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Introduction

The rapid growth of emergy transfer voltage levels in recent years has
set increasingly stricter demands against high voltage insulations. The dimen-
sioning and the calculation of breakdown proof insulations are based on the
permissible maximum voltage (generally the test voltage) and the permissible
maximum temperature rise for the involved insulation materials. The heat
resistance classes of the individual materials are relatively easy to establish
from the corresponding standard specifications, but as to the breakdown
voltage the situation is rather different. In principle three types of breakdown
are distinguished: the electric breakdown, the breakdown caused by internal
or surface ionization and the thermal breakdown. The clear delimination of
these individual types of breakdown is rather difficult in practice, as several
of these types may be involved simultaneously in the breakdown mechanism.
Our present understanding of the breakdown mechanism is limited, their
exact process is unknown as yet. The literature offers two basic theories for
the mechanism of pure electric breakdown, those of HippEL (slow electrons)
and FrocuaLicH (fast electrons) [4, 5, 19, 21]. Although both theories contain
several approximations and assumptions, they reflect well enough the main
regularities of the hreakdown mechanism. At present, extensive research all
over the world is devoted to clearing up the exact process of the breakdown
mechanisms (for instance the papers presented at the International Symposium
on High Voltage held in March 1972 in Munich reported on several of these
research programs). In the case of high voltages (>>100kV) the probability of
the third type, the so-called thermal breakdown is highest. In spite of the fact
that this phenomenon has been known since the turn of the century [17,27],
no uniform, general theory could be developed in this field either. The common
objective of the suggested theories was to determine the so-called thermal
breakdown voltage. The initial theory of WAGNER making a great many simpli-
fving assumptions [24, 25, 26] has been gradually refined (and partly refuted),
among others by Rogowsky [18], Kiruin [15], BercER [4], Fox [6], Goop-
LET [9], CooPLE, HARTREE, PoRTER and Tysowx [3], GEmaxNT [7, 8}, and the
two WHITEHEAD [28, 29, 30]. IncE and Warter [10—13] and Ravy~er [17]

4



]
o
&

M. VAJTA jr.

should be mentioned for their experimental results as well. This list is far from
being complete, ampler references are found in [22].

Notations
E — electric field strength [V/m]
Ps — dielectric losses per unit volume and per unit field strength at
temperature ¢, [W/mV?]
b — thermal coefficient of the temperature dependence of p’(#) [1/°C]
&g — reference temperature [°C]
&, — ambient temperature [°C]
o — heat transfer coefficient [W/m?°C]
F — heat transfer surface [m?]
Jq — dielectric thermal conductivity [W/m °C]
Js — electrode thermal conductivity [W/m °C]
s — dielectric internal heat source [W/m?]
2h — dielectric thickness [m]
2U — dielectric energizing voltage [V]
Ulap — thermal breakdown voltage [V]
m — electrode thickness [m]
Obe — additional heat inflow to the dielectric [W]
R — cable core resistance [2/m]
tg 6 — power factor
t — time [sec]

1. The conceptions of thermal instability and thermal breakdown voltage

Thermal breakdown differs basically from pure electric breakdown by the
decisive role of the temperature (or by the nonlinear temperature dependence
of the individual electric parameters). Namely, the permanent losses in the
dielectric are partly used to raise its temperature and partly are transferred to
the ambient. By restricting our consideration to the dielectric losses the temper-
ature dependence of these losses may be written up in the following form [19]:

Qo= [ piExeb0- 00 W] )
“/v
where
r__ fretan 0(90) 7/ 72
POM‘W [“}:111"} ]

¢ being the permittivity, f — the frequency and tgé(d,) the power factor at
the reference temperature ¥, while the heat quantity possibly transferred to
the ambient is [16]:

Qe == F(I—9y) [W]. (2)
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The formed (Qg;) and the transferable (Qi) heat quantities versus temperature
are shown in Fig. 1, revealing the existence of a quasi-equilibrium state, where

80%s _ 80i

¥es = Q). and
Qs =0 S

()

