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1. Introduction 

For the de;;ign of llt'twork opera tion and for tll(' dleetiYe opera tion 

control of power systems it is indispt'nsahle to determine the ahsolutp yaltlf' 

(and angle) of the node yoltages Cl:' wpl\ a;; the actiYl' and rt'actiyc PUW('I' 

flowing in the indiyidual branches. 

Because of the (·xtremely large numher of tllP mathematical opt'rati!)IlS 

it i;; unimaginable to 501...-e the problem by mallual ealculation, so digital (,Olll­

putpr programs were LleYeloped for this purpose. There are numerous a.e. load­

flow calculation programs in use, "eyeral such programs were deyeloped in 

this country as \1-e1I: these yield better and better solutions of the problem 

(less demand of computation time, eapable for greater network, mort' ulli­

yersal) in the sequence of their elaboration. In this paper a program already 

used in practice is described the speeifie eomputation time of which i~ the 

least, at a maximum number of analyzell nodes among the similar programs 

used at present in our eountry. 

2. The mathematical model of the program 

Thf~ a.c. load-flow caleulation problem i:3 the following: Cl J1f'twork eon­

taining 11 nodes (substatiom or po"wer plant bm-bars) arbitrarily looped is 

given, a part of the nodes are feeding nodes ,,-hile other parts are of consuming 

character. (Si p, jQi' where Pi i:3 the actiYe, Qi the reaetiYe power, the 

feeding can be taken into eonsideration as a negatiye consumption). The COIll­

plex yalues of the power in the indiyidual nodes as well as the absolute "alu!' 

and the angle (to a referenee axis) of the yoltage at a giyen node are known. 

This la tter node is called referenee point llt'ca use the yoltages of the I) th('!' 

nodes are related to this one. Besides - in aeeordance \\"j th the praetice of 

operative control - a part of the feeding nodes may be of constant yoltagt'. 

in whieh the absolute value of the yoltage must he kept eonstant at a dl'finpd 
tolr~rance by the appropriate regulation of tht' l'f'aetiYe power fed in. :\aturally. 
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it is only possible within the range of rteactive Fower feeding of the analyzed 
node limited by stability analysis and hy power plant capacity. Outsid" 
this range the reactive feeding of this node becomes also determined. 

The mathematical model of the problem described above and IJa5ecl on 
AppPIldix II can be written as: 

A·Y·A: 

At ·L.lUc 

1= YU 

(1) 

(2) 

(3) 

In Appendix I thc explication of the notations is given, while Appendix 
Il contains the derivation of the equations. 

Transforming the matrix equation (1), the following is obtained: 

o ( la) 

}Iatrix equation (la) i" nonlinear hecause of the presence of tllt' product 
llL e , . Ye . L.l Uo so it can only be solved by iterative methods. Appendix 

III hriefly describes the types of the eommonly used iterative methods, which 
can he divided into two main groups: 

a) inyersion iteratin' methods. 
h) pure iterativp mpthocls. 

Tht' algorithm of the program dtescribecl bplow belongs to the group a). 

3. The principle of the program algorithm 

The method used in the present program is not pure iterative, so it can 
be classified to the group a): but it cannot he considered a5 a method of il1yer­
"ion in its original senst', because the inverse of the node admittance matrix 
(Ye) dol'S not apppar in matrix form. To clear up the basic principles let Ui' 

eon;;id{;r the inital equation of the calculation according to Appendix Il: 

(5) 

The basis of ll-l dimensions (namely the rank of the matrix Ye is also 
n--l) in which this matrix equation is -valid - i.e. where the column matrix 
le and the column matrices of Ye are gi-ven - is defined by the unit matrix 
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E n - 1 (trivial basis). If a transformation is made to a ne-w basis which is ob­
tained by changing the first column of En - 1 to the first column of Ye, then 
this new hasis is defined by the following matrix: 

(6) 

..J 

where the symhol Ot denotes the transposed vector of the zero vector of n-2 
dimension. If the components of the current vector le are given by the ele­
ments of I~l) in the new basis, the following can be written: 

where 

I(l) = y-l. I 
C Cl C 

1 

Yll 

_ Y21 

Yn 

}-r:-l,l 

Yll 

o 

CorrectneES of (7) can be pr-oyed hy checking the equation 
In the ne'w basis Eq. (5) can be 'written as 

nl) 
-'c 

i\-here evidently: 

'f 

1 .1. 12 

Yn 

n 

o 

4 Periodicu Pt)l:-:ledmicH El. XY!::!. 

( 6a) 

(7) 

l' 

(8a) 

