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Recently, with the event of state-space methods, great many techniques
have been elaborated to determine the canconical phase-variable form. Some
‘techzxiques permit to determine other canonical fm‘ms, for examp]o, the canon-
ical form with explicit eigenvalues. The corresponding transformation is
called modal transformation. A special case of the latter leads to the so-called
Lur’e form, where all the elements of the input column matrix ! are ones. This
form has some advantages and is widely used in the stability testing method
of LUR'E, as a special case of that of Lyapuwnov, in determining absolute stabil-
ity. Modal forms are generally advantageous because they show the natural
modes of dynamic systems.

In this paper some transformations will be shown, leading from the ca-
nonical phase-variable form to the modal form of Lur’e. Not only the case
of distinet eigenvalues are considered but also the case of multiple eigenvalues

will be examined.
Preliminary remarks

Let us stavt first from the transfer function

G(s) = Kk | (1)
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As it is well known, by introducing phase variables, we may obtain the canon-
ical phase-variable form as follows

Cx, 10 1 0o ... 0 0 a7 (]
X, 0 0 1 ... 0 0 X, 0

X, 0 0 .. 0 1 Xy
KXy, 4 L@y — Oy — @y ... —G,_y — Q31 X, | Ll
¥y = K, 0, 0, ..., 0, 0 1 x
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or in short-hand notation

(3)
The phase-variable form can also be obtained by many other techniques. Let
us now introduce an appropriate linear transformation

z=~L"1x (4)

x=Lz,

By use of the latter and assuming distinct eigenvalues, we may obtain from
Eq. (3) the canonical form sought for:

z=ANz-+1u ()
y=clz
where
A=L71AL=diag [/.2,.....4,] (6)
and
I=L"by=[1,1,....,1]T., eT=¢lL. (7

It is well known that the nonsingular VANDERMONDE matrix, which is a
special modal matrix,

r1 1 1 -
A 2
a3 "d “9
22 SR
v—1|. . A ¥ (8)
w1 .y “~py e
I L

has the peculiarity that it transforms the phase-variable system matrix Aj to
the eigenvalue matrix

V1A, V=A (9)
though, Eq. (7) is not fulfilled:
V=ib,=bh=1. (10)
Itis always possible, however, to choose a diagonal transformation matrix
T such that
T b=T1V 1h, =1 (11)

Therefore the appropriate transformation matrix is

L =VT =MT (12)
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We conclude our treatise concerned with distinct eigenvalues by some
supplementary remarks.
First, matrix V is a modal matrix M indeed, since the column matrices
v; of V are eigenvectors,
Ayvi=v; (13)
or

A,V =VA (14)

The latter equation being valid Eq. (9) holds.
Second, by introducing the polynomials

B~ [T T2
'I

J--l

L (i=1,2,...n) (15)
—4

the elements n;; of the inverse VANDERMONDE matrix V™! = M~ can be ob-
tained from the expanded form

P(2)= Sn;it (16)

as the coefficients of the i-th polynomial, corresponding to '~ On the other
hand, according to Eq. (10),

b= [Ulm Vorpo - - l’nn]T (17)

as b, = [0, 0,..., 1]7. Therefore the vector b is equal to the last column vector
of the inverse matrix V™! = M1,
Another way of computing b is given by

. Re 1”7 1 A—2; (18)
3y n == 8 = - — == " : <
(e r=t D(2) 2 A=Ay D(/){;,z,l
where J#t

D(}) = Al—Ay = ta, 771+ ta ita (19)

that is, D(2) is the characteristic determinant equal also to the denominator
of Eq. (1) after substitution.
Third, from Eq. (11) it follows that

