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1. Caleulation of higher-order sensitivities

First-order semirelative sensitivity functions with respect to arbiratry
impedances can easily be computed by the indirect method using transfer
functions [1, 2, 5, 6, 9] (for notations in the transfer functions see Fig. 1):
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Fig. 1. Transfer functions used in calculating semirelative sensitivity functions
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The expression is applicable not only for impedances Z; but for network
parameter x;(R;, L;, C{'!) as well, and so the formula can be rewritten as:
8K 0K
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It is worthy to remark that there is only one direct path between the
input and the output which touches port i and the product K;;K;, can be
regarded as the path-product (Fig. 2a). It is useful to apply this technic, for
the sake of illustration, but we should like to emphasize that the path-product
defined is not to be mistaken for the signal flow graph, it is only a demonstra-
tion aid.
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The second-order semirelative sensitivity is to be determined with respect
to the i-th and the j-th parameter:

'K 8Q; 0K oK, -
0, = _ % O S ST (3)
6lnx;8lnx; 9ln x; Olnx; Slnx; 7
Hence, utilizing Eqs (1) and (2):
Qij =Ky Kij sz =+ Klj Kji K;, (4)

It is again remarkable that there are only two different direct paths between
the input and the output which touch both the i-th and the j-th port. Two
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Fig. 2a. The direct path between the input and output defining the path product K;;K;,
b) The two possible direct paths between the input and output defining the products K;K;;Kj»
and KlejiKi'l

path-products can be ordered to the two paths which are exactly equal to
the two terms of Eq. (4). (Fig. 2b).
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Expression (4) can be interpreted in the case of Q; = -
8(In x;)*
too, substituting j = i:
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Calculating the third-order semirelative sensitivity results in:
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This equation contains six terms that define the six direct paths possible
between input and output and the path-products (Fig. 3). All these lead to
the conclusion that in the third-order case (m = 3) the semirelative sensitivity
function contains m! = 3 != 6 terms containing all the direct paths between
input and output supposed to touch all the m = 3 ports. It may also be con-
cluded that a path-product contains m -+ 1 = 4 factors. This statement is true
in general.
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Theorem : The m-th order semirelative sensitivity function Q, ..., =
omK L. R

= - = of an open circuit voltage transfer function K = ——
8lnx, 8lnx,...0lnx, U,
with respect to R. L and C~! parameters or arbitrary impedances is always

expressible by the sum of m! direct path-product. A path-product consists of

m -+ 1 factors.

Proof : Suppose that our theorem is valid for the m - 1-th order sen-
sitivity function, i.e. there are (m — 1)! direct paths and a direct path defines
a path-product consisting of m factors. Differentation is a linear operation so
it can be derived by the terms. Deriving a term, i.e. a path product consisting
of m factors, will vield m terms. There being (m — 1)! path-products, after
derivation the number of the terms will be m(m — 1) = m !
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Fig. 3. The six possible direct paths appearing in calculation of the third-order semirelative
sensitivity

It needs verification only that the m ! terms are really path-products and
the number of the factors in a term is m -~ 1. Let us derive a direet path-

product consisting of m factors:
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The derivates in the right side of Eq. (7) are semirelative sensitivity functions,
which can be calculated according to Eq. (1) and in general they are of the

o
0K, I
form ——L = I\f3;1§5;j- Substituting them into Eq. (7) the following formula
nx
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will be received:

KKK .. K, = (K K)K;;.. . K, +

In x
+ Kli (I<i.\:K.\‘j) I<j/\‘ o sz‘ ':_ cee T KliKijI<jk L ImeI(xz (8)
It appears that the direct path derived 1 — i —j — bk — ... — m — 2 “fell

to pieces’, to longer paths, so as to give a product of two factors instead of
one factor. But this does not alter the path characteristic of the original paths.
The change is merely that there are m - 1 factors instead of m ones. Thereby
the theorem is proved.

2. Higher-order sensitivity invariants

It is known that the sum of relative sensitivities with respect to different
circuit parameters is invariant [2, 3, T]:

>S=M (9)

=1

Investigating networks consisting of resistors (R), inductors (L), capacitors
(D = C~1), current-controlled voltage sources (transfer resistances r), gyra-
tors (Rg) as well as transformers (a), impedance converters (k), voltage controlled
voltage sources (u), current controlled current sources () and operational
amplifiers (4) it can be shown [3] that if the network characteristic y is a

1. voltage or current transfer function (K), the sensitivity sumis M = 0,

2. transfer (or driving point) admittance (YY), the sensitivity sum is

M= —1, and
3. transfer (or driving point) impedance (Z), the sensitivity sum is
M= +1.

The summation must be extended to all of the parametefs R. L, D, r and Rg.
In the summation n means the sum of the numbers of resistors, inductors,
capacitors, current controlled voltage sources and gyrators. Using semirelative
sensitivities only number M has to be multiplied by the network characteristic
¥ to give the semirelative sensitivity sum:

I\/J =1

Q= My (10)

i

Eq. (10) can be easily generalized for higher-order sensitivity sums.
The necessary second-order sensitivities can be drawn in a quadratic
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matrix:

Qll Ql‘_’ Ql.n

i3 22

an Coe Qrm
The sum of all the matrix elements Q gives the second order semirelative
sensitivity sum.
Deriving the first-order semirelative sensitivity sum with respect to In a;:

a 1 n 8
- 0= 0= (My) =M, (11)
Glnx, /= =1 9lnx;

Thus, summarizing the elements of matrix Q in the j-th column will result
in MQ;. Summarizing all the columns of matrix Q:

I n 1

S 30;= N MQ; = My (12)
j=1i=1 i=1

The third-order semirelative sensitivity sum can be calculated in a similar
manner:

S5 3 Q= My (13)

Theorem : The sum of the m-th order semirelative sensitivities of a linear
network consisting of parameters R, L, D, r, Rg, a, k, u, p and A is

e 7 I
33 3G =my (1)

where n is the sum of the number of parameters R, L, D, r and Rg.
Proof: Let the above statement be valid for the (m — 1)-th order, i.e.

I n L

S , -1 .. =
S 2 2 Quiaa, =M (13)
=1 =1 i, ;=1

Differentating Eq. (15) with respect to In a,:

o) ” n n 3y
e > S 2 Qi =M =M (16)
Inx, =1 33 (5= 9ln x,
Summarizing Eq. (16) from r = 1 to r = n and substituting r = i, the ob-

tained formula will be exactly the Eq. (14).
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Summary

In this paper it has been shown that the higher-order semirelative sensitivity functions
of an open circuit voltage transfer function can always be calculated by the method using
voltage transfer function. i.e. without derivation. It has been shown. too, that the first-order
sensitivity invariants can be generalized to higher-order sensitivity invariants. These theorems
may be used for high-speed calculation of higher-order sensitivities with an immediate check
of the received results,
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