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1. Introduction

For the design of network operation and for the effective operation
control of power svstems it is indispensable to determine the absclute value
(and angle) of the node voltages as well as the active and reactive power
flowing in the individual branches.

Because of the extremely large number of the mathematical operations
it is unimaginable to solve the prolﬂem by manual calculation, so digital com-
puter programs were developed for this purpose. There are numerous a.c. load-
flow calculation programs in use. several such programs were developed in
this country as well; these vield better and better solutions of the problem
(less demand of computation time, capable for greater network, more uni-
versal) in the sequence of their elaboration. In this paper a program already
used in practice is described the specific computation time of which is the
feast, at a maximum number of analvzed nodes among the similar programs

used at present in our country.

2. The mathematical model of the program

The a.c. load-flow calculation problem is the following: a network con-
taining n nodes (substations or power plant bus-bars) arbitrarily looped is
given, a part of the nodes are feeding nodes while other parts are of consuming
character. (S; = P; -+~ jQ,. where P; is the active, ; the reactive power. the
feeding can be taken into consideration as a negative consumption). The com-
plex values of the power in the individual nodes as well as the absolute value
and the angle (to a reference axis) of the voltage at a given node are known.

This latter node is called reference point because the voltages of the other

nodes are related to this one. Besides — in accordance with the practice of
operative control — a part of the feeding nodes may be of constant voltage,

in which the absolute value of the voltage must be kept constant at a defined

tolerance by the appropriate regulation of the reactive power fed in. Naturally,
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it is only possible within the range of reactive power feeding of the analyzed
node limited by stability analysis and by power plant capacity. Outside
this range the reactive feeding of this node becomes also determined.

The mathematical model of the problem described above and based on
Appendix II ecan be written as:

Y AU, =(U,-E -~ AU )7L-S, (1)
= A-Y-A. (2)
U=A,- U, (3)

I=YU

In Appendix I the explication of the notations is given, while Appendix
II contains the derivation of the equations.
Transforming the matrix equation (1), the following is obtained:

Uy Y, - IU, — 74U, - Y AU, -~ S. =0 (la)
Matrix equation (la) is nonlinear because of the presence of the product
o+ Y. - 4U,, so it can only be solved by iterative methods. Appendix
IIT briefly describes the tyvpes of the commonly used iterative methods, which
ran be divided into two main groups:

a) inversion — iterative methods,
b) pure iterative methods.

The algorithm of the program described below belongs to the group a).

3. The principle of the program algorithm

The method used in the present program Is not pure iterative, so it can
be classified to the group a); but it cannot be censidered as a method of inver-
sion in its original sense. because the inverse of the node admittance matrix
(Y,) does not appear in matrix form. To clear up the basic principles let us
consider the inital equation of the calculation according to Appendix II:

Y, - U, == (3)

The basis of n—1 dimensions (namely the rank of the matrix Y, is also
n-—1) in which this matrix equation is valid — i.e. where the column matrix
I, and the column matrices of Y, are given — is defined by the unit matrix
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E,._, (trivial basis). If a transformation is made to a new basis which is ob-
tained by changing the first column of E,_; to the first column of Y, then
this new basis is defined by the following matrix:

a Yn Oi o
Y'n
Y., = (6)
Eo_s
5'—n—lyl

where the symbol O; denotes the transposed vector of the zero vector of n—2
dimension. If the components of the current vector I, are given by the ele-
ments of I in the new basis, the following can be written;

[=Y, I® IO =YL, (6a)
where
_‘ ™
! 0
Yo
Y,
_— Yy

o . . < =1 =
Correctness of (7) can be proved by checking the eguation ¥, - Y, = E,
In the new basis Eq. (5) can be written as

YO AU, — I (82)
where evidently:
" - T
Y 1
L b - £
1= Yy, —
11 Yy
0 ‘
YO — (86)
A,
1]

4 Periodiea Polytechaics EL XV/2,
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Here A, is a nonsingular quadratic matrix of n—2 order, while the general
element of matrix Yg“) is
. Y1,1 'Yl.j

Y 1) Y
(1,)1 = l‘,j -
i 11

(8c)

Obviously, Eqs (8) are correct if, after multiplying column matrices of Y{
by Y., the original column matrices of Y, result. Based on Eq. (6a):