T! = diag ——1—7 -}w, L] :éiag[—l—, —1—-, cas —]:—]
L Vi Tan Unn - bl
that is,

-1 diag[ IT i—2), ZZ (Ga—2)) o JJ Un— z.j)] (20)
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and
T = diag[v,,. van - - . Uy] = diag [0, 0,. .. .. b,]
that is,

n 1 n 1
T = diag - —— L, e (21
Vs ff P e B

Finally, the canonical modal form of LUR'E can also be obtained by
partial-fraction expansion. Let the Laprace-transform of the input be U(s)
and that of the output Y(s), then from Eq. (1), by expanding into partial
fractions, we obtain

B n . R;
Yis)= > U(s) (22)

P4

=154

where /; (1 = 1, 2,. .., n) are the distinct roots of D(s), i.e. the eigenvalues of
A, or the poles of G(s) in Eq. (1). Let us introduce phase-variables by the
Larrace-transforms

By inverse transformation assuming zero initial counditions
X = Jay +uy (I=1,2....n) (24)

which is just the detailed form of the first equation of (5). Taking Eq. (23) into
consideration, the inverse transformation of Eq. (22) vields

v o= 2‘ R;x; = Ryx;+Ryx, ... + R, x, (25)

which is just the detailed form of the second equation of (5) with ¢; = R;.

An illustrative example

T.ct the phase-variable form be

[5‘1 0 1 0 Xy 0
x| = 0 0 1 x|+ 10]fu
5 [ S N I

y =] K, 0, 0] x.
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According to Eq. (8), the VANDERMONDE matrix, that is, the modal matrix
is in our case

1 1 1
V=M= |—-a —p —»
22 32 .2

Taking Eq. (15) into consideration:

P(7) = py+(f+y) A-+72
(f—=) (y—u)

Py LD R
(x—7) (B—7)

Therefore, by Eq. (16) the inverse matrix is

N -7 Y 4 1 B
By (y—a)  (B-2)(y—2) (F—2)(y-—=)
V-lowm-t—| . vE Y+ 1
(v=B)(z=p) (B (=P (5 (x—p)
af 2-+f 1
_ (=) By () (B—y) (=) (By) o

Now, according to Eqs (20) and (21).

T = diag[(F %) (-

2 (7= B) (=B () (7))
and
T = diag[ - ! : ! — ! , J
B=2) =2 =B —p 7))
respectively.

Multiple eigenvalues

Let us assume now that G(s) in Eq. (1) has multiple poles, that is to say,
D(2) in Eq. (19) has multiple roots and A, in Eq. (3) has multiple eigenvalues,
We may determine an appropriate co-ordinate transformation of the

character (4) by which a canonical modal form similar to Eq. (5), but not iden-
tical with it, can be obtained:

Z = J'rzﬁ—lu (26)
y=c%z ]
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where, by introducing the pseudodiagonal form,

J =LA L =diag[J,. J,. ..., J.] (27)
and
5, 1 -
J 1
J, 1
Ji= - (i=1,2,...,m)
i 1
| 2]

The latter are called JorDAN blocks and J is called JORDAN matrix.

For the sake of simplicity let us first suppose that only the first eigen-
value has a multiplicity, let us say, », whereas the other eigenvalues are dis-
tinct. We introduce modified VANDERMONDE matrices,

1 0 1 . 1 -
Ay 1 Ay An1
Vo= % 27, 22 2 (28)
_ At (n-1)2p2 gt Vi
or
-1 0 0 1 1 =
A 1 0 g Y-
. _— - e
(- 5 (L) (-2 2t g
. L —1
and so on. By use of the appropriate matrix V, we obtain
V1AV, =7 (30)
where
J=diag[J,, 20, Ay ... Ap_yuil. (31)

The modified matrices may also be expressed as

Ty = [V4s Via Var - -1 V] (32)
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and

. 1
v, = [V,v vy, > Vi, Vo ooy v“_r_,] (33)

4

and so on. If we had m multiple eigenvalues, then the modified VANDERMONDE
matrix had the form

Vimy = [Y1: V1 oo s Voo Vs ooy o Vi Vi o] (34)

and J could be expressed as

J::diag[Jp Jf_)_'; cees Jm] (35)

