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Introduction 

The measurement of a sinusoidal signal of frequency io often requires 
a selective amplifier of constant amplitude and phase characteristics in a cer­
tain range of frequency io or at least deviates from a given basic value to a slight 
extent only, and considerably suppressing the disturbing frequency components 
different from frequency io. Such problems may he encountered where the fre­

quency of the signal to he measured are likely to change, e.g. hy the uncer­
tainty in the frequency of the signal source (as the case is with the design of 
devices working at industrial frequencies), and the information is carried by the 
amplitude of the sinusoidal signal to he measured and its phase angle relative 
to the reference signal [1, 2, 3]. In certain cases, to speed up the automatic 
halancement of a.c. measuring bridges with two components necessitates simi­
lar prescriptions. The constant phase value in a frequency range means a zero 
group delay, thus such selective amplifiers are very likely to have short delay 
time, which is advantageous, first of all, in analog circuits interconnected with 

digital systems. 
The present paper wants to discuss the design of selective amplifiers satis­

fying the mentioned prescriptions. 

1. Definition of the approximation prohl~m 

By using the method of network synthesis, the problem will be decomposed 
into two parts by the insertion of the complex frequency range. The first step 
is the approximation: the production of a network function satisfying the re­
quirements mentioned. The second step is the realization, i.e. to find an electric 
network the function of which is identic with the network function obtained 
hy approximation. The two steps cannot be separated, since the way of reali­
zation determines the type of the functions suitable to approximation. In the 
following application of the technique of active RC realizations will be assumed 
allowing to define the approximation problem, namely to produce a transfer 
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function in the complex frequency range in the form of a rational function with 
real coefficients: 

(1) 

where 

1. the denominator is a Hurwitz polynomial H(s) (it contains roots only 
in the left half-plane), 

2. the condition m < n is fulfilled for the degrees of both the numerator 
and the denominator, 

3. after the substitution s = jO) the prescriptions made for the frequency 
range are fulfilled. 

Denote by Zo the value of the transfer function at the mid-range fre­

quency Wo; 

The condition that in certain mid-range regions the amplitude and phase 
characteristics are constant, or deviate from a basic value to a small extent 
only, can be exactly defined in the 'way that, in the case of a permissible error 
eH' the fulfilment of the condition 

F(jw) (la) 

is prescribed for the absolute value of the complex number F(jw) zo' where 
the frequencies W1 and W 2 are the limit frequencies of the passband and, of 
course, Wo is in the interior of the passband. Thus we have made a prescription 
for the absolute value of the p.omplex error. 

In certain cases, where the measuring system is not equally sensitive to amplitude 
and phase errors, the condition (la) can be replaced by the follo¥.ing more general pre­
scription : 

where kl and k2 are positive weighting factors. 

The selectivity requirements can be given by the following prescrip-
tions: 

! F(jw) i < Csl 

I F(jw) I < cs 2 

o<w 
(lb) 

where frequencies wsI and ws2 are the limit frequencies of the stopband, and 
esl and Cs'!. are prescribed constants. Thus the prescriptions made for the fre­
quency range can be defined by conditions (la) and (lb). 
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The special literature presents several methods for the simultaneous 
approximation of the amplitude and the group delay [4 -8], none of them is, 
however, suited for the approximation of networks with zero delay time. At 
the sam e time, the realization of an arbitrary pole-zero arrangement by means 
of active RC networks can be considered as solved, and therefore only the prob­
lem of the approximation of prescriptions (la,b) will be treated; realizations 
see in [9 -12]. 

2. Theoretical realizability of the approximation 

The first question is whether the approximation can be solved at all in 
the case of the conditions for (1). The theoretical realizability can be examined 
on the following considerations: Any linear network can be uniquely decom­
posed into a minimum phase and an all-pass section [13]. The attenuation and 
phase characteristics of the minimum phase network are related by the inte­
gration theorems of BODE [14]. These theorems and the monotony of the phase 
characteristic of the all-pass network allow to conclude on the realizability of 
the conditions (1). Rather than to discuss the examination in detail, only its 
results will be summarized. 