™~ 1 1
T ic:‘
J1
Y,
lt:g o _' Tet
@ y- B
Ic):Yc—fIc: <9>
. Y., .
(70 S ‘; Lo
L N

If now the second column matrix of the new basis is changed by the second
column matrix of Y, then, after transformations formally similar to that of
Eqs (6) through (9), the original equation appears in the following form in the
new basis, determined now by matrix Y.,

Y. AU, = I® (10)

) . . v 2
where the first and second column matrices of ¥ are already the ¢, and ¢,
unit vectors, respectively, and

IP =Y. Y51 1 (1L)

Performing the change of bases one after the other in this wav, Eq. (5) be-
comes after the n—I1th step:

B,y AU, = I8 = (Yo, Yobo ... Y3 L, (12)
According to (5)
AU, =Y¥1-1, (5a)
so from (5a) and (12)
Yol= (¥, X2 (12a)

that is, the inverse appears in product form.
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It is to be mentioned that not all the elements of the Y, YV, ete.
matrices and those of the ¥, , Y., etc. basic matrices are of admittance dimen-
sion, as it is seen from Eqs (5) and (8), respectively. In spite of this, for the
sake of continuity it seems to be expedient to use the notation Y. The same
is valid for the column matrices I., I, etc., the elements of which are of dif-
ferent dimensions. According to Eq. (12), all the elements of the column matrix
I7-' obtained in the last step are of voltage dimension. Nevertheless, the
notation I is kept.

From Eq. (12) it appears that the column matrix AU, formed of the
relative voltage drops of the nodes can be calculated by making the series of
basis transformations characterized by the matrices Yc—ll...Yc_,,}wl. By gener-
alizing Eq. (9) it can be stated that the basis transformation done in the i-th
step and characterized by the equation IO = YU . Iginl) contains the
following steps:

a) the value of the i-th element of the column matrix 69,

1 »

I§ = — il (13a)

Yu(i--1)
b) the new value of the arbitrarv jth element of the column matrix

Y

I
(1 F(i—1) yi-uv. 1) (i—1) —1) . 2 )
ls'fi) - lé_f‘— - ﬁ'_]—)— K lf‘:’— ) = 1((,1— b )](i_ ).I'Cli) (13,1’))
i

where the numbers YY~! denote the elements of matrix YV ™", From Eq.
(13b) it is obvious that an arbitrary vector element i£:1 changes during the
basis transformation only if the corresponding 1"](-'_’;1_” element is not zero.
Then the modification can be done with the aid of the following three data:
i. j and Y;:l;

if i = j, then according to (13a) two data are sufficient: i and Y{ V.

4. The arithmetric part of the programs

4.1. Determination of the favorable node sequence

It is known that the node admittance matrix Y, of power transmission
networks contains a lot of zero elements: in general. only 5—6 per cent of the
elements are not zero. This fact can be used to reduce the number of the opera-
tions necessary for the basis transformations according to Eqs (6 to 8) to a
least value by suitably choosing the sequence of nodes. This is possible by the
following considerations:
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According to Eq. (8¢). the general i, j element of matrix Y& can be
calculated as:

—_ . «‘( —
I S Y S, ly;_l_) (8d)
o Yis-n

-n
} l'l,v,t

Yir! is the generating element of the kth basis transformation.
From Eq. (8d) it appears that during the kth transformation the logical

. v ~ K - .
condition of the change of element Y (J D e

YD =0 4 Y =0 | (1)
On the other hand, provided that (14) holds, the most unfavorable is if Yf_"}_])

= 0, because in this case the i, j element. which was originally zero, gets
a non-zero value; namely the matrix part not invelved in the basis trans-
formation (the quadratic matrix A; according to 8b) is filled gradually by
non-zero elements, increasing thereby the operation demand of the remaining
basis transformations. From all these the following conclusions can be drawn:

a) In case the generating element of the kth basis transformation belongs
to a node of radial, end-point character and being connected to the node of
number I, then in the kth row there are only two non-zero elements: Y, and
Yy: while Yy and Y, are the non-zero elements in the kth column. Then
during the basis transformation. taking into consideration Eqs (8d) and (14).
only the clement Yy changes: no new element is formed and element Yy, is
zeroed [to the analogy of (8d), hence in the residual matrix A, the number
of the non-zero elements diminishes by one. If the node [ had only one joint
(e.g. at the mth node) apart from the joint at the kth node. then the original

non-zero elements of the /th row are: Y. Y,; and Y,,. From these Y, be-

comes zero during the kth transformation as we have already seen — so0
in the further steps the Ith node behaves like and end point as it was written
above.

b) If the generating clement of the basis transformation belongs to
a node in which only two branches (loop branches) are connected, then in the

row and in the column of the generating clement there are three elements.

