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In the case of real eigenvalues, the state transition matrix is simple to
be determined from the canonical form by real-number arithmetics. When
complex or multiple complex eigenvalues are involved, then the quasi-canoni-
cal form and transformation described in the present paper or the methods
suggested in [1] and [2] are advised. The advantage of the transformation pre-
sented in the following is that it relies on the facilities of modern mathematics,
linear algebra and matrix analysis expressing results in a compact economical
form.

The ultimate formulae in [1, 2] and in the present paper agree and re-
quire only real-number arithmetics.

State transition matrix determination
through the canonical form

Let us consider the differential equation of a one variable section of
constant parameter:

(t) = Ax(t) - b u() (1)

where x is the state vector (an n x1 dimension matrix), b is a column vector
(an nx 1 dimension matrix) and u(z) is a scalar. If the eigenvalues of the matrix

A of nXn are not different, then the so-called JorpaAN-type canonical form
[3, 4]
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can be produced by a similarity-transformation, where
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is the so-called JorDAN partial matrix of dimension m; x m; and

. =11 (1)
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The JorpAN partial matrix J,, can be evolved also as the sum of a diagonal
and a nilpotent matrix by the relationship

Jm; = SfI "‘[L Hmi (5)
with I being the unit matrix of dimension m; xm;. Considering that
H =0 (6)

and with the similarity transformation matrix L of n xn the relationship for
the state transition matrix can be written up directly as

— eJiJm -}
eAtJTH
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In the case of real and multiple eigenvalues the state transition matrix ®(/¢)
can be calculated according to relationships (7) and (8) by real-number arith-
metics [4].

The calculation of the state transition matrix in the case
of complex eigenvalues using the quasi-canonical form

Let us introduce the notations

0 3
and
1 0
E, — 10
. [0 1} (10)

By regarding a conjugate complex pair of eigenvalues as a hyper-eigenvalue a
quasi-canonical form can be defined where the hyper-eigenvalue 8; defined by
the formula (9) will appear r times if a conjugate complex pair of eigenvalues
(s;» 8;) occurs r times in the main diagonal. So, according to formula (3) the
partial matrix of dimension 2m; X 2m; can be written as

cS, E, 0 ... 0 07
0 S, E,
J;”,: . . . . e
S, E,
L._O 0 0 . S[_
~s, 01 0 - (11)
s 01
S; 0
1
S 0
_ 90 § i

or in the form:

¥, = diag[S,, S, S, ..., S, ]I+ HE, (12)
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where
0 0 E,
B o .
HI—:TI,': . . : (13)
E,
- (| -
Now, H? is the nilpotent matrix of dimension 2m;x2m;, i.e. the equality
(H;)m =0 (14)
is met.

In the following, our consideration may be restricted to the case of a
conjugate complex pair of eigenvalues appearing r times. As it was mentioned
in the introduction, the calculation is to involve nothing but real-number
arithmetics. For this purpose an appropriate transformation must be applied.
From the formulae

I e
2= [ 1 J}
1/2 j
Kil= . " -
: j2 o~ jj2 (15)
and s; = og; + jo;
the relationship
P, = K;! stgz[ o ‘”f] (16)
—; g;

is easily justified. It appears that our aim is best approached by the linear

transformation
K = diag[K,, .. .. K,. .. ., K] (17
The introduction of this transformation means that the partial matrix J5

Jii=K-idiag[S, S, . ..S]K+Hz, (18)

is to be substituted by the partial matrix J*¥, where

K1H; K =H; (19)
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For supplying final results we must demonstrate how quantities “®' are
calculated. It is obvious that

Pi:[ o; cf)i}:l'o‘,- 01+[ 0 w,}
—o; o 10 oy | —w; 0

Therefore

B, is a skew symmetrical matrix diagonalized by the unitary matrix

U__[ /)2 1'1@]. (22)

=iz gz

U~'B; U being the main diagonal, the correctness of the relationship
eBi= U LTV (23

is easily admitted leading to

(24)

D, =B =T [e_jwi “0 J Ut =— [ cos®; sin0;
0 ejw,—./lf

—sin®; cos &
with O, = w;dt

In the final issue — in the case of a complex, multiple eigenvalue — rela-
tionship (8) is to be replaced by the formula

Agmi —1 e
i Df /Jt Di DERERY ‘éf'—_ Di
(m—1)
Atye+ Agmi—2 . -
N gy dt Di e m Di (23)
0 D, |
Example

Let us consider a system with a one-fold conjugate complex pair of poles:

J——, ! s Y — y
§; = 0y + jo, and §; = g, — jw,.
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The transfer function Y(s) of the system decomposed into partial fractions
will have the form:

e _—— (26)
$—0,—Jy §—0y+jo,

Denoting the Laprace transforms of the input and output signals of the sys-
tem by U(s) and V(s), respectively, and choosing the state variable transfer
functions according to the relationships

Xy(s) 1
U(s) s—8§; 27)
Xy(s) 1
Ufs) s—3§,
the LapracE transform of the output signal can be written in the form:
Vis) = e, Xy(s) + €, Xy(s) (28)

If in the calculations are to be aveoided complex arithmetics, then the state
variable transfer functions must be chosen in a different way. In the present
example the decomposition of the transfer function Y(s):

};(8) — (Cl+61) (S-—Ul) . j(él ~_Cl) 0y (29)

(s—0y)+of (s—0,)+of

Z(s) _ $—a;

Uls)  (s—0p)+oi (30)
Zofs) _  —or

UGs) (s o) ol

permits the Laprace-transform of the output signal to be calculated by the
formula

V(s) = (e + €)Zy(s) + j(&, — c1)Zy(s) (31)

The choice of the state variable transfer functions aceording to (30) is seen to
permit to calculate exclusively with real numbers.
For sake of comparison let us examine uow how the canonical form is
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influenced by the linear transformation x = K.z in the tested case. With the
considered conjugate complex pair of eigenvalues the canonical equations
develops according to the pair of formulae

HE M SERE .
o 9

For the Larrace-transforms of the state variables z,, z, in these equations we
can write up on the basis of (33) the following relationships:

SZ,(s) = 6, Z4(s) + ,Zy(s) + Uls)

(34)
SZy(s) = —,Zy(s) + 0,Z,s)
From these the expressions for Z,(s) and Z,(s) are derived as:
Zy(s) = ——L__U(s).
(s —0, )+ (35)
Zy(s) = ——1—— Us)

§ -0, )2 - 0?
(s—0,)+of

respectively. Relationships (30) and (35) immediately appear to be identical,
i.e. it can be stated that the linear transformation used in the example is equi-
valent with the choice of the state variable transfer functions according to
(30) (i.e. requiring only real-number arithmetics). A purposeful choice of the
state variable transfer (weighting-) functions applies to the general case as
well (see [1, 2]), just as the equivalence of the discussed transformation K.
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Summary

An economieal, modern method for the determination of the transition matrix is based
on real-number arithmetics. The use of the suggested quasi-canonical form and linear transfor-
mation permits computations storing a minimum number of parameters, i.e. high accuracy
derivation of the state transition matrix at a minimum number of operations. Finally, the
equivalence between the proposed transformation of the quasi-canonical form and a parallel
decomposition is illustrated by the example of a conjugate complex pair of eigenvalues.
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