1. The conditions (la,b) are not independent, but after omitting one of 
them, the other can be fulfilled. If one of the prescriptions is given, a limit can 
be established for the other below which it can be fulfilled. A weaker, i.e. less 
strict, prescription can be obtained by increasing the value of the corresponding 
prescription 8. 

2. Both conditions can be given stricter prescriptions simultaneously if 
- approximation is by a minimum phase network, so that F(s) contains 

no zeros in the right half-plane either; 
- the number of zeros is increased; 
- the amplitude in the transition range between passband and stopband 

can be described by a non-monotonous function and also a factoring out is per­
mitted; 

- an optimal value is chosen for arc F(jwo) in condition (la) which can 
generally be done 1vith networks of bandpass character. The existence of such 
an optimum value can be demonstrated. 

3. The procedure of approximation 

3.1 Introduction of the network function T(s) 

In the approximation of (1) the main problem is given by the existence 
of simultaneous prescriptions for the amplitude and the phase characteristic 
in the passband and at the same time, the approximative function is subject 



254 L. GAZSI 

to further conditions. The problem can be soh-ed by introducing a new network 
function. 

Let the network function in the complex frequency range be defined by 
tht' transfer function F(s), as: 

T(s) 
R(s)_ 

F(s) F(s) 
(2) 

where zo' usually a complex number, is the yalue of the transfer function at the 
frequency Wo of the central band. 

Examine relationship (2) as a projection of plane F(s) on plane T(s). 
The projection being conform, the circles with 

I T(s) 1 constant 

must be circles also in the F(s)-plane. It is directly eyident that the point '::0 

of F(s)-plane transforms into the origin in the T(s)-plane and the origin of 
the F(s)-plane into the infinitely far point of the T(s)-plane, whereas the hah-­
ing perpendicular of the section between the point Zo and the origin of F(s) 
-will be projected by transformation (2) into the circle with unit radius of the 
T(s)-plane. Thus, by the inverse projection, the circles of I T(s) I = constant 
with radii smaller than unity are transferred by (2) into the set of circles -which 
can be drawn around '::0' and on the other hand all the circles of I T(s) I = 

constant with radii longer than the unit radius change into the set of circles 
which can be drawn around the origin of the F(s)-plane. The sets of circles 
mutually corresponding to each other are shown in Fig. 1. The circles in Fig. 
lb are sometimes referred to as Apollonius cireks, since according to (:~) the 
condition 

;. 
ImT(s) 

T(s) 
R(s)· = --- = constant 

IT (511= 1 
/---

R. T(s) 

F(s) 

Fig. 1. :'Iutually unique projection of T(s) and F(s) 
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determines the geometric places of points in the F(s)-plane with constant ratios 
of the distances from the points Zo and the origin, resp. (i.e. ratios I R(s) i to 
i F(s) I)· This gives exactly the set of Apollonius circles. 

Exami:le how the defined network function T(s) can be used to approxi­
mate (1). 

Condition (1b), in fact. means that throughout stopband the curve F(jw) 
in the F(s)-plane remains inside the circle around the origin of radius Cs (hence 
.cs may be identical either with 1051 or with 1'52). Let us draw that member of the 

EZ 

Fig. 2. Prescriptions in the F(s)-plane 

set of Apollonius circles ·which touches the circle of radius Cs from inside (see 
Fig. 2) and be its radius 10;. Prescription (1b) is made stricter if, instead of to in­
side the circle of radius cs' the curve in the stopband is restricted to inside the 
circle of radius 10;. Howeyer, with Cs decreasing due to the properties of the 
Apollonius circles, this restriction will always remain, in practice, within the 
permissible limit. Let us determine what prescription follows from condition 
(1b) for the network function T(s). On the basis of Fig. 2 and relationship (2) 
for the point El: 

i R(s) Cs • 

! F(s) i = Cs ' 

l T(s) i = 1 + ':;01 . 

