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1. Introduection

The sensitivity of the network characteristic v(x....xn...x5) is
given by
B glnv x: gy .
Spm oY M s (1)

glnx,; v By

Siy. x;) means that the sensitivity ef the network characteristic has been
determined as a function of the network parameter x.. NV denotes the number
of network parameters. By definition, the tolerance of the network chatacter-

izstic is given by

v N Axy N x,
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However, sensitivity may not only be used for tolerance calculation. The
adjustment of circuits, i.e. the field of networks with variable parameters
may also be treated by methnds based on sensitivity. Up-to-date circuit
design such as iterative svnthesis (optimization) is also strongly related to
sensitivity insofar as partial derivatives, i.e. sensitivities are needed for finding
the optimum.

The relative sensitivities taken with vespect to different circuit param-
eters are not independent. Notably, interesting relations are found by

calculating the summed sensitivity

S Sy (3)

f=1

which turns out to he an invariant of the networks.

The purpose of this paper is to give a uniform treatment of the basic
sensitivity invariants and to show some of the applications in network theory.
In the new method to be used in the following, the properties of unit-systems
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are only made use of, and so the results may be generalized for a large class
of physical systems.

2. Generation of sensitivity invariants

As a starting point, the use of relative units in the circuit is presumed.
In the case of the circuit shown in Fig. 1, the network elements and the fre-
quency are expressed in relative units. It is known that from this normalized
network arbitrary networks may be derived by a proper selection of the
corresponding R, — L, — C, — o, relative units. For instance, if the induc-
tance unit is multiplied by a factor 7, the capacitance unit divided bv the same
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O

Fig. 1. Circuit to illustrate the consequences of the choice of relative units

factor 7, then the resistance unit is also multiplied by 7 and the frequency
unit is unchanged. As a result, the input impedance Z is also multiplied by 4.
The change of the impedance level does not affect the transfer function-
K= U,U,.
For a straightforward mathematical analysis. let us consider separately
the resistance, the inductance and the capacitance in the impedance Z(x,,
.x;...%N, p) and let us use the inverse capacitance D. So we have Z =
=Z(R,,.. . Rn,, L, .. .L‘\-L, D,. ... DN(,., p): where Np - N - No = N
and p = ¢ + jw is the complex frequency. The following relationship holds

for the impedances:

ZOR....0 Ry, 2Ly....2 Ly, AD,, ...:Dy.p) = (4)
=/2Z(R....Ry,. L,,...Ly,. D\,...Dy..p)
Differenciating (4) with respect to A, we have
Nep § iR. N T, N
é‘ai agfl h %1: aai.ZLf 5;1;: - j /f) a;_?“ —Z (3)
and from this expression
\>f;R 8z gL 8z _(,D,— 8Z °Z (6)

= 7 BiR, = Z 3il, = Z 3iD,



SENSITIVITY INVARLANTS ' 91
With the substitution 4 =1

Ng N Ny . N Aa
/P*R' 8Z /Iﬁiz___\'_g;f“z,zl (

=~ Z B8R, = Z 8L, ™ Z 3D,

-1
—

By utilizing the definition (1) of the sensitivity,

Ng Ny N¢
SSAZ,Ry) + 3 SiZ, L) — DSIZ. Dy =1 (8a)
= = =

or using a single sum notation,

Wk

SAZ,x;) = 1 (8b)

=1

[

According to this result, the sum of the impedance sensitivities with respect
to R L and D = s is unity. What is now the situation when the frequency

unit is changed? In case resistance unit R, is left unchanged, the change of
the frequency unit results in an equal and simultaneous change of the L,
and. €, units. Calling the functions Z, Y, K by a common name as network
functions and denoting them by F, this result mayv he expressed as follows:

F IR, . .. Rxp, /Ly, . iLx,,iCy .. iCn,, 2| =

2
=F(Ry, ... Rx, L, ... Ly, C. ... Cn,. p) (9
Ditferentiating Eq. (9) with respect to /. dividing by F, substituting 7 =1

and rearranging, we have
gmg,

N [y N . 7 al
SLoslh G B3F  p 5F (10)

= F 8L, ™= F 3C. F 3p

[0}
[e}}

)

Introducing the relative sensitivities, we get

N Ne
=1 =

In case of filters we use the transmission factor [" instead of F. (g = In [ =
== a — jb, where a(o) is the attenuation, b(w) is the phase and 7 =-—is

the group delay time). Splitting Eq. (11) into real and imaginary parts, we
have

2 Periodica Polvtechniva ElL XV/2,
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; oy . e SR da ,
g Re DI(Z ,L_,‘) - vReb[(j ‘Cl) = (1 (123)
de i
Ne o Ne L b
NImS(I'.L,) — WImS{(/,C)= 0w = OT. (12b)

=1 dw

Thus the sum of the real parts of the sensitivities may be expressed by the
derivative of the attenuation with respect to frequency. On the other hand,
the sum of the imaginary parts of the sensitivities is related to the group
delav time.