In this case during the transformation according to similar ideas — two
new elements are formed and two elements are zeroed; thus the number of
the elements do not change, neither does the saturation of the remaining
matrix Ay,

¢) Evidently, if the generating element belongs to a node in which
three or more branches are connected, then during the transformations the
saturation of the remaining matrix increases with the number of branches
connected to the node in question. The ““three branch™ nodes are exceptions
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if among the branches connected to them there is at least one radial branch,
because at the previous transformation done with the generating element of
this joint radial node the corresponding element became zero in the row
of this three-branch node. Thus this node has a character similar to those in
item h).

IFrom these it follows that the necessary quantity of operations of the
transtormation in item 3 can intensively be reduced, if the sequence of opera-
tions is chosen in the following manner: the radial end-point nodes are num-
bered beginning with 1;

the “two-branch™ nodes are getting the following numbers and from
these the ones with one radial branch must precede the others;

thereafter the three-, four-, etc. branch nodes will be numbered; here it
must be taken into consideration that the nodes with radial hranches must
alwavs precede the other ones.

The reference point will get the last number; this point represents
generally a power plant with large generating reserve and several connected
hranches (transmission line, transformer).

The transmission lines and their data have to he given in the sequence
of the enumeration so that the data of the outgoing transmission lines must
be enumerated for cach node in the increasing sequence of the nodes of the
other end of the lines.

In the case of large networks it is very difficult or even impossible to
crompile the data in this way and it may cause a lot of data errors. Therefore
it is absolutely necessary to prepare a sub-program for this work. This program
part produces a data system satisfying the conditions described above from
a simply given data system.

1.2. The algorithm of the data transformation

The algorithm will be presented on an example and general conclusions
will de drawn of it. ]
Let us consider the network in Fig. 1. Noting the serial number of read-
= beed

ing. the input sequence will be the following:

170
2 180
3 220
4 112
5 101
6 123

The node transformation vector ¢ contains these data. By means of this
vector the original number of the ith read node can be determined.
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From now on, the nodes willbe noted by the number of the input (Fig. 2).
Now the matrix H of the network topology must be produced.
In our example:

001 0 1 0 0
1 0 01 0 1
H = 00 0 0 1 0
11 0 0 0 1
0 01 0 0 1
‘010 1 1 0.1
220
101
7123
780 772’
170
Fig. 1 Fig. 2

This matrix is often called a vertex matrix. As our purpose is to find the radial
branches with end vertex in first step we can find them by producing the row
sums of matrix H:

¢ = He

where ¢ is the row sum vector
e is the summarizing vector

The row sum vector designates the end branches. Hereupon the remaining
radial branches must be found by iteration. Now these and the other looped
branches must be arranged in rows so that first the end branches. then the
radial elements and at least the looped clements (according to their looping
grades) follow.

Let us consider the vector ¢ as the first element of the iteration

i
C() = C
L(’it us fOl‘IIl now a subsidian‘y vector

(0)
e
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where ; l = 1000 if the jth node is the reference point
| = 100 in every other case.
Suppose for the previous calculations that

=0

In our example the 180th node will be the reference point, so

= [27] vy =] 100
3 1000
1 100
3 100
2 100
| 3 ] { 100]

In the kth step of the iteration the value of ") must be determined:
{k. if =1 " Dl =

l'('}f) =
1K) e
lr]- clre

]

Thus, in our example:
A =17 100
1000
1
100
100
100

In the following steps of the iteration the further radial branches must be
found. For this purpose two previous subsidiary vectors have to be calculated,
needed to be defined only from the second step.

r'*) is the subsidiary vector of the kth step and it shows the found end
branches; its arbitrary element is:

,-3}:) e 0 if D L pE=D g

1 in every other case.

