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In previous papers [6, 7] we have studied the stability region variation
permitting to reach arbitrary phase margins in the case of the linear control
system with dead time shown in Fig. 1, compensated in series by proportional
(P), integral (I) and proportional-integral (PI)-type compensation elements,
respectively. In this paper diagrams showing the variation of the stability
region versus the phase margin, the dead time and the time constants of the
system compensated by a proportional-differential (PD) element are presented
along with a procedure written in the ALGOL language for the determination
of the stability region permitting to reach arbitrary phase margins of the con-
trol system shown in Fig. 1, compensated by P, PI, PD and PID-type compen-
sation elements, respectively.

Proportional-differential control
The transfer function of the controller (Fig. 1) is as follows:
Y. (s) = K(1 + T,s).

The transcendent equation derived from the transfer function of the
open loop used to determine the angular frequency permitting to reach ar-
bitrary phase margins is:
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11 is easily seen that the transcendent equation (1) may be obtained from the
relationship
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involving a PID-type compensation, by substituting 1/T; = 0. Qur state-
ment is fulfilled if:
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in accordance with our above statement.
The above statement is useful in developing the program for the deter-
mination of the stability region variation for P, PI, PD and PID-tvpe controls.
By substituting 1/T; = 0, the limit position of the stability region may
be calculated from the following equality:
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involving a PID-type compensation, with the angular frequency value obtain-

ed by the numerical evaluation of the relationship (1) with arbitrary accuracy.
Diagrams 2 through 16 show the functionality K = K(T,/7) determined

with the help of a digital computer for the phase margin values ¢’ = 0°, 30°,

45°, 60°, 759, with the time constants of the plant as parameters.
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From the diagrams the regularities described below follow:

a) For Ty/t — 0 and simultaneously /T — oo, the controller may be
substituted by a proportional element and the plant by a pure dead time ele-
ment. Accordingly, the limit position of the stability region approaches 1.
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b) When the dead time is lower than, or at the most equals the time cons-
tant of the second order lag, then the loop gain shows a maximum in the range

of 0.1 g T,/z g 10.
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¢) For T/t — oo the controller operates as a differential element. The
stability region variation may be characterized in this case by the relationship

T + 24T/ ) 4 (Tfr)* (s7)? .
x Lo _ L 14+ 24Tx) (s7) + (T/r)* (s7)* _ K T,
T ST exp (— 1) T

)

LT

For high T /v values the functionality K = K(T,/t) with ¢’, v/T, { as par-
ameters is linear, in accordance with (4). The significance of the above state-
meat is merely theoretical, as no pure differential elements are used as con-
trollers in practice.

Proportional-integral-differential control

The transfer function of the controller in the case of a PID-type com-
pensation is as follows: ‘

é = K _i__lA__f_ s, 5
}1(5)—1\ T :d'- (5)

The limit of the stability region permitting to reach arbitrary phase mar-
gins may be determined by relationship (3) after the evaluation of (2) with
any arbitrary accuracy.

For the proportional-integral-differential control the number of the
parameters is more by one than either for the PI-, or the PD-controls. There-
fore the number of the diagrams representing the stability region variation
for various time constant values increases considerably as compared to the
PI, or PD-type compensations. So in the case of the PID control the loop gain
values belonging to the arbitrary phase margins will not be plotted with the
time constants of the system as parameters.

However we specify the procedure written in the ALGOL programming
fanguage and supplied with a PID identifier suitable to determine the stabil-
ity region of P, PI, PD and PID controls for any arbitrary time constant and
phase margin. For selecting the series compensation element of the linear
control with dead time shown in Fig. 1 the diagrams published in [5] may also
prove satisfactory in many cases. These diagrams show the eritical loop gain
(¢’ == 0°) versus the time constants of the system. If the stability region is to
be determined in the case of ¢' > 0° as well, this can be easily done by activat-
ing the PROCEDURE PID given in the AppENDIX. By this means the varia-
tion of the loop gain permitting to reach arbitrary phase margins of the con-
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trol system under investigation may be easily produced also in the case of a
PID compensation for various T; and T, parameter values of the controller
besides of the fixed T, {, 7 parameters of the plant.

Deseription of the PROCEDURE PID

The PROCEDURE serves for the determination of the stability region
permitting to reach arbitrary phase margins of the linear, one-loop control
system with dead time shown in Fig. 1. In the general case the controller may
be a PID element with the same transfer function as under (5). In the special
case of the PID control the proportional, proportional-integral and proportion-
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al-differential compensated loop gain values may be calculated according to
Table 1.

