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In the case of real eigenvalues, the state transition matrix is simple to 
he determined from the canonical form bv real-number arithmetics. When 
complex or multiple complex eigenvalues are involved, then the quasi-canoni­
cal form and transformation described in the present paper or the methods 
suggested in [1] and [2] are advised. The advantage of the transformation pre­
sented in the follo'wing is that it relies on the facilities of modern mathematics, 
linear algehra and matrix analysis expressing results in a compact economical 
form. 

The ultimate formulae in [1, 2] and in the present paper agree and re­
quire only real-number arithmetics. 

State transition matrix determination 
through the canonical form 

Let us consider the differential equation of a one variable section of 
constant parameter: 

x(t) = Ax(t) -+- h u(t) (1) 

where x is the state vector (an n X 1 dimension matrix), h is a column Yector 
(an n X 1 dimension matrix) and u(t) is a scalar. If the eigenvalues of the matrix 
A of n X n are not different, then the so-called J ORDA~-type canonical form 
[3, 4] 

o -I 

J= (2) 

L o J n:v --1 

Pcrio:!i,~ PJ'yt,,:, ruea El. XVIJ4. 
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can he produced by a similarity-transformation, where 

.-- Si 1 0 o 0-' 
0 Si 1 o 0 

Jmi= 

Si 1 
LO 0 0 o Si..J 

is the so-called J ORDAl\" partial matrix of dimension m i X Tll i and 

v 

~m·=n 
-- ! i=l 

The JORDAN partial matrix Jm, can be evolved also as the sum of a diagonal 
and a nilpotent matrix by the relationship 

Jm; = siI Hm; (5) 

with I being the unit matrix of dimension Tlli X Tlli" Considering that 

H~:=O (6) 

and with the similarity transformation matrix L of n X n the relationship for 
the state transition matrix can be written up directly as 

where 

r ,""m "",,' 
';'(,11) ~ ,"" ~ ,"'" -, A' l 

.-- .elt~ 
1 .elt 

2! 

e-1/Jm; = eSi-1/ 
0 1 .elt 

o 

(7) 

(mi-2)! 

(mi-2)! (11) 

1 
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In the case of real and multiple eigenvalues the state transition matrix CP(.Jt) 
can be calculated according to relationships (7) and (8) by real-number arith­
metics [4]. 

and 

The calculation of the state transition matrix in the case 
of complex eigenvalues using the quasi-canonical form 

Let us introduce the notations 

(9) 

(10) 

By regarding a conjugate complex pair of eigenvalues as a hyper-eigenyalue a 
quasi-canonical form can be defined where the hyper-eigenvalue Si defined by 
the formula (9) ·will appear r times if a conjugate complex pair of eigenvalues 
(Si' Si) occurs r times in the main diagonal. So, according to formula (3) the 
partial matrix of dimension 2m; X 2m; can be written as 

r S; E2 0 o O' 
0 Si E2 

J;~,; = 

LO 0 0 

I'; 0 1 
s; 0 1 

Si 0 

Si 

( 11) 

L 0 

or in the form: 

(12) 
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where 

H~i= (13) 

L 

N ow, H~i is the nilpotent matrix of dimension 2mi X 2mi' I.e. the equality 

(14) 

IS met. 
In the following, our consideration may he restricted to the ease of a 

conjugate complex pair of eigenvalues appearing r times. As it was mentioncd 
in the introduction, the calculation is to involve nothing hut real-numher 
arithmetics. For this purpose an appropriate transformation must he applied. 
From the formulae 

and Si = O"i + jWi 
the relationship 

K 2 = 

K- 1 ., -

[ ~ 
1'7 .-
j2 

~] 
.-

1/2 J 
j:2 (15 ) 

(16) 

is easily justified. It appears that our alln is hest approached by the linear 

transformation 

(17) 

The introduction of this transformation means that the partial matrix 

(18) 

IS to he suhstituted hy the partial matrix J';':" where 

(19) 
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For supplying final results we must demonstrate how quantities e~tPi arc 

calculated. It is obvious that 

r (J. 

p. -l ! 
1- -(OJ 

Therefore 

Ri is a skew symmetrical matrix diagonalized by th~~ unitary matrix 

U = r 1/~ 
- j/V2 

1/]121· 
jl]12 

U-1Bi U being the main diagonal, the correctness of the relationship 

IS easily admitted leading to 

with e j = Ct)iLlt 

sineil 
cos e j 

(20) 

(21) 

(22) 

(23 

(24) 

In the final issue - in the case of a complex, multiple eigcnvalue - rela-
1 ionship (8) is to be replaced by the formula 

L 0 

Example 

LltnJ,-l -I 
---Dj 
(mi-l)! 

LltnJ,-2 
----Dj 
(mi- 2)! 

-' 

(25) 

Let us consider a system with a one-fold conjugate complex pair of poles: 
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The transfer fUllction Y(s) of the system decomposed into partial fractions 
will haye the form: 

Y(s) =. 
S--vl- jW1 
--------+---------

1 1 
(26) 

Dcnoting the LAPLACE transforms of the input and output signals of the sys­
tem by U(s) and V(s), respectively, and choosing the state variable transfer 
functions according to the relationships 

Xl(S) 1 

U(s) S-SI 
(27) 

X 2(s) 1 

U(s) S-8 1 

the LAP LACE transform of the output signal can be written in thc form: 

(28) 

If in the calculations are to be avoided complex arithmetics, then the state 
variable transfer functions must he chosen in a different ·way. In the present 
example the decomposition of the transfer function Y(s): 

Y(s) 
j(C1 --C1 ) COl 

(s vIF+co~ 

i.e. the choice of the state yariable transfer functions according to 

Zl(S) s-

U(s) (s vIF+COI 

Z2(S) 

U(s) (s r I 2 vI --:(1)1 

(29) 

(30) 

permits the LAPLAcE-transform of the output signal to be calculated In- the 
formula 

(31) 

Thc choice of the state yariable transfer functions according to (30) is seen to 
permit to calculate exclusiyely with real numbers. 

For sake of comparison let us examine now how the canonical form j" 



REAL QCA.'TlTIES FOR STATE TRA.SSITIOS 353 

influenced by the linear transformation x = K 2z in the tested case. W-ith the 
considered conjugate complex pair of eigenvalues the canonical equations 
develops according to the pair of formulae 

(32) 

Introducing the linear transformation x = K~z we obtain: 

(33) 

F or the LAPLA.cE-transforms of the state variables ;:;1' ;:;2 in these equations we 
can writc up on the basis of (33) the following relationships: 

U(S) 
(34) 

From these the expressions for Zl(S) and Z~(s) are derived as: 

(35) 

Z.,(s) = ---"-- U(s) 
- (s ulf+wi 

respectively. Relationships (30) and (35) immediately appear to be identical, 
i.e. it can be stated that the linear transformation used in the example is equi­
valent with the choice of the state variable transfer functions according to 
(30) (i.e. requiring only real-number aritlllnetics). A purposeful choice of the 
state variable transfer (weighting-) functions applies to the general case as 
well (see [1, 2]), just as the equivalence of the discussed transformation K. 
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Summary 

All economical, modern method for the determination of the transition matrix is based 
OIl real-number arithmetics. The use of the suggested quasi-canonical form and linear transfor­
mation permits computations storing a minimum number of parameters, i.e. high accuracy 
derivation of the state transition matrix at a minimum number of operations. Finally, the 
equivalence between the proposed transformation of the quasi-canonical form and a parallel 
decomposition is illustrated by the example of a conjugate complex pair of eigcnvalues. 
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