(86) 
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Here A1 is a nonsingular quadratic matrL'i: of n-2 order, while the general 
element of matrix Y~~) is 

(8c) 

Obviously, Eqs (8) are correct if, after multiplying column matrices of y~l) 
by YC1' the original column matrices of Yc result. Based on Eq. (6a): 

r 1 . 
--'lei 

)'11 

Y?l . 
---'7, Y c, 

11 
(9) 

If now the second column matrix of the ne'w basis is changed by the second 
column matrix of Y~), then, after transformations formally ~simil~r to that of 
Eqs (6) through (9), the original equation appears in the following form in the 
new basis, determined now by matrix YC2 

where the first and second column matrices of 
unit vectors, respectively, and 

1 (2) -
c -

(10) 

are aheady the e1 and e~ 

(11) 

Performing the change of hases one after the other in this way, Eq. (5) he­
comes after the n-lth step: 

(12 ) 

According to (5) 

(5a) 

so from (5a) and (12) 

(12a) 

that is, the inverse appears in product form. 
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It is to he mentioned that not all the elements of the y~l), Y?), etc. 

matrices and those of the Yq , Yc~, etc. basic matrices are of admittance dimen­
sion, as it is seen from Eqs (5) and (8), respectively. In spite of this, for the 
sake of continuity it seems to be expedient to use the notation Y. The same 
is valid for the column matrices I~, I;, etc., the elements of which are of dif­
ferent dimensions. According to Eq. (12), all the elements of the column matrix 
I;" 1 obtained in the last step are of voltage dimension. Nevertheless, tllf' 
notation I is kept. 

From Eq. (12) it appears that the column matrix ;I Uc formed of the 
relative voltage drops of the nodes can be calculated by making the series of 

basis transformations characterized by the matrices Y;:? .. y,::-Ll' By gener­
alizing Eq. (9) it can be stated that the basis transformation done in the i-th 
step and characterized by the equation I~i) Y~ll) . I~i-l) contaim: the 

following steps: 
a) the value of the i-th element of the column matrix I~i-l): 

I(~) = 
Cl 

1 ___ " ____ . i(i-1) 

"'- - (. 1) c; l ii Z 

(13a) 

b) the new ,-alue of the arbitrary jth element of the column matrix 
[ '-I c 

Z
'U-1) 
Cj (I3/b) 

where the lllunlwrs y(i-l) denote the elements of matrix y~-ll. From Eq. 

(I3h) it is obvious that an arbitrary vector element i~;l changes during the 
ha"is transformation only if the corresponding YXI-l) element is not zero. 

Then the modification can he done with the aiel of tllt' following three data: 
.. d yi-l ' 
I, } an j'l; 

if i = j, then according to (l3a) two data are sufficient: i and Y,<--ll. 

4. The arithmetric part of the IH'ograms 

,Ll. Determination of the fa/;orable node sequellce 

It is knowll that the node admittance matrix Ye of power transmission 
networks contains a lot of zero elements: in general, only 5-6 per cent of the 
elements are not zero. This fact can be used to reduce the number of the opera­
tiom necessary for the basis transformations according to Eqs (6 to 8) to a 
least value hy suitably choosing the sequence of nodes. This is possible by the 
following considerations: 

4* 
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According to EC{. (8c), the general z, ] element of matrix Y~!;) can be 

calcula ted as: 

v(/;-l) 
.L /{I; 

y~~!-:-l i" the generating e1enH'nt of the kth basis transformation. 

(8d) 

From Eq. (3d) it appears that during the ktll transformation the logical 
I· . £' 1 1 f' 1 "v(I;-1) . cone ltlOn 0 t le c lange 0 e ement L i.j IS: 

(1-1:) 

On the other hand, provided that (14) holds, the mos t uufavorablc is if y~~-l) 
0, hecause in this case the i, j element, which was originally zero, get" 

a non-zero value; namely the matrix part not involved in the basis traIl:'­

formation (tlw quadratic matrix Ai; according to 8b) is filled gradually hy 
non-zero elements, increasing thereby the operation demand of the remaining 

bm:is transformations. From all tlws(~ the following conclusions can he drawn: 

a) In case the generating element of the ktf! basis transformation belungs 

to a node of radial, end-point character and being connected to the node of 
number I, then in the kth row there arc only two non-zero elements: YE and 

YI;/: while Y/;k and Y u; are the non-zero elements in the kth column. Then 
during the basis transformation, taking into consideration Eqs (3d) and (Vl). 
only the element "Yl! changcs: no new P!ement is formed and element Y!k is 
zeroed [to the analogy of (3d), hence in the re::,idual matrix Ai; the number 

of the non-zero elements diminishe" by onc. If the nodc I had only one joint 

(e.g. at thc mth node) apart from the joint at the kth node, then the orif!inal 

non-zero elements of th e lth 1'0\\- an': Y!i;. Yl! and Y1'l!" From these Yi!: jH'­

comes zero during the kth transformation - a:3 \\-c hayc alrcady seen ,",0 

in the further :-tep" tht' fth node h('hay('~ lib, and pnd point as it was written 
aboy('. 

b) If the generating elf'lllcnt of the hasi::, transformation belong,.: to 

a no(le in which only two hranche5 (loop branches) arc connected, then in the 
row and in the column of the gencrating element there are tluf'e elemt'nts. 

