ig and its parallel impedance 
is Zl' then the transfer impedance is expressed as: 

(23) 

In the two cases the error is given by the foHo'wing expressions, using the pre
vious notations: 

(24) 
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x{[ZlZ2 th2~ + 1 
Z~ 2 

(25) 

Zl
Z

2 h g] ''} ---ct - .:J.) • 

Zo 2-

Comparison of (24) and (25) shows that if I Z lZ2 I > I Zo [2, then generally 

I LlZ~l I < I .dZ;l j, and if I Z l Z2 I < I Zo 12, then generally I LlZ~l I > I LlZ;l I· 
If the transmission line acts between great terminating impedances 

compared to the characteristic one, it is likely to be advisable to approximate 
the impedance functions of the equivalent net'work, otherwise to approximate 
the admittance functions. 

The values of k, 1 and m influence the error of the input and transfer 

impedances through .:11 and .:1 2' This is 'why now the problem of choosing k, 1 
and m again arises. The frequency band where the approximation is valid has 
been shown to define the minimal value of k and 1 through (16). If the complex
ity of the equivalent network, i.e. the number of the used circuit elements is 
limited, then (15) defines the maximal value of the sum (k 1 + m). The 
question now arises how to choose k, 1 and m between these limits. If k and 1 
have the minimal value defined by (16), the error can be diminished by increas
ing m. In this case, however, the error remains great in the upper part of the 
frequency band corresponding to the chosen k and I. This is 'why it is generally 
more advisable to diminish the error by increasing k and 1 and to choose m = 1. 
This has also the advantage to avoid all the mentioned difficulties which 
arise for high values of m. It is practical to choose m greater than one only, if 
approximation in a narrow frequency band at a great accuracy is wanted. 
In critical cases the error must be investigated as a function of thc frequency 
and the result must be compared with the accuracy prescription. 

Here the error of the impedance parameters will be determined in detail, 
but only for the case m = 1 and k 1. (The results would be similar for the 

admittance parameters.) The error of the impedance parameters, divided hy 
the characteristic impedance is written in form of Taylor series: 

(26) 
L1z.) = ___ 1_ _ ...... L' u 2p-1 

-..-;;;., pc , 
Zo p=2 
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where on the basis of (12) and (13) 

~(D -E) = 2(-I)P 
2 P P J[2P 

(2i~I)2P J 

(2i~ 1)2P J . 

243 

(27) 

The absolute value of the Taylor series is seen to increase the most rapidly on 
the imaginary axis, because for imaginary values of g the members of the series 
are of the same sign. The error of the parameter Zll and Z21 is seen in Figs 4a 

-0.3 

-0,1. 

-05 

-0,6 

0.3 

0.:2 

011 

0.)...1 L..,--=::;:::::::::.--...-=:;;;;:;;:;;~===h";:::l "::3 =-
2,5 

b: 

Fig. 4 

and 4b, resp., for some k and I and for imaginary values of g. If g is not pure 
imaginary, the error is smaller than the error corresponding to a pure imaginary 
g of the same absolute value. If the transmission line is lossless, g is imaginary, 
and so the curves give directly the error of the parameters as a function of the 
frequency. In this case the scale of the horizontal axis shows how many times 
thp length of the transmission line is larger than the half wavelength. 
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Equivalent networks not valid for low frequencies 

The presented method can be modified if the equivalent network need 
not be valid for low frequencies, but it must be valid in a frequency band 
[W I ; W 2]. Again the series (10) underlie the choice of the rational functions 
approximating the functions th(gJ2) and cth(gJ2). Those members of the series 
must occur in the approximating function the poles of which are on the s-plane 
near the intervals [jwl ; jw 2] and [ --jw1; --jw2] of the imaginary axis. The poles 
of a member form a complex conjugated pair, and the poles of the i-th member 
can be determined from the equation 

(R sL)(G sC) (28) 

where n = 2i 1 for the function th(g/2), and n = 2i for the function cth(g/2). 
The roots of Eq. (28) are: 

s =-~(£ 
n 2 C ~) lr~(£ , 4 C LC 

(29) 

i.e. the poles are on a line parallel to the imaginary axis. If the transmission 
line is lossless, the poles given in (29) are on the imaginary axis, and the mem
bers of the series (10) must obviously occur in the approximating function, for 
which 

(30) 

If the transmission line is not lossless, the decision is less easy. For example it 
seems suitable to choose from the series (10) the members, with poles inside 
the circles which have as diameter the intervals [jw1; jw 2] and [-jw1; -jW2] 
of the imaginary axis. Accordingly, both functions th(g/2) and cth(g/2) can be 
written as sums of three terms: 

0" I, 
th ~ = :5' ------=:..--

9 _? , (9' 1)° ? ..... i=ll g-j .... l·- -;r, .... '"' . .,,;;;., 0"2, (9; 1)2..,-2 1=1,+1 {:) i _0- .< 

cth~ = :5'---""--- + _ + ~ {:) + ~ U k, [ 2 k,-1 4u J 
'). , ........ =, .. , a2--L, (2. z'.':'".) 2 0" gO I (";~)O 

4g 
2 , ('J' )2 g T .:...~;r - n v .1 {:) i=l - T '""'< - =k,+ 1 

(31) 

The first sum will occur unchanged in the approximating function, but the 
two other terms must yet be approximated. The method shown for solving 
similar problems for the low frequency approximation can hardly be general
ized, That is why only the approximation corresponding to the case m = 1 wil 
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be used. The members of the second and the third sum will be approximated in 
the forms 4/g and 4g/(nn)2, respectively. So the final approximating functions 
are: 

1 

(2i-1)2 
(32) 

Similarly to the low frequency case, here kl < l1 < k1 + 1 and k2 < l2 < k 2+1. 
The equivalent network is now easy to determine. 