In the case where the circuit containz ideal controlled sources, the
impedance concept may be extended to include the current controlled voltage
sources and the admittance concept. to include voltage controlled current
sources. In this way the invariance of the sensitivity sum may be extended,
remembering only that the addition has to he performed also for the con-
trolled source parameters.

According to the method introduced above, sensitivity invariants can
be generated for a number of classes of networks and systems. For some
important cases of linear lumped networks the results are tabulated in
Table 1. The notations used in the table arc as follows:

The elements are;

1
R = —— : resistance
G
1 .
L = —— ¢ inductance
-1
. 1 .
C == — capacitance
D
1 . ‘
R; = — ¢ gvrator resistance (econductance)
n = transformer ratio of the ideal transtformer

A: ideal operational amplifier

k: conversion factor of the negative lmmittance converter
g: transfer conductance of a voltage controlled current source
ri transfer resistance of a current controlled voltage source
11 voltage gain of a voltage controlled voltage source

5: current gain of a current controlled current source

B: the elements n, k, y. p, 4

F: all the elements mentioned above
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Table 1

Summary of sensitivity invariants of linear networks

The value of the sum

Class Permissible elements Tvpe (M} i case of
Na, of the network of the =umn ) o
K Y 4 Pz L)

1 G L-.C.g Gy by 0 1 —1 0 0
B N, :

2 R.L,D.r.R: z 0 —1 [ 0 0
B N,

3 v -z MF.p)y S(F.p) S(F.p) —1 !

t o exeeptl x SF.p) S(F.py S(Fop) =1 i

! C

5 R. C.r. Ry X 0 i 1 -2 2i
B A —25(F.p) )

6 G, D.g Gg: = it 1 -1 2 —2i
B Vi 3S(F. p)

T R.CrRg ToTo-Y —1 1 1 1
B Ror Ry —S(F.p)

& R Cr R x U 0 ] 1 i
B ¢ —S(F. p)

a L. C: 2y ] —0.5 0.5 —0.5 0.51
B L U5S(E. p)

1o L.C: x 0 0.5 —{.5 —1.5 0.5

% < - ——

B - —0.55(F. p)

The F = F(p) are network functions of the following types:
K: voltage and current transfer function
3 transfer (or driving-point) admittance
Z: transfer (or driving-point) impedance
The p; and z are poles and zeros of the network, respectively:
c; is a coefficient a; or b; in the network function

mn .
‘_\: a;pt
F==1" (13)

n .
~;pt
i=o
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where the subseript ¢ refers to the power. The third column of Table 1 con-
tains the various types of the sum:

N1
o= NSy (14)
N1 [=1

where the summation refers to all of the elements in the first rows of the

.. .. . =
second column containing the permissible elements in the network: = %1 -E

ete. It is interesting to note that if the value of an element is a dimensionless
number (the elements of B) then the sensitivity related to this element is
not contained in the (invariant) sum of the sensitivities.

Summarizing the method of the generation of the summed sensitivity
invariants, the following steps are generally important:

a) the formation of the network echaracteristic as a function of the
elements y{x;):

b) connections among the relative units:

¢) the introduction of the 7 factor and the determination of its effeet:

d) partial differentiation with respect to i:

e) set A= 1.

It must be noted that constants having dimensions (other than a real or
complex number) must be considered as elements.

One limitation of the method is the unsuitability for generating the
sum of the absolute values of the sensitivities. Though the method using
the energy relations in [6] is limited by the passivity condition. the sum of
the absolute values (or a limit of it) can be generated. It must be noted further-
more that not all types of sums can be generated. For example in a network
containing the elements of the Class No. 1 in Table 1, the sum of the sensitiv-
ities related only to the capacitances cannot be generated. This is because
if we change the C; to AC, fi:x:in_g‘ thereby the R, to ensure the correct relation
between the relative units, the L; must be changed also to 4 L,. Hence, beside
the sensitivities to the capacitances also the sensitivities to the inductances
will occur in the sum. (See Class No. 3 in Table 1)

3. Nonlinear network example and applications

The method can be used also in cases of nonlinear networks. The con-
stants with dimensions must be taken also into account. Let us consider a
nonlinear network containing conductances (G). independent voltage sources

(E) and nonlinear two poles described by the equation

. o
= Cu-
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where i and u are current and voltage, resp., of the nonlinear two pole and ¢
is a positive constant. According to this defining equation, ¢ is not a dimension-
less number and its relative unit ¢, can be defined by

where I,, U, and G, are the relative units of the current, voltage and con-
ductance.