Beyond this critical (Qf;) value of heat losses, thermal instability ensues, be-
cause more heat develops permanently, than can be transferred. As the di-
electric losses are highly dependent on the voltage (they are proportional to
U?), there exists a critical voltage causing exactly the loss Qf;. This value is
defined as the thermal breakdown voltage. This is why in the case of thermal

Q
Ua>Uz> Uy Gga(Ua) / Grgs(Un)

v
Fig. 1. The developed (Qig;) and the transferable (Q)c) heat quantities temperature

breakdown this thermal breakdown voltage is considered to be the breakdown
voltage, as breakdown does not occur immediately after switching the voltage
on. This is reasonable because if a dielectric medium is kept long enough under
a voltage surpassing this value by whatever little amount, the breakdown is
sure to occur. From the above it follows that the thermal breakdown voltage,
— in close relations with the conditions of heat transfer and temperature
distribution -, cannot be considered as a material characteristie, such as per-
mittivity. This very fact greatly impairs the exact theoretical calculation of the
thermal brakdown voltage. The caleulation of the thermal breakdown voltage
requiring also the knowledge of the temperature distribution in the dielectric
represents an additional difficulty.
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2. The differential equation, and the applied model

In order to calculate the temperature distribution, — and hence the ther-
mal breakdown voltage — in a dielectric with an internal heat source (dielectric
losses), the so-called KircEEOFF —FOURIER differential equation of heat con-
duction must be solved for the case of specified boundary conditions [2]. The
general form of this differential equation is:

s 89
div (/., gradﬁ') - qb(ﬁ) = —8‘; Crt Ve (4:)
There is no known general solution for Eq. (4). For sake of simplicity, model
arrangements with linear heat flow will be chosen. Our models are shown in
Fig. 2. As steady state is considered, Eq. (4) is substantially reduced for our

one-dimension models, namely

Fig. 2. Plane and cylindrical model, 1 — dielectric, 2 — electrodes

9 gu(9)

to I -+ T—— =0 for the plane (3)
1 d dd sa(T

and to ——r— + q”:( ) =0 (6)
rodr dr g

for the cylinder.

The internal heat source is expressed from (1), eliminating the field
strength, as
po - U2 - e (=2)
h?

gy (D) [W/m?] for the plane (7)

. po - U2« b @)
Qoo (V) = = for the cylinder. (8)
*[In (ry /1) P
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By introducing the relative units:
O=b(—79,) s=-—- R=-_. (9)
h .
Eqgs. (5) and (6) reduce to

a2 e

T <+ B, e® =0 for the plane (10)
1 0 1 dO B, ©— 0 for il lind 1
an +—— + - e® = the cv
IR % IR R or the cylinder (11)
where
’TT2. =66 ' T2 a=8,
B, =P Ue®b 4 o PoUe ob (12)
A 21 [In (Ry)P

So for the calculation of the thermal breakdown voltage Eqs (10) and (11) are
to be solved for given boundary conditions, with consideration to Eq. (3).

3. Previous calculation methods

As the analytical solution of Egs (10) and (11) is extraordinarily diffi-
cult, the initially derived relationships for calculating the thermal breakdown
voltage hold only if a rather great number of simplifying assumptions were
true. This situation changed when V. A. Fok in the twenties of this century
established the conditions of thermal breakdown voltage, Eq. (10), for symmet-
rical arrangements and derived the following relationship for the thermal break-
down voltage:

n Ayee=%
Ulabz 14:14« '——'-I——* . (]ﬁ(C) (13)
b-pg
where
oo 2 och _ xh
A xem-1, /

and ¢(c) is the so-called Fok-function, named after him. The derivation and
the tabulated function are found in [22].