For the sake of tractability the PROCEDURE PID contains several
PROCEDURE-s and REAL PROCEDURE-s with the additional advantage
that when the plant contains more than two time lags, then the procedure can
be easily adjusted, by a slight modification of the main bodies of the PROCE-

‘Table I
Controller ! 1T Ty
P 0 0
PI variable 0
PD 0 variable
PID variable | variable

i

3=
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DURE-s, FI, DFI and PID, to make it suitable for the determination of th~
stahility of control systems with dead time containing more than two time
lags. But as such systems are rarely met with in practice, or even if control
systems of this tvpe occur sometimes, a result of satisfactory accuracy can be
obtained in most cases by substituting the plant by second order lag, the above
adjustment is seldom needed. The calculation of the angular frequency giving
the limit position of the stability region is based on the considerations as fol-
lows,

Let us trace the resultant phase-angular frequency diagram of the
open loop of the control system shown in Fig. 1. The character of the curve
¢ (w) is mostly as exhibited in Fig. 17. The angular frequency permitting to
reach an arbitrary phase margin satisfying the equation ¢ (,.) = 180° - ¢’ is
evaluated in the following steps:

Starting from an arbitrarily low angular frequency of w, = ¥V - @ and
assuming that V = 10, we find the frequency decade [w,, ®,] within which
the required @, drops (PROCEDURE FIND). As to the value of Q, it is
advisable to choose it between .0001 and .001.

In the second step we reduce the frequency decade by the method of
bisection until the deviation of the phase margin from the required value of
the function is under a not too low error limit specified in advance (PROCE-
DURE HALF).

When the conditions

g (wy) - (180° —¢") T EPS
and

¥ (@) —(180° ') — EPS

respectively, are satisfied, the required angular frequency ©,- can be evaluated
with arbitrary accuracy (DELT) by the NEwTon —RaAPHSON iteration method
(REAL PROCEDURE Newton). In the knowledge of this angular frequency
the PROCEDURE PID supplies the value of the loop gain belonging to the
given phase margin.

The REAL PROCEDURE FI and REAL PROCEDURE DFI produce
the phase angle and its derivative, respectively.

In the interest of machine time economy the program has been developed
in a way that first it should be run for the maximum phase margin, then the
calculations are to be iterated with ever decreasing ¢’ values. If the critical
loop gain is to be determined for one phase margin only, then the corres-
ponding phase margin represents at the same time the maximum phase

margin (FIMX).
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The PROCEDURE PID is presented in the APPENDIX. For activating
the procedure the programmer must know the meanings of the formal pa-
rameters appearing in it. These are:

ZETA s
B T,
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The above parameters are input parameters. Their value must be specified
before the PID procedure is activated. Also the values C = 1/T}, Q, EPS and
DELT must be specified before running the program. The role of Q has been
mentioned already. By slightly varying EPS and DELT, the running time of
the program may exhibit considerable deviations. If very strict EPS > DELT
error limits are imposed, then the solution will be convergent, but the running
time may turn out to be very long, whereas if the EPS is chosen too high. a
divergent solution might be obtained. The choice of the EPS value is decided
by the time constants of the control system for which the course of the stability
region is to be determined. The recommended values are: EPS ~~ 0.1 —0.2,
DELT »« 1074

The course of the phase-angular frequency characteristic curve is not
monotonously decreasing in every case. For instance, the introduction of the
differentiation effect may result in the course of ¢{w) as traced in Fig. 18. In
such cases it is advised to choose a lower EPS value.
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The PROCEDURE PID does not contain any part-program for the
determination of the loop gains belonging to each of the angular frequencies
@1 4s @5, and @, . respectively, in Fig. 18. The introduction of such a part-
program would multiply the running time. But this deficiency has no specific
significance, as the angular frequencies w,, and v, refer to the conditionally
stable region permitting to reach the phase margin —¢’ [1]. For dimensioning
purposes it is advisable to use only-the K = K(w;,) value in the calculation.

Neither does the procedure supplied with a PID identifier guarantee
the production of the loop gain K = K{w; ) in all cases. But this is of no
specific significance either, as this occurs only in a short 7/T; interval for the
increasing values of the differential time constant, as seen by the diagrams
K, = K_(7/T;) traced for ¢" = 0° [5]. If the variation of the angular frequency
in this short interval 7/T; is not univocal, then it is advised to repeat the
calculation for the involved time constants with reduced V and EPS values in
PROCEDURE FIND and PROCEDURE HALF respectively, as needed.

Conclusions

The frequency region analysis of linear control systems with dead time
imposed itself as little consideration of this problem is found in the literature
so far, due to the difficulties in the calculation. Yet systems with dead time
occur often in practice and thev were dimensioned up to now by empiric
thumb rules or by simplifying the control systems.