The error of the approximation is determined by the value of k1' k2' II 
and l2. Here the error cannot be diminished by increasing m, but by decreasing 

kl' II and increasing k2' 12 • 

Examples 

1. The approximation is the poorest, if k = I = m = o. Then 

2 cth~·· ?8 

2 g 

Depending on whether the impedance functions or the admittance functions 
are approximated the net·works in Figs 5a or 5b result. 

1 
G 

Fig. ;) 

2. The network is by one degree more complicated, if k -+- I -+- m = 1, 
i.e. the number of the reactive elements is lV = 6. In this case there are t'wo 
alternatives possible: k = 1 = 0 and m = 1, or k = m = 0 and 1= 1. The 
latter one is to be avoided, because for m = 0 the functions t/(g) and Tk(g) 
are entirely neglected, involving great error for small values of k and 1. In the 
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th ~ g 
2 2 

U 2 g 
cth.!2..-~- +-

2 g 6 

If the impedance functions are approximated on the basis of the above for
mulae, the following expressions are got: 

(
2 g) 2 

ZA =Zo .-g +-6 = + 
G+sC 

Z '-Z g _ R+sL 
B - 0 -

2 2 

R+sL 
6 

The network is seen in Fig. 6a, applying a notation customary for symmetrical 
lattices. 

R L 
"2 2" 

Fig. 6 

6 
G 

If the admittances of the lattice are approximated, then 

1 1 
~ =- =-(G+sC) 

Zo 2 2 

1 (2 uJ' 
YB =z: g + ~ _2_+~(G+SC). 

R+sL 6 

The network is seen in Fig. 6b. 
3. Finally, let us consider a more complicated equivalent net·work. For 

instance, let the number of the used reactive element be 30. Then, according to 
(15), k + 1 + m = 7. Suppose that an equivalent network is sought for, valid 
in a narrow frequency band, but at a possibly great accuracy. So a relatively 
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great value is chosen for m; let m = 4. Consequently, k = 1 and 1 = 2. If the 
transmission line is lossless, the frequency band where the approximation is 
valid is, according to (16): 

4n 
(j) < 1/LC ' 

i.e., the wave-length must be at least half the length of the transmission line. 
According to the formula (11) 

th g = 
2 

4g ...J ( ) 
?, ? ,- 2+9 0 + t2 g g-,n- g n~ 

cth~=~+ 
2 g 

4g , () 
0+4 2 ,rl g . 

g~ n 

Now the Taylor series of rl(g) and tz(g) must be determined. Rather than (14), 
the Taylor series of the other functions occurring in the above relationships 
will be applied, to result in: 

r1(g) = 6.5345 . 10-2 g 2.1128· 10-4 g3 
+ 1.1275 '10-6 g5_ 6.7140· 10-9 g7 + ... 

tAg) = 4.9684 . 10-2 g -- 9.5772 . 10-5 g3 + 
+ 3.129 . 10-7 g5 1.101 . 10-9 gi + ... 

The approximating function of rl(g) is taken in the following form: 

h(u) = AIg 
/:) 2 , B g, 1 

Having equalized the coefficients of the Taylor series of the function h(g) to 
the coefficients of the series rI(g) we get the following system of equations: 

Al + A2 = 6.5345.10-2 

BI Bz 

Al + A z = 2.1128.10-4 

Bi m 
Al + A z = 1.1275.10-6 

Et m 
Al + A z =6.7140.10-9 • 

Bt B~ 
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After some transformations, the above system of equations is reduced to a 
single equation of second order, to lead to the following roots: 

Al 4.931 
A2 = 42.34 

Bl = 164.7 
B2 = 1196. 

Accordingly, the function cth(gj2) is approximated by the following rational 
function: 

h g 2 4g 4.931g + ct -?8 - ...L ---=-- + ----"'-
2 g I g2+39.48 g2+164.7 

/ 
/ 

/ 
/ 

/ 

I. 
G 

/ 

/ 
/ 

/ 
/ 

I. 
G 

/ 

// Q.:J 
/ V" 

/ C' 

6.96 
G 

76.1. 
G 

~.c:... ________ .. ____________ _ 
Fig. i 

The approximation of the function th(gj2) is, similarly: 

th ~?8 ___ 4o",u __ + __ -= __ ...L 

2 g2+9.870 g2+88.13 

6.96g 

g2+282 + 
76.4g 

g2 + 3060 

If the above functions are used for determining the impedances, the network in 
Fig. 7 arises. 

It is instructive to compare the error of the network in Fig. 7 to the error 
of the network belonging to the values k = 1 = 3 and m 1, because both of 
them contain 30 reactive network elements. The error of the parameters Zl1 
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and Z22 of the latter network is plotted in Fig. 4. According to the calculation, 
the value of I i1zn /Zo I and I i1z21/Zo I is about 5 . 10-4 for the network in Fig. 7, 
if g = j2.5Jt; this is by one order smaller than the error of the other network; 
for g = j3.5Jt the errors are of the same order, and for g = j4Jt, the error of the 
network in Fig. 7 is infinite, while the error of the other netw-ork is rather low. 
The equivalent network shown in this example can be used in a relatively nar
row frequency band, but there at a great accuracy, as it has been expected. 

Summary 

A systematical method has been given to find a lumped equivalent network of a trans
mission line in a given frequency band. The equivalent network has been chosen in form of sym
metrical lattice. The low-frequency equivalent networks have been treated in detail, and for 
this case the error of the approximation as a function of the frequency has been investigated. 
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