Up to now, expression (13) was generally accepted for calculating the
thermal breakdown voltage, in spite of its validity restricted to certain cases.
In a most frequent practical case where additional heat flows to one side of
the dielectric (e.g. in cables the joule losses occurring in the cores heat the
internal side of the insulation) the relationship derived by Fok does not apply
any more,
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4. The principle of the general calculation method

With the advance of the digital computers the solution of the differential
equations has become ever less problematic, so it seemed reasonable to develop
an algorithm for the calculation of the thermal breakdown voltage with a more
general scope. In 1965, TascaNER and Wipyan~ [20] developed a possible
method for this algorithm. The algorithm developed by the author of the pres-
ent paper deviates in its fundamentals, although our results show similar
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Fig, 3. Temperature distribution of a plane dielectric with the temperature of the hottest point
as parameter. Symmetrical arrangement (scheme)

features. The train of thought of the algorithm is as follows: the differential
equations (10) and (11) versus the maximum temperature rise of the dielectric
(or versus its maximum temperature, if the ambient temperature is given) as
parameter, is easy to solve by a computer. We have prepared the solution in
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the analog-digital simulation language Bocs [14] according to the flow chart
given in the appendix. The whole program written in the Bocs language was
run on a computer type MINSK-22 of AKI (Research Institute for Automation
of the Hungarian Academy of Sciences). The results are shown in Figs 3 and 4.
Due to the use of relative units these results are perfectly general. The obtained
set of curves has a well definable envelope curve representing exactly the
O = f(z) curve belonging to the stable-instable limit position. In the case of
homogeneous electric field distribution there exists a linear thickness-voltage
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Fig. 4. Temperature distribution of a cylindrical dielectric. Internal surface thermally insulated

relationship and so, if the field strength is known (e.g. when the thermal
breakdown voltage of a given arrangement is to be calculated) the abscissa
axis can be calibrated in voltage values as well. In Figs 3 and 4 the relative
voltage distributions are given. In this case a set of @ = {(U) curves is obtained,
whose envelope curve (coinciding with that of the function @ = {(z) only if the
electric field is homogeneous, as will be shown later) defines a relationship
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between the voltage and the temperature rise of the dielectric. As the envelope
curve represents the limit condition, consequently the voltage calculated from
the envelope curve corresponds to the thermal breakdown voltage. For high
ambient temperatures the hottest point of the dielectric (point # = 0) may have
a higher temperature than the maximum permissible for the involved dielectric
(according to its heat class). If this permitted maximum temperature is e.g.
140[°C] (thermal stability class F'), then O(0) = 7 if b = 0.05. Be the temper-
ature drop belonging to Ujap now 50 [°C], then at ambient temperatures over
90[°C] the voltage applied to the dielectric must be reduced relative to the
theoretically permissible value of Uy, or else the insulation suffers thermal
breakdown. This means that over 90[°C] (@ = 4.5) the voltage permitted for
the dielectric is obtained from the @ = f(U) curve reaching the temperature of
140[°C] at the centre of the plane (s = 0), or in the case of a dielectric cooled
on one side, reaching the same temperature on the thermally insulated side.
rather than from the envelope curve of the set of @ = f(U) curves.

5. Allowance for parametric variations

As mentioned before, not all parameters influencing the thermal break-
down voltage can be accounted for by the conventional calculation method
(based on (13)). An advantage of the general computeralgorithm isamongothers
that it permits allowance in a very simple way for the parametric variations
and their effects on the thermal breakdown voltage, impossible before in spite
of the real influence of these variations. Such a parametric variation is e.g.
the additional heat inflow on the uncooled side of the dielectric. This case
applies, — as mentioned already — to the real conditions of a cable under
load, or of a coil insulation. Quite obviously, the additional heat inflow will
still decrease the value of the thermal breakdown voltage by increasing addi-
tionally the temperature drop due to the dielectric losses. Let us consider now
how this contribution can be allowed for in the solution of Eqs (10) and (11).
The condition of the heat continuity [2], [16] on the heated side of the dielectric
is:

dd ) Ao F (dO .
e .F. —_ Ak ( , W 14
Qbe 1 dx,x=0 b-h ‘dz42=0 [ ] ( )
for the plane and
(dd 2794, (dO
— R[] 2TA 99 Y 15
Qe ! ldrh,l b (dR R=1 v (12

for the cylinder,
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The condition of heat continuity reveals that the boundary condition
applied so far to the derivatives of temperature distribution