With the advent of the digital computers the possibility of more accurate
numerical investigations permitting to speed up considerably the synthesis of
the linear controls with dead time was opened up.

Investigation of the critical loop gain of the one-loop control system
compensated in general by a PID controller versus the time constants of the
svstem has been described in {8, 9].

[2,...7] and the present paper deal with the determination of the
stability region variation of a one-loop control system for the plant with dead
time and second order lag, for various phase margin values when P, I, PI, PD
and PID controllers are chosen respectively. Considering that systems with
plant containing more than two time lags are rarely met with in control technies,
the results in [2, ..., 9] and the present paper are suitable for investigating
the stability of any linear control system with dead time, where the transfer
function of the open loop can be written in the form Y(s}) = Y ,(s)exp(—s7),
with Y,(s) not containing the factor exp(-—s7) anymore. If the plant contains
more than two time lags, then the substitution of the plant by two time lags
proves to be a satisfactory approximation in the majority of the practical
cases.
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Summary

Diagrams produced by a digital computer, and representing the stability regions
permitting to reach arbitrary phase margins of a linear. one-loop control system with dead
time and second order lag and compensated in series by a proportional-differential element are
presented. The PROCEDURE PID of the APPENDIX written in the ALGOL language
permits to determine the stability region variation versus the phase margin and the time
constants of the system for the above control compensated by proportional, proportional-
integral. proportional-differential and proportional-integral-differential elements, respectively.
The diagrams in [6, 7] and in the present paper, along with the PROCEDURE PID permit
the easy choice of the P, I, PI, PD and PID compensations, the most advantageous in the case
of the actually involved linear, one-loop control system with dead time and second order lag.

APPENDIX

PROCEDURE PID (ZETA,B,A,TAU,FIPM,FIMX,K);
VALUE ZETA,B,A.TAU,FIPM,FIMX:
REAL ZETA,B,A,TAU,FIPM,FIMX,K;
REAL PROCEDURE FI(OMEG);
VALUE OMEG: REAL OMEG:
BEGIN REAL M8,M9;
M2:=0MEG ? 2; M3:=M2xTD:;
Mi:=T 1 2% M2; M5:=C —M3;
M6:=1—M4: M7:=M1x OMEG:
IF ABS(M3)<",,—30
THEN BEGIN M8:=1.570796;
GO TO L1
END
ELSE M8:=ARCTAN(OMEG/M5);
IF M8~<0 THEN M8:=3.141593 - M8;
L1:IF ABS(M6)<, 30
THEN BEGIN M9:=1.570796:
GO TO L2
END
ELSE M9:=ARCTAN(M7/M6):
IF M9<-0 THEN M9:=3.141593 - M9;
L2:F1:=1.570796 -OMEG x TAU - M9 —M8;
END FI
REAL PROCEDURE DFI;
BEGIN
M5:=M5 x M5; M6:=M5 x M6;
M7:=M7 % MT:
DFI:=TAU +M1 x (1-+M4)/(M6 - MT) —(C--M3)/(M5 L M2)
END DFI:
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PROCEDURE FIND(V,Q,0M1,0M2);

VALUE V,Q; REAL V,Q,0M1.0M2;
BEGIN OMEG:=Q; OM1:=0;
FOR OMEG:=VxOMEG WHILE FI(OMEG)< F DO OMl:=
OMEG;
OM2:=V xOM1
END FIND;

PROCEDURE HALF(OM1,0M2,EPS,OMEG);

VALUE OM1,0M2,EPS; REAL OM1,0M2,EPS,0MEG;
BEGIN FOR OMEG:=(0M1-+0M2)x0.5 WHILE ABS(FI(OMEG)
—F)>EPS DO
BEGIN IF FI(OMEG)<F
THEN OMI:=0MEG
ELSE OM2:=0MEG
END:;
OMEG:=0.5 x (OM1-+0M2)
END HALF;

REAL PROCEDURE NEWT(OMEG,DELT);

VALUE DELT; REAL OMEG,DELT;
BEGIN REAL Z;

Z:=0MEG;

FOR Z:=Z-—(FI(OMEG)~F)/DFI WHILE ABS(Z-OMEG)>DELT

DO
OMEG:=7;

NEWT:=0MEG

END NEWT;

BEGIN

T:=TAU/A; TD:=B xTAU; M1l:=2xZETA xT;
F:=3.141593 x (1—FIPM/180);
IF FIMX 0.1 >FIPM

THEN FIND(2,Q,0M1,0M2)

ELSE FIND(10,Q,0M1,0M2);
HALF(OM1,0M2,EPS,0MEG);
K:=NEWT(OMEG,DELT) » SQRT( (M6--M7)/(M5-M2) )

END PID;
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