As by the projection in question the interior the Apollonius circle of radius 

£; is transferred into the exterior of the circle of radius [1 -'- [zo [ ,prescription 
Cs 

(1b) is equivalent to the prescription 
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Since for the prescriptions in the stopband Cs ~ \ Zo \ is generally fulfilled and 
the normalization \ Zo \ = 1 is reasonable, the following very simple prescrip­
tion is obtained for the network function T(s): 

IT(jw)\ >~. 
Cs 

Examine now how the prescriptions in the passband can be defined by means 
of the network function T(s). Assuming that in the whole passband the transfer 
function F(jw) remains within the circle of origin Zo and radius CH' - an 
assumption equivalent to condition (la), - it is evident that the conditions 

Im F(s) 

--~~----------------~ 
ReF(s) 

Fig. 3. Bandpass prescriptions in the F(s)-plane 

are fulfilled simultaneously, and assuming that the normalization I Zo \ = 1 
has been carried out 

CHi = CH' 

cH2 = arc sin CH' 

(see Fig. 3). 
Thus, in this case the amplitude and phase prescriptions in the passband 

are mutually coordinated by the relationship 

Some correlated values are compiled in Table 1. 

CH! [dB] 

C H2 [degrees 1 

0.01 

0.087 

0.57 

0.03 

0.175 

1.72 

Table I 

0.05 

0.446 

2.87 

0.1 

0.915 

5.74 

0.15 0.2 

1.41 I 1.94 

8.63 I 11.5 

(4) 

0.3 

3.10 

17.5 
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If the amplitude and phase prescriptions in the passband are to be coordi­
nated other than by relationship (4), then, using a projection more complicated 
than projection (2), the circle of radius eH can be replaced by an ellipse with 
suitable data, and so the correlated values eH! and eH2 can be chosen arbitrar­
ily. This, however, makes the "W-hole procedure of approximation more compli­
cated. In the following part only the case "Will be treated where the correlation 
produced by (4) is suitable. 

Similarly to the prescriptions in the stopband, let the transfer function 
values in passband F(jw) be limited to inside the Apollonius circle of radius 
eH instead of radius eH' as shown in Fig. 2. Then for the point E2 it can be 
written: 

IR(s)1 = eH' 

I F(s) I = I Zo I + cH' 

I T(s) I = JR(s)1 = eH 

IF(s)1 IZol +eH 

Since proj ection (2) transfers the interior of the Apollonius circle of radius 
CH into the interior of the circle of radius cHf(lzol +cH)' the prescriptions in the 
passband will be equivalent to the prescription 

I T(jw) I < CH 

IZol+eH 

Since generally eH ~ 1, by using the normalization I Zo I = 1 the prescription 
in the passband, too, will be reduced to the form 

I T(jw) I < eH' 

Summarized: Approximation (1) gives the following prescriptions for the 
network function T(s): 

The condition 

I T(jw) I < eH (3a) 

must be fulfilled in the passband and the condition (s) 

'T (')' 1 I JWI>- (3b) 
es 

in the stopband, if I Zo I = 1 and eH = eHl = sin eH2 • 
From relationship (2) it is directly evident that I T(jw) 12 is a rational 

function with real coefficients, and thus condition (3) can be treated by the 
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known approximation methods. The problem of how to ensu).'e the Hurwitz 
character of the denominator in the transfer function F(s) obtained from net­
work function I T(jw) I will be discussed in the chapter on the procedures of 
concrete approximation. 

3.2 lvlaximally flat approximation of the network function [T(jo)) l 

Prescription (3a) in the passband can be approached by the maximally 
flat approximation based on the Taylor series. A function of p-th degree is 
maximally flat if the derivatives of the absolute value of the function at w = 
= Wo up to the p-th derivative equal zero. 