20
| ds

< Jz=0

=0 and {gg =0, respectively
R Jr=1
is modified by the additional heat inflow. This means that in the flow chart

given in the Appendix the initial condition of the corresponding integrator
(in our case integrator No. 1) will be not zero, but a negative number from rela-
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Fig. 5. Temperature distribution of a plane dielectric with the temperature of the hottest point
as parameter, heated at z = 0, O(0) = —0.5

tionships (14) and (15). A clearer notion of the values — in relative units — of

the boundary conditions can be gained e.g. by considering the data of a 120
kV cable (made in the GDR, used in our country, too). The model of the cable
is shown in Fig. 2 for a cylinder. Its data are: r; = 0.0147[m], r, = 0.0277 [m],
b= 0.05 [1/°Cl, ;= 0.16 [W/m°C], = 7.3 - 1073 [2/m], I, =400[A]
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(nominal current). The derivate, as expressed from (15), substituting the above
data, is:

‘ﬂ@' _ Qved g oa,
R | pes 27

Accordingly, Egs (10) and (11) were solved here with boundary conditions
O(0) = —0.5 and 9(0) = —1, respectively. The results referring to the plane
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Fig. 6. Temperature distribution of a plane dielectric with the temperature of the hottest point
as parameter, heated at z = 0, G(0) = —1

are shown in Figs 5 and 6 and those for the cylinder in Figs 7 and 8. For our
cable, (1) = —0.5 corresponds to a current load of 0.92 I and o) = —1
o0 a current overload of 30%,. Our results hold not only for this case, but due
to the applied relative units, they have general validity.
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Our results prove unambigously the correctness of our initial assumption
that the value of the thermal breakdown voltage is lowered by the additional
heat inflow. This is a very noticeable result with respect to the dime s oning
of the insulation, as now any possible additional heat inflow can be taken into
consideration in the design (or the control) stage. This result is of a still higher

interest if we consider that previously this effect was allowed for in the expres-
sion (13).
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Fig, 7. Temperature distribution of a cylindrical dielectric with the temperature of the hottest
point as parameter. Internal surface is heated. ©(1) = —0.5

The effects of other parametric variations are represented by the coeffi-
cient B, and B,. The effects allowed for by these coefficients are due — as re-
vealed by Eqgs (10) and (11) te the following parameters: ambient temperature
(7,), reference temperature (). exponential loss constant (b), thermal condue-
tivity (2,). frequency (f), permittivity (&), power factor (tgd), voltage (U).
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CoorLE et al. [7] demonstrated that in the case of plane dielectrics the value
of the coefficient B, cannot be higher than 0.88 or else Eq. (10) has no real
solution. The author extended this conclusion to the case of the cylinder [22]
and again the calculation gave 0.88 for the critical B, value. Figs 9 and 10
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Fig. 8. Temperatur.e distribution of a cylindrical dielectric with the temperature of the hottest
point as parameter. Internal surface is heated, O(1) = —1

show the corresponding solutions calculated for four different B, and B,
values. In this case too, the thermal breakdown voltage is to be calculated
from a set of curves and their envelope curve. The figures show that lower B
values result in lower dielectric temperature drop and higher thermal break-
down voltages. This is reasonable considering the relationship between the
occurring loss and B.
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Fig. 9. Effect of the B, parameter variation on the temperature distribution in a plane dielec-
tric
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Fig. 10. Effect of the B, parameter variation on the temperature distribution in a cylindrical
dielectric
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6. Allowance for specific cases

So far, in our calculations an exponential dependence of the dielectric
losses on the temperature had been assumed. Although this is true in the major-
ity of practical cases in certain cases the specific unit volume loss may include
a constant (temperature-independent) term as well [7, 8]:

P/(9) = atpi e %) [W/mV?. (16)
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Fig. 11. Effect of temperature-independent part of the dielectric loss per unit volume and per
unit field strength on the temperature distribution in a plane dielectric

Accordingly, the differential equation (10) mav be written with relative units
in the following form:
d2o