In this case during the transformation - according to similar ideas - two 

new element~ are formed and two elements are zeroed: thus tIlt' nUlllhn of 

the elements do not changf', neither d(w;;; the :-aturation of the remaining 

matrix A k • 

c) EYiclently, if the generating element belongs to a node in ,,"hich 
three or more branches are connected, then during the transformation::, the 

:"aturation of the remaining matrix increases with the number of branches 

connected to the node in question. The "three branch" nodes are exception" 
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if among the branches connected to them there is at least one radial branch, 

hecause at the prcyious transformation clone with thc generating element of 

this joint radial nod!' the corresponding element became zcro in the ro'w 

of thi:- three-hranch node_ Thu;;; this node has a character similar to those in 
[tplll b)_ 

From these it follows that the necessary quantity of operations of the 

tran~formation in item 3 can intensi\-ply be reduced, if the sequence of opera­

tions is chosen in the following manner: the radial end-point nodes are num­

I) ereel beginning with I: 
the "two-branch" nodes are getting the following numbcrs and from 

thpsp the ones with one radial branch must precede the others; 

thcreafter the three-, four-, etc_ branch nodes will be numbered; here it 

mu,.t be taken into consideration that the nodes with radial branches must 

always preccde the other ones_ 

Th(, reference point will get the last number; thi;;; point reprcsents 

~t'nerally a power plant with large generating res(';-Ye and :,('\-eral connected 

}Jl-anches (transmission line, transformer)_ 

The transmission lines and their data haye to he giY(,Il in the scqucnce 

of tilt-' eunnwration so that tht' data of the outgoing transmission lines must 

he pnumerated for each node in the increasing sequence of the nodes of the 

oth!'r ('nd of thc lines_ 

In the case of large net\\-ork" it is yery difficult or ('ypn impossible to 

compile the data in this way and it may cause a lot of daL! ('HOrS_ Therefore 

it is absolutely necessary to prepare a sub-program for this work_ This program 

part produces a data system sati"fying the conditions cle~crib('cl abo\'(; from 

a ,;imply giYt'1l data sYstem. 

-1_:2_ The algorithm of the data transformation 

The algorithm 'I-ill JJ(' pre,:ented on an example and gencral eonclusioll~ 

will <i(' drawn of it. 
Let us COllsider tll(' network in Fig_ L :\"oting the serial numhf'r of rl'ad­

ing_ tIlt' input se(IUt'lll'{' will be thl' following: 

170 
., 180 
3 220 
-1 112 
.) 101 
6 123 

The nude transformation Yector t contains these data. By means of this 

Yector the original numb pr of the ith rf'acl nodI' ean he determined_ 
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From now on, the nodes will be noted by the number of the input (Fig. 2). 
Now the matrix H of the network topoiogy must be produced. 
In our example: 

ro 1 0 1 0 0 I 

1 0 0 1 0 1 
H 0 0 0 0 0 

1 1 0 0 0 1 
0 0 1 0 0 1 

'-0 1 0 1 1 O. -' 

220 3 

101 5 

123 6 

780 112 2 

Fig. 1 Fig. :7 

This matrix is often called a Yertex matrix. A~ our purpose is to find the radial 
branches with end Yertex in first step we can find them hy producing tIll' rOIt· 

sums of matrix H: 

c = He 

where c is the rcrw :::Ulll YPctor 
e is the summarizing yeetor 

The ro,r sum vector designates t11e end brancllf's. Hereupon the remaining. 
radial hranche;;; must he found by iteration. :\ ow these and the other looped 

hranches must he arranged in rows so that first the f'ncl hranehes, then the 

radial elements and at least the looped elements (according to their looping 

grades) follow. 
Let U8 eonsider the \"ector c as thp first I'lt'lllent of tht, iteration 

Let us form now a subsi(liary \-ector 

(UI 
r 
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where Vj l = 1000 if the jth node is the reference point 
J = 100 in every other case_ 