In our example:

OO D O D
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. . o (i . .
The subsidiary vector s must be calculated in the following way:

S(/:) — S(/c) (H . L'(':"). C(l:—l_)‘)
if A=
[0 if ¢ =1

where St =

l ; RS -, i elf =]

In our example

The value of the vector ¢

C(.’:) — C(»":—l) S(!:)

In our example:

A N and =17 1007
3 1000
1 1
3 100
1 2
3 100 |
The iteration has to be continued until ¥ = 0. where there is no more
radial branch.
Let us do the iteration in the example
r(S) — "‘0—" S(ll) — "'O'— C(:S) — "‘2'—
0 0 3
0 0 1
0 0 3
1 0 1
1 2
and at last: v = |7 1007
1000
1
100
2
| 100}
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In the next step A= 0, thus the iteration has come to the end. Where there
is no more radial branch. the nodes can be arranged in rows according to their
looping grade.

For the determination of the final sequence. the vector v gives the num-

bers characterizing the individual nodes:

where n is the number of the last step where vector £ is not vet zero.

In our example:

r=o® 2 P =17 1007 = 27 = [T 102
1000 3 1003
1 1 2
100 3 103
2 1 3
_ 100_| 2 102

After this the optimal node sequence is obtained by arranging the elements
of ¢ according to their magnitude.

Urow =

1003 _

and the corresponding sequence of node numbers:

= Ut C.).‘a'

that is with original numbers 22077
101
170
123
112
180 _|

[SURE =

Fig. 3 shows the network of Fig. 1 with the numbers of the optimal node
sequence.
- With the use of the data arranging program described above, the data

must be given in the following form:
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— data of the nodes (serial number, type, load) in arbitrary sequence;

— the lines and their data (node number of their end-points, type.
resistance, inductivity, capacity) in arbitrary sequence.

The program will produce the topology matrix and the optimal sequence
of these data. Fig. 4 shows a data tape as an example.

4.3. The structure of the main part of the program

Appendix 3 deals with the inversion-iteration method of the solution
of the non-linear matrix equation (la), which is the mathematical model of
the problem. Based on these and taking into consideration the ideas in Chapter
3, the following algorithm was elaborated:

a) The program determines the optimal node sequence according to
point 4.2.

To control the further operations and for the sake of compact storage,
a two-dimensional integer arrav is needed which contains the topological data
of the network. Hereafter we shall show the construction of the topological
array on a simple example. The rows of this array correspond to the nodes in
the sequence of the inner numbering. Thus the topological array of the net-
work of our example — taking into consideration the node numbers in Fig. 3 —
is shown in Table 1.

Table 1
1 2 0 0 0
1 2 4 0 0
3 5 6 0 0
24 5 6 0
3 4 5 6 0
3 4 5 6 0
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Cs. P KOORDI- JELLEG TELJESITMEENYEK MEDDOE HATAA
NAATA MW MVAR FESZ ROK
ALSO FELSOE:
43 26.035 0 19 3.5
81 8.020 0 34 —20
96 8.060 0 9 3.5
93 8.090 —1 —220 —20 128
293 8.115 0 : 0 0
44 16.060 0 51 20
80 26.090 0 +5 32.2
280 26.115 0 . 0 0
98 32.010 0 13 4
17 40.035 0 37 9
45 40.080 0 19 6.5
33 16.060 0 31 15
37 58.060 1 —45 —44 126 —10 —80
9999
AAG AAG KOORDI- TIP.SZ. R X C
ELEJE VEEGE NAATA
81 93 3.035 23 7.090 24.41 0.536
81 96 8.035 3 1.144 8.4 0.172
81 43 16.024 23 8.74 20.03 0.384
81 44 12.035 23 6.9 11.84 0.212
96 93 8.075 23 2.46 18.1 0.37
93 293 8.100 12 0.6 9.5 0
43 17 32.035 23 14.25 32.5 0.623
17 98 36.020 23 6.85 23 0.3
17 53 10.046 23 7.79 17.66 0.34
33 57 52.060 73 1.8 4.1 0.317
37 45 52.071 23 11.67 26.6 0.51
45 80 32.086 22 10.77 25.0 0.463
80 280 26.100 12 0.61 9.5 0
80 44 21.075 22 12.53 21.51 0.385
280 293 16.115 29 2.8 20.4 0
9999
Fig. 4