We emphasize that Eq. (7) is not satisfied and Eq. (10) holds. In case
of multiple eigenvalues the transformation matrix T in Eq. (11) is not a di-
agonal matrix any more but an upper triagonal matrix, and so is also his inverse.
It is obvious that the commutativity condition

T JT =] or JT=TJ (36)

holds. Using the latter equation, adjusting the diagonal elements to unity and
emploving a trial-and-error method for the other triangle elements over the
diagonal, T and T~! can finally be determined in accordance with Eq. (11).
. Then Eq. (11) comes true and the whole transformation matrix is given in
Eq. (12).

As concerns multiple eigenvalues, let us make some further remarks.
Previously, in Eqs (15) and (16) a computational method was shown, simply
delivering the inverse of the VANDERMONDE matrix. For multiple eigenvalues
this method is to be modified. Let us suppose that we have only one eigenvalue
/4y with multiplicity n. For this case we have

P(7) = (i)™= S, (37)

and the corresponding coefficients yield the elements of the last row of the
inverse matrix. The elements of the (n — 1)th row are obtained from

1 d n!

P_ (A} = P()=(—2)"2= Nn, , A"
1( ) n—l d;. n( ) ( 1) 7:1 1—1,f
This procedure can be continued to yield
. 1 o R
P(2) = (A—2)"= Zn;#77t (i=12,....n) (38)

i=1
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The computation of the inverse modified VANDERMONDE matrix is more
complicated when besides the multiple eigenvalue also distinet eigenvalues
or separate multiple eigenvalues are present.

In this case the inverse matrix can be chtained by matrix inversion or by
applying the identity

VilA, =]V, M1A =]JM! (39)

m n ot
and using a trial-and-error procedure.

Denoting the row vectors of the inverse matrix by nJT~, for a certain Jor-
pax block J; of order »; = », according to (39) we may write

T 4 5 T
n, Aj=/mn,

T s T T ,
n,_y Ay =/;n,_;-+n, (40)
o’ AO:ZI»nT{—nE.

Both the matrix inversion and the trial-and-error procedure are facilitated by
applying (37) and (15), (16) for the computation of certain row vectors.

Of course, the canonical form of LuR’E can be obtained by partial-frae-
tion expansion also in the case of multiple eigenvalues.

Modal transformations with multiple eigenvalues

For the case in which multiple eigenvalues arise and matrix A is non-
symmetric as, for example, A, the determination of the number of independent
column vectors of the modal matrix is not so simple. The reason for the am-
biguity is that there is no unique correspondence between the order of a mul-
tiple root of the characteristic equation D{2) = 0 and the degeneracy of the
corresponding characteristic matrix [Z,I—A7.

If, let us say. J; is a multiple root of oxder p,, the degeneracy of the char-
acteristic matrix cannot be greater than p; and the dimension of the asso-
ciated vector space spanned by the corresponding modal vectors m; is not
greater than p;. The problem is more complicated if the order of multiple root
/;is p; and the degeneracy g; of [2; T — A]is less than p;. In this case only ¢, <7 p;
linearly independent solutions can be found for the characteristic equation

[I-Alm =0 (i=1,2,...,m) (41)

The dimension of the associated vector space for the m, is less than p,, and no
p; linearly independent characteristic vectors corresponding to 7; can be ob-
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tained. Only in case of a symmetric n X n matrix A is the degeneracy of [7, 1 —A]
definitely equal to p; for a p;-fold root, so that p; linearly independent eigen-
vectors can be found.

For the case where the degeneracy of [2;I —A] is equal to one, that is to
say, for a simple degeneracy, the modal column vector can bhe chosen to be
proportional to any non-zero column of Adj [4;1—A]. This is the only column
vector that can be obtained for the set of p; equal roots. The other additional
vectors which are necessary in constructing the transformation matrix have
to be determined by some other method (see below).