Let the value of the transfer function in the central band be known, i.e.: 

and make the network function I T(jw) [ in the region of this frequency maxi­

mally flat. 
According to the previous considerations the condition of maximal 

flatness requires the simultaneous fulfilment of the equations 

=0 i = 1,2,3, . .. p. (5) 

From relationship (2) it follows that 

(6) 

Denote the conjugates of Zu and T(s) by z~ and T*(s), resp. Relationship (2) 
makes the yalidity of 

T*(s) = 1 
F( -s) 

ohyious, and since the relationship F( -)w(J) = z~ is fulfilled for the transfer 
function, the equality 

(7) 
holds as well. 

Let the conditions of absolute flatness be examined. Assume i = 1. 
Then applying the square of ! T(jw) i for sake of computation the con-
dition 

S!T(jwW: = S[T(jw).T*(jeo)]1 =0 
Sw ;01=01, SO) 1 01 =",. 
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has to be examined. After performing the partial derivation 

8 [T(jw)T*(jco)] 

8w 

259 

= O. 

the condition of maximum flatness for i = 1 is found to be fulfilled in each 
case if relationships (6) and (7) are taken into consideration. In the case of 
i = 2 the derivative will not be zeroed. According to relationship (5), with 

i = 2 the condition 

8
2 !T(j~W I 

8(0- 1'"='", 

82 [T(jw) . T*(jw)] I 
1 

; 
:w=cuo 

+2. (8T(jW) .8T*(j(O)) 
8w 8(1) 

is fulfilled in the case only if using again equations (6) and (7) - the equality 

8T (jw) . 
=0 

8w jW=W p 

holds. Applying the rule of the product functions of higher degree it becomes 
evident that the derivatives of the condition of maximum flatness is identical 
with that of the simultaneous fulfilment of the equations 

aiT(jw) 

aw i 
=0 i=1,2,3, _ .. p 

and in this case the network function! T(jw) i will be maxim ally flat at degree 
(2p 1) in the central band. For sake of simplicity, substitut(, S jco in th(' 
previous equation: 

=0 i = 1, 2, 3, ... p. (8) 
s=jw'J 

U sing the definition equation (2) the condition for its derivatives to become zero 
can be determined for the transfer function F(s). For the case i 1: 

8s ) , . 
,Is=)'"" 

a T(s) 

aH(s) , 

P(s) 
=0, 

where also relationship (1) has been used. After derivation and arrangement, 
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the following relationship is obtained: 

aPes) 

as. pes) I 
aH(s) 11 = H(s) s=jw, 

as s=jwo 

(9) 

Since the transfer function assumes the value Zo at s = jwo, the detailed form 
of Eq. (9) after derivation - will give 

as a condition for the coefficients of the transfer function. In a similar manner, 
using (1) and (2), relationship (8) gives the condition system 

=Zo i=I,2,3, ... ,p. (10) 

asi 
!s=jwo 

After performing the derivation and completing Eqs (10) with the condition 
F(jwo) = zo, the network function I T(jw) I will be found maximally flat at the 
central band frequency Wo on the (2p + I)th degree if following conditions are 
fulfilled: 

~ (k)., '.' . ...,;;;;" •• z,. ·ak·s"-z ] 
k=i Z, , 

n (k) 11 ~ .. il·bk·sk - i 

k=i t, Is= Wo 

i = 0, 1, 2, ... , p. (11) 

Thus equation system (ll) gives the maximally flat approximation of the 
prescriptions in the passband. It may be simplest to fulfil the prescriptions in 
the stophand by zeroing a corresponding number of coefficients 

in transfer function (1) and by suitably choosing the degrees nand m. Let us 
refer again to the statement made on the theoretical realizability. The denomi­
nator H(s) of the transfer function must be a Hurwitz polynomial. This condi­
tion can be fulfilled in the simplest way by suitably pre-defining the polyno­
mial H(s), and the equation system (ll) for coefficients a" will correspond to a 
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linear equation system of order (2p + 2). In fact, the equality of the real and 
imaginary parts in the right- and left-hand sides of equation system (11) means 
a linear equation system of order (p + 1) each. Then for the degrees the condi­
tion 

2p 1 1 = m (12) 

will necessarily be fulfilled, where 

the number of zeros at zero frequency, 
m the degree in the numerator of the transfer function, 
(n m) the number of zeros at infinity. 