Suppose for the previous calculations that 

r(ll) 0 

In our example tll!' 180th node will be the reference point, so 

C(l) = 2 1'(0) = r lOO' 

3 1000 
1 100 
3 100 
2 100 

3 L 100...1 

In the kth step of the iteration the value of v(i;) must be determined: 

Thu,,_ In our pxamplt>: 

1 e\l;-l) 
J 

1'(1) 100 

1000 
1 

100 
100 
100 

129 

In the following steps of the iteration the further radial branches must be 
found. For this purpose two preyious subsidiary vectors have to he calculated, 
needed to he defined only from the second step. 

r(k) is the subsidiary vector of the kth step and it shows the found end 
branches; its arbitrary element is: 

rile) 
J 

1 ill every other case. 

In our example: 
r(2) = 0-

o 
1 
o 
o 
o 

o 
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The subsidiary Yector /i:) must he calculated III the following way: 

5(1:) = SUe) (H . rU:l, cU:- 1)) 

·where 

In our example 

SUe) -
J -

The yalue of the Yector elk): 

In our example: 

c(2) = 

3 
1 
3 
1 
3 

r 0 if cY- 1
) 

I '">' hUe) . L'V:) if ""I IJ J' 

s(~) = -0-

o 
o 
o 
1 
o 

1 

The iteration has to be continued until /:) 

radial branch. 
Let us do the iteration in the examplc 

and at la~t: 100 
1000 

1 
100 

2 
100 

., 
100 

O. where there i,- no more 

-2-

:3 
1 
:3 
1 

._2-' 
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In the next ;;tep r(4) = 0, thu~ the iteration has come to the end_ V;'here there 

is no more radial branch, the nodes can be arranged in ro\\-;; according to their 
looping grade_ 

For the determination of the final seqllt'nCe, the Yl'ctor L' giye~ the num­
b er5 characterizing the indi yid ual nodes: 

'where 11 is the number of the la;;t step when> Yectcll" t(r:) is not yet zero. 

In our example: 

r = L.(:;) - c<:;) = 100 -.,- 10:2 
1000 3 1003 

1 1 ., 
100 3 103 

:2 1 3 
100 :2 10:2 

Aft,>r thi;; the optimal node sequence is ohtainell by arranging the elements 
of r according to their magnitude. 

t'ro\\' :2 
3 

102 
102 
103 

1003 

and the corre5ponding :,equene(' of no(iI- Ilumhpr,:: 

-3- that is with original Ilu!llh('r~ 

;) 

1 
6 
4 

:2201 
101 
170 
123 
11:2 
130 

I 

Fig. 3 shows the network of Fig. 1 with the numbers of the optimal node 

;;;ecIuence. 
\Vith the use of the data arranging program described alw,-e, the data 

mu;;t be gIven in the following form: 
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2 

6~--------------~~5 

Fig. 3 

data of the nodes (serial number, type, load) in arbitrary sequence; 
the lines and their data (node number of their end-points, type, 

resistance, induetivity, capacity) in arbitrary sequence. 
The program "will produce the topology matrix and the optimal sequence 

of these data. Fig. 4 sho'ws a data tape as an example. 

4.3. The structure of the mazn part of the program 

Appendix 3 deals with the inversion-iteration method of the solution 
of the non-linear matrix equation (la), 'which is the mathematical model of 
the problem. Based on these and taking into consideration the ideas in Chaptt'r 
3, the following algorithm was elaborated: 

a) The program determines the optimal node sequence according to 
point 4.2. 

To control the further operations and for thc sake of compact storage, 
a two-dimensional integer array is needed 'which contains the topological data 
of the network. Hereafter we shall show the construction of the topological 
array on a simple example. The rows of this array correspond to the nodes in 
the sequt'nce of the inner numbering. Thus the topological array of the net­
work of our example - taking into consideration the node numbers in Fig. 3 
is shown in Table 1. 

Table 1 

1 2 0 0 0 

1 .) 4 0 0 

3 J 6 0 0 
:z 4 J 6 0 
3 -1 .") 6 0 
3 ·1 .") 6 0 
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CS.P KOORDI· JELLEG TELJESITMEENYEK :)IEDDOE HATAA 
XAATA :)iW :):[VAR FESZ ROK 

ALSO FELSOE: 

43 26.035 0 19 3.5 
81 8.020 0 34 -20 
96 8.060 0 9 3.5 
93 8.090 -1 -220 -20 128 
293 8.115 0 0 0 
44 16.060 (\ 51 20 
80 26.090 0 -!-5 32.2 
280 26.115 0 0 0 
98 32.010 0 13 ·t 
17 -!-0.035 0 37 9 
45 -10.080 \) 19 6.5 
53 -!-6.060 0 31 15 
57 58.060 I -45 --!-4 126 -10 -80 
9999 