=]

It is seen that on the end of each row at least one zero element is found, indicat-
ing that no further elements follow.

b) After these the computation and storage of the elements of matrix
Y, is performed, so that in one array the real elements, in an other the imagi-
nary ones will be stored. These arrays contain the elements of matrix Y, in
compact form, that is the zero elements — which constitute most part of the
elements — are not stored; the length of the rows is determined by the number
of the non-zero elements in the very row of Y, containing the most non-zero
elements.

The arrays containing the real and imaginary part of matrix Y, of the
network in our example are similar in construction to the array containing
the topological data. For example. in the 4th row of these arrays the first
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element represents the transfer admittance 2—4, the second — where in the
topological array the number of the row in question can be found — the driv-
ing point admittance of the node 4, the third one is the 4—5. and the fourth
one is the 4-—06 transfer admittance.

¢) The next part of the program performs the series of basis transforma-
tions described in item 3. This is controlled by the topological matrix so that
the multiplications with zero elements need not to be executed: by this method
the operation demand of the program is intensively reduced. The two-dimen-
sional arrav — the rows of which contain the data necessary for the elementarv
transformations on the current vector I, according to Eqs 13a and 13b in
Chapter 3 — will be filled during the basis transformations.

d) At the end of the transformations the matrix Y, will take the form
of a unit matrix according to relationship (12). At the same time the two-
dimensional array mentioned in ¢) contains the whole information on the
matrix product Y;ﬂ}_l‘..Y'fll. After these, for starting the iterations, the pro-
gram sets the voltage of every node equal with that of the reference point
and then calculates the starting value of the node currents from the equation:

I, = (U, -E)1-8, (13)

Thereafter the series of transformations on the vector I, according to Eq. (12)
will be executed. It results in the first approximation of the voltage difference

AU,. Then the new approximation of I, is:

[,=(UE - AU, )t-s, (14 )

Hereupon the iteration will be continuned again by the series of transforma-
tions according to (12) until the change of cach element of the voltage differ-
ence U, diminishes to a given value.

The main advantage of the algorithm described above is that the opera-
tion demand of the individual iterations is essentially less than for common
inversion-iteration methods. It is worth to mention as an example that in
the calculation of the Hungarian multilooped network of 100 nodes, the equi-
valent operation demand of the series of transformations, responsible for
80 per cent of the operation demand of an iteration — corresponds to about
600 complex multiplications (the operation demand of a complex multiplica-
tion is four multiplications 4+ two additions). At the same time, in a network
of similar size, the equivalent operation demand of the matrix product Yo I
calculated in each iteration — as the node impedance matrix Y ' = Z, does
not contain zero elements — is about 10 000 complex multiplications i.e. it is
larger by an order of magnitude. A
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(8]

4.4. Output

Output may appear either

— in tabulated or

— in map form.

The table of the outputs contains the nodes with their original numbers,
in increasing order of magnitudes. It gives the resulting node data (voltage,
angle, power) and the resulting data of the lines joining the node (number of
the other node, active and reactive power, capacitive power). In addition it
gives the loss data and the total capacitive power (reactive power production).
Fig. 5 shows a table of the results. The output in map form permits data
of the nodes and lines to be printed on the very place of a previously drawn
map. It is realized so that the co-ordinates of the optimal place of printing
will be measured on the scheme of the network drawn before on a paper, and
these co-ordinates will be given on the data card after the nodes and after
the data of the nodes indicating the end of the lines. Fig. 6 shows a print in
map form, as an example.

The computer prints in the nodes the node voltage, the active and
reactive power and on the lines the active and reactive power as well as the
percentage of loading. The power data of the lines are positive if the power
flows from the node of higher to that of lower number.

The algorithm of the program in map form will not be described here in
detail. A description in detail of the program will he published later, contain-
ing the algorithm, the handling of the program, different output possibilities,
the methods of the computation of the basic state and the modifications, etc.