For the case where the degeneracy of [}, I1—A] is equal to ¢, > 1,
Adj [, 1~ A] and all its derivatives, up to and including

o> ) !
~_agr-all (12)

dia-2

>
are zero matrices. The ¢; linearly distinet solutions for the modal column vee-
tors can be obtained from the column vectors of differentiated adjoint matrices
which are non-zero ones. For example, in case of full degeneracy, ¢, = p;. the
p; linearly independent modal column vectors can be obtained from the non-
zero columns of

A Ay [)’.I—A]}é . (43)

dio=1" =

All the above remarks are concerned with general matrices A. In case ol
special phase-variable matrices A, as in Eq. (2). the rank of [7; I —A,] is always
r=n — 1. that is, the degeneracy g, is always one, and therefore there are
as many JORDAN blocks as there are separate multiple eigenvalues, and all
the superdiagonal elements in each Jorpawx block are unity.

Now, let us consider the determination of additional column vectors.
Let the column vectors of a transformation matrix, that is, of the modified
modal matrix M, be denoted by m, m,. ..., m,.
matrix J there is a JoRDAN block of order »; associated with J; if and only if
the » = y; linearly independent m, m,, ..., m, column vectors satisfy the

In the canonical system

equations
.

Aym, =m, 7,

Aym, = m, 2;-+my (44)
Aym, =m /;--m,_,
the detailed form of
A, M = M]J, (45)

based on Eq. (27).
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We emphasize that the reason of choosing the modified VANDERMONDE
matrices in form given by Eqgs (28), (29), (32). (33). (34) is that these matrices
do satisfy Eq. (44).

Two illustrative examples

First example

Let us start from the phase variable form

B 0 1 R EN 0
| = 0 0 I x|+ 101w
Xy —a® ~3a? —3a | x; 1

y = [K, 0, 0] x

According to Eq. (29), the modified modal matrix M and its inverse M™1 can
be expressed as

1 0 0 1 0 0
M=|-x« 1 0=V M=z 1 0]=V;!
2> —2o 1 %> 2z 1

The column vectors of M = V, satisfy Eq. (44), and the row vectors of M™! =
= V;71 satisfy Eq. (40). Eq. (30) is also fulfilled. It is also seen that the last
row of the inverse matrix can be taken from Eq. (37), the second row from Eq.
(38) with i = 2, and so on. The appropriate triangular transformation matrix T
and its inverse matrix T—! are obtained as

1 1 0 1 1 1
T=|0 1 —1]; T-i=]o 1 1
0 0 1 0 0 1

Eqs (36) and (11) are satisfied indeed. According to Eq. (12), the whole trans-

formation matrix L. and its inverse L' can be expressed as

F 1 —1 0 1dtota? 1422 1
L=]—z« 14 —1 ; L71=| oto? 1422 1
o =2y 1422 o? 2x 1

and this leads to the final form

— 1 07121 1
0 —a INe, | 111 u
0 0 o]z, 1

=[K. —K, 0] =

f—————r

LI 2 S 2

o M el

(|
Il

2
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For the sake of comparison we solve the problem by expanding in partial frac-
tions, too. The transfer function can be expressed now as

K

- (s+a)?

G(s)

that is directly in partial fraction form. Let us introduce canonical variables
by the Laprack transformed relations:

1 T : ____}______ 7 _______.:_l__“ Ts
Zl(s) = in L(S)“r’ (s+“)2 L(S) (3_2)3 L( )
Z4() = —— Uls) = ——— U
St (S—E—OC)"
1 .
Zy(s) = ——Uls)
S

Inverse transformation vields exactly the previous canonical form.