From the form 

where rpo is the phase shift value assumed at frequency Wo it appears that equa­
tion system (11) can simply be solved also by treating CPo as a parameter - as, 
also in this case, a linear equation system is obtained for the coefficients ak -

offering a possibility to find the optimum phase value CPo. Or some of the coef­
ficients bk in the denominator H(s) of the transfer function may be considered 
as unknowns in equation system (11), and then the condition of maximum 
flatness can be fulfilled at a higher degree than the p obtained from condition 
(12). In this case, however, care must be taken in solving (11) that H(s) be a 
Hurwitz polynomial. Treating CPo as a parameter can be advantageous also in 
this case. 

Let us make mention of the special case where zero frequency is the cen­
tral band and thus prescriptions of low-pass character are to be approximated. 
Then necessarily Wo = 0, Zo = I Zo I and CPo = O. Applying normalization 
I Zo I = 1, equation system (11) simplifies to the condition system 

k = 0, 1, 2, ... p. (13) 

This result is evident. Tending to zero frequency, the value of the transfer func­
tion F(jw) is determined by the coefficients of the members with the lowest 
exponents. Thus, if the deviation of the amplitude and the phase from the value 
of the central band in this frequency range is to be minimized, then the domi­
nant coefficients must really coincide. 

For example, according to (13) the network function I T(jw) I of the low­
pass transfer function 
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is maximally flat at the fifth degree in the environment of zero frequency and 
has a distance selectivity of 20 dB/decade. 

In Figs 4a through f the pole-zero arrangement, the network function 
! T(jw) I, the Nyquist diagram of the transfer function F(jw) , the amplitude 
curve, the phase characteristic and the step response function, respectively, are 
represented. 

3.3 Example for the maximally flat approximation of the network function 
I T(jw) I of a bandpass network 

Assume a slope of 40 dB/decade as high-frequency attenuation charac­
teristic and 20 dB/decade as attenuation characteristic in the environment of 
zero frequency. Let the prescription of maximum flatness for I T(jw) I on the 
third degree at the frequency of normalized central band with Wo 1 he ful­
filled. 

Then with the degrees 

n - m = 2, l = 1, 2p 1 = 3, hence p = 1 

and, from (12) m· = 4, n = 6, 

arbitrarily assuming the polynomial H(s), the coefficients of the numerator in 
the transfer function F(s) can he determined from (11). As the assumption 
1 = ] makes a o = 0, (10) and (11) give for the coefficients: 

a1(jl) +az(jl )2+ a3(jl )3+ a4(jl )4 

H(jl) 

8s S=jl 

(14) 

i=O 

(15) 

i=p=l. 

The choice of the polynomial H(s) affects the amplitude characteristic 
hetween passhand and stophand and the limit frequencies of the stophand. 

Assume 

r 
s '\3 

H (s) = 1 + 3 + s~ ) 

i. e. a polynomial with an ahsolute value of three times the unity and 'with poles 
ha,-ing a Q-factor Q = 3. Then the condition n = 6 is fulfilled, and 

H(jl) = 

8H(s) i 
as !s=jl 

1 

9 

~ 
27 

. 2 
7-· . 3 
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Substituting them into Eqs (14) and (15) and assuming the normalization 
I Zo I = 1, the solution of the equations will be 

sin Cfo 
a1 = ----

3 

cos sin rpo 

54 

cos Cfo sin Cfo a3 =-------
27 3 

(16) 

If e.g. f{Jo = 40°, the substitution into (16) will yield a1 = 0.214263, a 2 = 
= 0.267252, a3 = 0.242635, a4 = 0.243445, and thus the transfer function can 

20109I F (jw)1 

[d BJ 

-10 

-30 

f.: -86.8' 

w 

10 w 

ClrcF(jw) 