5. Computation experiences

The effective digital program is written in ALGOL language correspond-
ing to the RAZDAN computer representation. In view of the computer
characteristics, the program in its present form is suitable for the caleculation
of a network containing 200 nodes and 300 lines. This capacity can be increased
by refining the program. The control calculations were carried out on the
Hungarian 120—220—400 kV co-operation network containing 100 nodes by
a series of load-flow calculations. The computer time needed for the calcula-
tion of basic state in details is composed of:

a) data input from data tape: about 23 s,

b) data transformation: about 45 s,

¢) total computer time of the setting up of the matrix Y. and of the
total series of basis transformation: about 40 s,

d) computer time of each step in the series of iterations described in
item 4.2./d: about 6 s,
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e) printing of the results on line-printer in table form (the angle to the
voltage of the reference point. the absolute value of the node voltages as well
as the active and reactive load of each branch on both ends): about 90

f) printing in map form the results at basis state: 2 minutes.

The iterations will be continued until the change of the elements of the
voltage difference vector (hoth the active and the reactive component) related
to its value in the previous iteration diminishes to a value given on the data
tape. This value was fixed by test calculations at 0.1 kV: according to the
experiences it would have been useless to give a lower value because the balance
failures in the values of the active and reactive power of the individual nodes
were throughout below 0.3 MVA (for most nodes below 0.1 MVA!).

In the peak load state of the analyzed network (in this case the iteration
process converges more slowly than it would cenverge in low load period)
generally 9—10 iterations were needed to reach the limit of error mentioned

above.
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Thus the total computer time of the calculation of the base state is about
6 minutes including the printing for the network in question. If calculations
are needed for several networks and load states, then these may follow in
turn the calculation of the basic state. If a switch on or switch off has to be
analyzed then the calculation begins from the beginning: if there is only a load
modification then the calculation will continue at the iterations in the program.
The time needed for the iterations of a new state is generally less; 4—6 cyeles
are mostly sufficient. Considering all these if the calculations of several states
are carried out in expedient groups one after the other, the average computer
time demand is 2.5—3 minutes including the printing. (From this the printing
takes about 2 minutes.) It must be mentioned that if in the individual states
not all the results are needed, but only certain basic informations, then this
can be reached by appropriate control -panel action and in this case much of the

printing time can be saved.

Appendix I

Notations :

n number of nodes in the network;

e number of branches of the looped network.

Currents:

load current of the ith node (positive if it flows out of the node),
I. node current vector of n—1 elements,

I branch current column wector of e elements,

I Ith branch current.

Voltages:

i, voltage of the reference node (line to ground voltage),

AU, column matrix of order n—1 of the voltages related to the reference
point,

U, node voltage (line to ground) diagonal matrix of order n,

10, diagonal matrix of order n—1 of the voltage related to the reference
point, .

U branch voltage column matrix of ¢ elements,

U, voltage drop of the Ith branch.

Powers:

S, column matrix of the apparent power of the node loads.

Impedances and admittances:

35 Periodica Polytechnica EL XV;2.
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YD diagonal matrix of the branch admittances,
Y. node admittance matrix,
F—1,
Z.=X;:
Y, admittance of the Ith branch (the [th diagonal element of Y).

Other concepts:

E, unit matrix of n dimensions l_l
e; tth unit vector ¢ =
e summarizing vector

sign of logical multiplication
conjugate value

Appendix 1l

Three-phase networks of symmetrical structure and operation can be
represented by their single-phase positive sequence scheme. In load-flow
calculations the node currents are given, so a current generator must be

inserted between the n—1 node of an n node network and the neutral busbar.
n

As evidently ‘-}:ifz = 0, sothecurrent of the nth node is already determined
=1

by the others, and it cannot be chosen independently; bhetween this point
(so called reference point) and the zero busbar a voltage generator must be
inserted which determines the voltage of the reference node. Drawing the graph
of the network containing n 4+ 1 nodes — taking into consideration that cur-
rent and voltage generators represent a disconnection and a short circuit.
respectively — a graph of n nodes is obtained. The nth node corresponds to
the reference node. The rank of the incidence matrix A; (vertex matrix) is
n—1. so one row may be omitted: it is practical to omit the row corresponding
to the reference row: thereby the matrix A to be used in the following is
obtained. In this case, Kirchhoff’s 1st law can be written in matrix form for
each node of the network (except the reference node):