Second example

Let the phase-variable form given as

%, 0 1 0 Xy 0
i|=| o 0 L% +{0)u
i —xp 2mf - -2u -8 xy 1]

y =[ K. 0. 0 ] x

According to (28), the modified modal matrix and its inverse matrix can bhe
expressed as

1 0 1 1 5% —2ap ~~20 -1
M=|—a I =3 |=Vy M= |af? 2?5 o f—a
a? 20 P f—a) o? 2 1

Applying Eq. (36), the triangular transformation matrix T can be obtained as

- 1 -

x—f--1 0
—
T = 0 1 0
5 — ot
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whereas its inverse matrix can be expressed as

Cper (Boxe1)(Ea) 0 -

T 1= 0 p—x 0

These matrices are seen to have an intermediate form as compared with
the corresponding matrices in the previous two examples.
The inverse modal matrix M1 has })0'”1 determx red by matrix inversion
technique, which is relatively simple for n =7 3. We remark, however, that the
Jast row of M~ could also be obtained from i‘he coeffieients of

the latter being just the expression which can be derived from Eq. (15) by

substituting 4, = —u, 4, = —x and /, = --7.

Furthermore, the elements of the second row could be obtained from

B() = (pbmy 208 LB AP I (B 2) 2

" po (32

i

We remark that P,{7) does not follow any more directly from Eq. (15) but it
is a mixed expression based partly on the first relationship in Eq. (38) and
partly on Eq. (15).

Finally, the first row of M~! may be obtained from the coefficients of

but the construction rule of the latter polynomial is not quite obvious.

Problems with numerator dynamics

The outlined procedure of obtaining Lur’e forms can also be applied to
problems where numerator dynamics are also available. If the transfer func-
tion is

n—1_1 ] !
Ch1 8 T ... S TC

G(s) =

n_] n—1i_t 1 |
§'a,.18 Te.e- T ST 0
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then Eq. (2) is further valid, the only difference being that now
Y=l cacas - Cua X =€ x.

As A, and by are the same as before, the procedure remains unaltered, and
only ¢’ = ¢J L will result in a somewhat different form.

Conelusions

The canonical forms with explicite eigenvalues are very useful because
they constitute the base for modal analysis of dynamic systems. One of the
most important forms is the Lur'E form.

In this paper a method has been proposed for obtaining the LUur’E form
when starting from the phase-variable form.

In case of distinet eigenvalues, the original VANDERMONDE matrix, as
given in Eq. (8). can be applied. Since Eq. (10) holds, the introduction of a
further diagonal transformation matrix T becomes necessary. T has to satisfy
Eq. (11). The complete transformation matrix is then given in Eq. (12). The
elements of the inverse VANDERMONDE matrix can be obtained from Eqs (15)
and (16). In case of distinct eigenvalues, T and T can easily be expressed by
Eqs (21) and (20), respectively. Of course, the desired canonical form can also
be obtained by expanding the transfer function into partial fractions, intro-
ducing appropriate canonical variables, and inverse LaprLACE-transformation.

In case of multiple eigenvalues the problem becomes more complicated.
Instead of A we have now a JORDAN matrix J, as given in Eq. (27). The Van-
DERMONDE matrix is to be modified as shown by Eqs (28), (29), (30), (31) or
more generally by Eq. (34). Eqs (44) and (45) may also be employed. In this
case the transformation matrix T satisfying condition (11) is not a diagonal
matrix any more but becomes an upper triangular matrix together with its
inverse matrix. The computation of the inverse modified VANDERMONDE
matrix is simple only in the case of a single multiple eigenvalue, when Eq. (38)
can be applied. If there are more than one multiple eigenvalue or besides the
multiple eigenvalue there are also distinct eigenvalues the computation of the
inverse modified VANDERMONDE matrix becomes more or less complicated.
In this case Eqgs (39) and (40) can be used. The desired canonical form can be
obtained through LAPLACE transformation technique, for multiple eigenvalues,
however, also this method becomes somewhat complicated.

Summary

The peculiarities of the modal transformation leading to the LUR’E form are discussed.
Together with the systems of distinct eigenvalues the systems of multiple eigenvalues are also
treated. Some examples serve as illustrations.
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