D

+A4+B,- =0, an
where

h.T72 N S PR
4=t a4 B R U b

N 4

The flow chart for the solution of this differential equation is also contained in
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the Appendix. Fig. 11 shows the effect of the variation of A4 and Fig. 12 that
of B, with 4 = const. For sake of comparison, both figures show the cases
A = 0 as well (in this case the differential equation (17) transforms into (10).
Fig. 11 reveals that the growth of the temperature-independent term in the
expression of the dielectric loss per unit volume and per unit field strengh
implies the lowering of the thermal breakdown voltage. This is easily admitted
considering that the presence of 4 means that a loss occurs even at the rela-
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Fig. 12. Effect of the B, parameter variation on the temperature distribution in a plane dielec-
tric. The dielectric loss per unit volume and per unit field strength has a constant part too. Sym-
metrical arrangement

tive temperature @ = 0 and the loss increases proportionally to the value of
A at every temperature against the case 4 = 0. It follows directly that the
effect of A keeps diminishing with the rise of temperature. By comparing Figs
12 and 9 it can be established that the effect of the variation of parameter B,
is lowered by the presence of the constant 4 factor.®

* the numerical value was chosen on the basis of [7].
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7. Allowance for the distortion of the homogeneous electric field in planes

In our previous calculations it was assumed that in a plane dielectric
a homogeneous electric field develops after applying the voltage, i.e. a linear
potential distribution throughout the dielectric. For thin dielectrics this assump-
tion really holds, but in thicker dielectrics the potential distribution will not be
linear due to the specific conductivity of the dielectric and the temperature
distribution in it. Naturally, the thicker the dielectric, i.e. the higher the tem-
perature drop, the greater the distortion of the potential distribution. The theo-

0 04 0.2 03 04 0,5 06 07 0.8 0.8 1
Z
Fig. 13. Potential distribution distortion in a plane dielectric due to the temperature depend-
ence of the conductivity. ¢ = 0.625

retical explanation and the calculation method of this distortion are found in
[23], whose results are utilized here. In Fig. 13 the dielectric characterized by
the value ¢=0.625 (see the meaning of ¢in expression (13), the percentage dis-
tortion of the potential distribution versus the maximum temperature of the
dielectric, is shown as parameter. At lower temperatures the distortion is seen
to be negligible whereas at higher temperatures it might be considerable.

The distortion of the potencial distribution may be allowed for in the
calculation of the thermal breakdown voltage in the following way: the set of
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the @ = f(U) curves for the homogeneous case (see e.g. in Fig. 3) may be
replotted with consideration to the set of the U = f(z) curves shown in Fig. 13
into a new set of @ = f(U) curves as shown in Fig. 14. This new set of curves
has also an envelope curve deviating from that of the set of @ = f{U) curves
of the homogeneous case. The thermal breakdown voltage can be calculated
now from the new envelope curve in the formerly described way. On the basis

a2}

i34

~

(]

Fig. 14. Set of curves required for evaluating the thermal breakdown voltage with allowance
for the potential distortion in a plane dielectric. Syminetrical arrangement

of this train of thought the distortion of the potential distribution relative to
the theoretical (non-homogeneous!) U = f(InR) curve may be allowed for also
in the case of cylindrical arrangements.

Due to the use of relative units, our results are of general validity and
the sets of curves corresponding to the individual parametric values may be
regarded as if they were precalculated curves.
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Appendix

Flow chart for the solution of differential equation of heat conduction
(10), (11) and (17) for the following boundary conditions: at the points z = 0
and R = 1 with specified values of @(0) and @(0) and with specified values of
the parameters B, and B,, respectively. The programs were prepared in the
analog-digital Bocs language. The elements in the flow chart correspond to the
notations of the analog computer, but the individual operations were performed
in the digital way by the computer.

exp. 67 B, 31 1 b 2

App. 1. Flow chart of the solution of differential equation (10)

B @.(O‘i 1

| ' |

App 2. Flow chart of the solution of differential equation (11)
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App. 3. Flow chart of the solution of differential equation (17)

Summary

A new, general algorithm for the calculation of the thermal breakdown voltage is described.

based on the use of a digital computer for solving the differential equation of the tempera-
ture distribution in the dielectric. The effects of the boundary condition variations on the ther-
mal breakdown voltage. with special regard to the case of additional heat inflow are demonstrat-

ed.

The results are expressed by precalculated sets of curves. The described calculation method

holds equally for plane and cylindrical dielectrics, as well as for the temperature dependence
of dielectric losses.
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