A4 I=1, (F.1)

Considering an arbitrary tree, the corresponding fundamental loop set and its
matrix B can be determined. The rank of this matrix (and the number of its
rows as well) is equal to the nullity (¢ — 1 + 1) of the graph; each row belongs
to a fundamental loop, then columns to the individual branches, so its trans-
posed matrix can be multiplied by A. It can be proved that
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A-B

iy

=0 (F.2)

Kirchhoff’s 2nd law can be written for the independent loops determined by
the fundamental loop set chosen:

B, U =0 (F.3)

Based on (F. 2) the bases formed by A and B; are orthogonal, on the other hand,
as the ranks of A and B; are n—1 and e — n + 1, respectively, so they deter-
mine together the e-dimensional space where the U and T vectors can be
interpreted as well. Based on (F. 3), U is orthogonal to the basis formed by
B; and so it must lie in the n—1 dimensional subspace characterized by the
basis A. Then U can be expressed by a linear combination of the column vee-
tors of A:

U = A% AU, (F. 4)

where the AU, veector contains the coordinates of U in the hasis A. The vector
4U, is obviously of n—1 dimension and as the rows of A belong to the individ-
ual nodes, so the elements of AU, are the so-called node voltages referred
to the reference point. (The asterisk superseript of the matrix indicates a trans-
posed matrix.} It is evident that for anv Ith branch of the network:

=Ny (F. 3)

and for the whole network I =Y U. (F.6)
Premultiplying Eq. (F. 6) by A and taking into consideration (F. 1)
and (F. 4), it can be written that

AY AN AU, =Y, AU, = 1, (F.7)

As the voltage of the reference point is U, so the diagonal matrix formed by
the effective node voltages

U =UE._, — 74U, (F. 8)

Furthermore it is obvious that the vector of the node current can he calculated
in the following way:

I, = U, 1.8, (F.9)

Relationships (F. 7) and (F. 9) deliver the basic equation of the load-flow
calculation:

Y, AU, = U, .8, (F.10)

&)
W
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Appendix I

The matrix equation (F. 10) is nonlinear according to Chapter 2, and
it can only be solved by iterative methods. According to literature data, the
relevant methods can be divided into two main groups:

a) inversion-iterative methods,

b) pure iterative methods.

ad a) From Eq. (F. 10) premultiplied by Y7 ' we obtain:

'“JL_L = Yc_l ~E:c —I’Sc (F 11)
(F. 11) is the basic equation of the iteration. At the beginning of the calcula-

tion the vector AU, is not known. Then, after the first iteration, based on

(F. 8) and (F. 11):

_ 1 ., & s
Ty = X705, (F.12)
Generally after the ith step:
AU, = Y71 (U, 5Ly - S, (F.13a)
and
v,=UE - JU. . (F.13b)

According to experiences, the iteration is divergent only in the limit

:ases of the steady state stability and in the cases near to network resonance

very long. unloaded transmission line, etc.), in other cases it converges.

ad b) A common feature of these methods is that the algorithm takes
one after the other the equations of the non-linear equation svstem forming
the mathematical model and it corrects the value of the node voltage of the
proper number of every equation, and at the next equation already this
corrected value is taken into consideration.

A big group of the solutions starts from the matrix cquation (la) which
is of power dimension and performs the iterations according to Newton’s
method.

The other main group starts from Eq. (¥. 10) and applies one of the
approximate methods used for the solution of linear equations — for example
the Gauss—Seidel method — for the calculation of the elements of AU,.

In general, these methods converge essentially slower than that pre-
sented under a), thus more iteration steps are needed for the solution, there
is, however, no inversion and generally the operation demand of the individual
iterations iz reduced.
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Summary

A special load-flow algorithm and digital computer program based on inversion-
iteration method is described. where the inverse of the nodal admittance matrix is not formed
in the usual matrix form, but a so-called “product-formed™ inverse is computed; the informa-
tions of this latter are stored in a very compact form by the algorithm, highly reducing thereby

the operation demand of the iterations and the necessary machine store capacity. The algo-
rithm for the computation of optimal node-sequence is also deseribed.
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