Let the network function be the voltage between any two nodes of the
network. We can write the network characteristie U

U= UG, E c)

Because

so after the introduction of the /2 factor we can get
UG, 2 E; ¢;) = 2 UG, E;, ¢)

Difterentiating this equation with respect to 7 the result i=

~ oU 3G, N sU B8ZE;
= 8)G, 5. < 8.E, 5/
and dividing this equation by U and setting 72 =1
‘2 S(U. Gy — ‘: S(U,E;y =1 {15a)
G 5

Eq. (15a) shows that the sum of the sensitivities related to the conductances
and independent voltage sources is invariant over the class of nonlinear
networks specified above. The sensitivity to the constants does not occur
in Eq. (15a) because this unit remains unchanged by changing G, and U,

bv i. However, if we change G, and ¢, by 7 and so U, remains unchanged,

then
U(ZG. E, 7.¢) = UG, Ep. ¢)

and =0
D SU.G)— XS(U.¢;) =0 {15h)
G C
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An example illustrating the invariant of Eq. (15a) is shown in Fig. 2

JJ;‘ .
If the term in Eq.(2) is the same value for all of the network
X,
parameters, then:

S dx, N
= ! ‘: Sl’(,\.‘. '\‘Z') (16)
'\ X =

| S ’-

G > o—Pp——0 = cu}
E} ) Gy LU
up
—
.G G, [ Gy keE G G. G
L:.—.—l._ ——~l~_-___ ! - e i e TTL = et
Ze [ G, l (1 G, ) G; 2c ( ! G, 1 [) 2c A
G A (GG E
S(U, Gy = - G VA ——IGQ'~ G 146 -1
G Ly _ L6
SU. Gy = G AL 66
- _42
ek
S(C, By = 0o

Fig. 2. Sensitivity invariant in a nonlinear circuit

Since the summed sensitivity is invariant, in this case the tolerance of the
impedance. transfer function and admittance is as follows:

ax
Ay X _
= | 0 1"
A B C 7

i_ Ay

Eq. (17) shows that as a consequence of the summed sensitivity invariance.
the tolerance of the network function depends only on the relative tolerance
of the circuit parameters.
It is known that the tolerance of the attenuation of a reactance filter
can be expressed by the real parts of the sensitivities:
Np+Ne Ax.

da=" 3 ReS(lix) >

i=1 X;

(18)
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[{w)
-~

In the case of identical relative network parameter tolerances:

Jy Np+=Neg . )
a =2 _-\: Re S(1'. x;) (19)
X; =1

According to Eq. (12a) our final result is

dx , da (20)
x; do

; da ) . . .
We conclude that the — partial derivative has a paramount importance
o)

in the calculation of tolerances. From the point of the tolerances the attenua-
tion poles at finite frequencies and the transition from pass band to stop
band (the so called no man’s land) are critical.

4. Sensitivity optimization

Using the summed sensitivity invariants, a lot of useful results can be
derived relating to the problem of optimization. specifically to the design of
minimum sensitivity networks.

2\ network has the minimum sensitivity property if the value

i= minimized. where N is the total number of elements.

After the basic publication of Schoeffler a lot of works were dealt with
the problem of minimizing P in various classes of networks.

Leeds and Ugron published the following conjectures relating to the
continuously equivalent networks.

a) If a network minimizes P at a given frequency then P is minimized
at every frequency.

b} Puin can be reduced by increasing the number of elements.

¢} The sum of the sensitivities is invariant over the continuously equi-
valent networks.

The last conjecture is a special case of the summed sensitivity invariants
in Table 1.

To clear the problem, the subsidiary constraints at the minimization
are classified as follows.

A. There is no subsidiary constraint.
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B. The network function F(p) = constant, the structure of the net-
work is fixed, all possible elements of zero value (within the given structure)
are allowed.