[deg.] 
1,02 w 

~:::~ 
. 

fo=-400 
-l.2° 

I 

I 

I 

-87' ~:-86.80 -85'1 
_89' 

d) 

Fig. 5. 2\etwork functions of the bandpas5 network 
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be written as 

F(8) = 
-8' (0.243445 83 +0.242635 82 +0.267252 8+0.214263) 

(82+; 1r 
After finding the roots of the third degree eqnation in the numerator, the pole 
to zero arrangement of the transfer function will be: 

zeros: 

poles: 

Zl = 0 
Z~ = -0.882646 

z3.J = -0.057013 j 0.996944 

Pl,2 = P3,4 = P5,6 = -0.166667 j 0.986013. 

Figs 5a through d show the network function! T(jw) I, the Nyquist diagram 
of the transfer function, the related amplitude and phase characteristics, re­
spectively. From the condition a,! 0 we obtain the value of the basic phase 
shift, i.e. 

CFo = arc tan( -18) = --86.82°. 

In this case the slope of high-frequency distance selectivity will be 60 dB;' 
decade. Fig. 5 shows also the characteristics belonging to this basic phase shift. 

3.4 Chebychev approximation of the transfer function ! T(jw) : 

For low-pass networks the network function 1 T(ju)) [2 contains only the 
even powers of w. Then prescription (3a) can be fulfilled by equal-ripple approx­
imation in the whole passband (see Fig. 6), if the network function i T(ju)) I 
is produced from the relationship 

1 
IT(jw)? = 

where 

Q(w2
) = cos l2n arc cos C) 2 . i arc tan ---=====-- + Co -J -

i=l 

(17) 

For the meaning of the constants ill the formula and the properties of the ration­

al function Q(w2) see [15] and [16J. 
Thus relationship (17) is suitahle for producing the network function 

1 TJ (jw) I of equal-ripple approximation in the passhand. From this the trans-

3 
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fer function F(s) is obtained with the help of the definition relationship (2). 
Omitting the calculations 'we present only the final results. 

It can be demonstrated that, using this method, the denominator H(s) 
of the transfer function F(s) can be a Hurwitz polynomial only if the equality 

n = m, or n = m + 1 

holds for the degrees of both the numerator and the denominator of F(s). 

IT(jw)1 

w 

Fig. 6. Equal-ripple approximation for the network function I T(jw) I 

In the following, some low-pass transfer functions with oscillation in the 
passband CH are presented. They may be of importance for the design of selec­
tive amplifiers. 

Ifn=m=1 

F(s) = l+s 
l+s[c o cH 

n = 2, m 1 

n = 2, m = 2 

(l+s Vci-l)· (l+s Vc§-I) F( s) = ------:==--'--=====---'--'-------''---''-------'---==:-c-= 

l+cH+s o (Vci-l + Vc~_I)+S2[cH"(l+CIC2)+ Vci-1 Vc§-I] 

n= 3, m':: 2 

F(s) = pes) 
H(s) 

pes) =(I+s Vci-l)o(l+s Vc~-l) 

H(s) = l+s [CH(l+C1+CZ)+ Vci-1 + Vc~-I] 
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The parameters C and Cl' c~ in the transfer function - either real or con­
jugate complex numbers have to be chosen in the way that the amplitude 
characteristic may have a suitable slope in the frequency range bet'ween pass­
hand and stopband. The problem can be solved by computer optimization. 

Summary 

Approximation problems of selective amplifiers are discussed with simultaneous by 
prescribed amplitude and phase characteristics. The prescriptions related to the amplitude 
characteristic are the usual ones, whereas for the phase characteristic in the passband the 
approximation of zero group delay is aimed at. It can be stated that these prescriptions are 
not independent. For the case, however, where the prescriptions can be fulfilled in principle, 
an approximation method of practical use is presented by defining a new transfer function 
T(s). Attention is drawn to the importance of the value of optimum basic phase shift. 
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