C. Asin B. but the zero (or infinite) value of the elements is not allowed.

Case A

Let us consider a GL™!C network and optimize it by minimizing the
sum of the squares of the sensitivities related to all the elements, that is, P
must be minimized and

V ~
>8,=M

i =

LA
—
[

(8]

Eq. (22) is a subsidiary constraint. Now, using the Lagrange method, the
function

i N
P Pi|Xs MJ (23)
-t i
i=1
must be minimized without censtraints.
Let be introduced the real and imaginary parts of S; and M, then
introducing the Lagrange multiplicators for the real and imaginary parts we

have for Eq. (23)

N N ‘N -
P = 3(ReS)+— >(ImS5)" +7,| SReS; ~ Re M
i=1 i=1 |T=1
N .
=y >ImsS,  Im _\’I' (24)

=1

Ditferentiating Eq. (24) and using Eq. (22) it can be shown that at the
minimum

Re S, - Re JI © ImS, = Im M . P, = (Re M) _ (Im M)? 23)
A N N /

In the case of a GL~1C network Im M = 0 and so
Re S, = M : ImS;,=0: P.= M (26)

RY N

In these computations the possible relation between the real and
imaginary parts was not taken into account and F(p) was not fixed, so Eq. (26)
refers to the so called absolute minimum. Now, according to this eqaution,
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the abseolute minimum is where all the sensitivities related to the GL-1iC
elements are equal and real and have the value of Eq. (26). This is more
than the equality of the absolute values. According to Eq. (25) the value of
the absolute minimum decreases if IV increases (see conjecture b).

Because of | S(F, x;) 2 = | S(F, 1/x;) > our results are valid for any
RLC network. The way of thinking can be applied to any class of networks
of Table 1.

Case B

Eqs (25) and (26) refer to the absolute minimum, so in case B, Py,
is the lower limit of P. But there is no guarantee that this can be reached.

0

Fig. 3. A circuit having no absolute minimum state

Furthermore, according to [15], a slight difference was found in P, at
various frequencies which is in contradiction with conjecture a.

Case C

In this case it is very important to note that if the GL~* C network to
be optimized has a fixed structure (no element of zero value can be allowed).
then in some cases Eq. (25) does not hold at the minimum of P.

Let us consider for instance the circuit of Fig. 3 where

U, 2 -9
F=Z;(pl=—"= —— Gp R __Igf_.,_ (27)
I, pG(L{' + LyY) + L7YLTt pby+ by
and b, b, are prescribed.
Minimizing
P = S§(F.G) 2+ !S(F,Lfl) 2 S(F, LY B {28)
the element values at the minmimum are
-1 — ' b]
Lit =Lyt == {b,: G= (29)



100 K. GEHER and T. ROSK.{

and with these elements:

b p b—; + by
S(F,G) = pb—l‘_'—b[ S(F,LTY) = - _ﬁﬁ_*b;,
S0
S(F.G) = S(F. L") (30)
even .
S(F.G) = S(F.L7Y) (31)

which means that at the local minimum, Eq. (25) does not hold. Other exam-
ples and the detailed discussion of the various results presented in the litera-
ture can be found in [12].

A theorem

In a GL~'C network, if F is a-voltage ratio or current ratio then no
absolute minimum of the sum of the squares of the sensitivities exists, except
the pathological case when all the sensitivities are of zero value.

This is because in this case Re M = Im M = 0 and so. according to

Eq. (25):

N

Pmin = (= N S : (32)
Eq. (32) holds only when S: = 0 for all elements. These networks are — using
the term of Holt and Fiedler — not potentially optimally sensitive. Similar

results can be got at the optimizatien of other types of networks.

It is interesting to note that as a special case of this theorem. in case
of the passive RC networks realizing voltage transfer functions the absolute
minimum does not exist. In [6] two networks were investigated. Consider
the first of them (Fig. 4). If F(p) is not fixed, then Py, = 0 (M = 0) and
this can be realized when S(F.G)) = S(F, C)) = 0, that iz tor &G, = ~ or
C,=0. If F(p) is fixed. (G;iC, is fixed) then S(F.G,) = —S(F, ) iz of

constant value (there is no minimization process).

o {-'—;_‘, o
71
o
Y ==, Uz Fipj = _U_g_ = __gf_
Y o) Uy Gy+pC;
e O

Fig. 4. The first circuit in [6] is a pathological optimally sensitive network
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Generally, in networks in which the network function is a bilinear
function of the elements, according to [2], S(F.x) = 0 at all frequencies
for x; = 0 or x, = ~=.
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Summary

A new treatment of the summed sensitivity invariants was given on the theoretical
basis of unit systems. The results were iillustrated by numerous examples, including non-
linear circuits. The sensitivity invariants were applied to the analysis of the tolerances especi-
ally for identical parameter variations and filter networks. Optimization questions related
to the absolute minimum of the sum of squares of the sensitivities were dealt with.

The absolute minimum of the sum of the squared sensitivities and the conditions for
it can be determined using Eqgs (25) and (26). This requires more than the equality of the
absolute values of the sensitivities.

In caseses when the network has a fixed structure then at the tocal minimum the
absolute values of the sensitivities are different.

There are classes of networks having no absolute minimum state except the patholo-
gical case VS; = 0
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