.\AG _\A.G KOORDI· TIP. SZ. R X C: 
ELEJE YEEGE .N.;.\....\TA 

81 93 3.035 23 7.090 24.41 0.536 
81 96 8.035 23 1.14,1 8.4 0.172 
81 -!-3 16.024 23 8 '7/ ., .. 20.03 0.38·1 
81 -J.4 12.035 23 6.9 11.84 0.212 
96 93 8.075 23 2.46 18.1 0.37 
93 293 8.100 12 0.6 9.5 0 
43 17 32.035 23 14.25 32.5 0.623 
17 98 36.020 23 6.85 23 0.5 
17 53 ,to.046 23 7.79 17.66 0.3-!-
53 57 52.060 73 1.8 4.1 0.317 
57 45 52.071 23 11.67 26.6 OS!. 
-!-5 80 32.086 22 10.77 25.0 0.463 
80 280 26.100 12 0.61 9.5 0 
80 44 21.075 22 12.53 21.51 0.38,1 
280 293 16.115 29 2.8 20A 0 
9999 

Fig . . f. 

It is se~n that on the end of each row at least one zero element is found, indicat­
ing that no further elements follow. 

b) After these the computation and storage of the elements of matrix 
Ye is performed, so that in one array the real elements, in an other the imagi­
nary ones will be stored. These arrays contain the elements of matrix Ye in 
compact form, that is the zero elements - which constitute most part of the 
elements - are not stored; the length of the rows is determined by the number 
of the nOIl-zero elements in the very row of Ye containing the most non-zero 

elements. 
The arrays containing the real and imaginary part of matrix Ye of th(' 

network in our example are similar in construction to the array containing 
the topological data. For example, in the 4th row of these arravs the first 
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element represents the transfer admittance ~--l, the second - where in the 

topological array the number of the row in que:"tion can be found the driy­
ing point admittance of the node 4, the third one is the 4-5, and the fourth 

one i" the 4-6 transfer admittance. 
c) The next part of the program performs the series of basis transfonna­

tions described in item 3. This is controlled by tht' topological matrix so that 
the multiplications with zero elements need !lot to be executed: by this method 

the operation demand of the program is intt'!lsiYely reduced. The two-dimen­

sional array the rows of which contain the data neces~ary for the elrmentary 

transformations on the current Yector le according to Eqs 13a and 131) in 
Chapter 3 - -will be filled during the hasis transformations. 

d) At the end of the transformations the matrix Ye will take the form 
of a unit matrix according to relationship (12). At the same time tht' two­

dimensional array mentioned in c) contains the whole information on the 

matrix product y~,~, ... y~l. After these, for starting the iterations, the pro­
gram sets the yoltage of eyery node equal with that of the refert'nee point 
and then calculates tht' starting yalne of tllP nodt' currents from the equation: 

(13) 

Thereafter the series of transformations on the Yt'ctor le according to Eq. (l~) 
will be executed. It results in the first approximation of the voltage difference 

.J Ge• Then the new approximation of le is: 

(1-1 ) 

Hereupon tl1(> iteration "will be continued again by the "cries of trausforma­
tions according to (1:2) until tht' change of each (,lpl1l('nt of thp yoltage differ­

ence _J L'e diminishes to Cl giycn yalut'. 

The main adyantage of the algorithm dt>,;cribed above is that the 0P('rH­

tion demand of the incliyidual iterations is essentially less than for eOllllllOll 

inversion-iteration methods. It is worth to mention as an examplc that in 

the calculation of the Hungarian Illultilooped network of 100 nodes, the equi­

yalent operation demand of the series of transformations, responsible for 
80 per cent of the operation demand of an iteration corresponds to about 

600 eomplex multiplications (the operation demand of a complex multiplica­
tion is four multiplications -'- two additions). At the same time, in a network 
of similar size, the equiyalent operation demand of the matrix product Y; 1 • le 
calculated in each iteration as the node impedance matrix Y,-:-l = Ze does 

not contain zero elements is about 10 000 complex multiplication;; i.e. it j" 

larger by an order of magnitude. 
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Output may appear either 
- in tabulated or 
- in map form. 

,1.4. Output 

133 

The tahle of the outputs contains the node:, with their original numbers, 

III increasing order of magnitudes. It gives the resulting node data (voltage, 
angle, power) and the resulting data of the lines joining the node (numher of 

the other node, active and reactive power, capacitiye power). In addition it 

giycs the loss data and the total capacitiye power (reactiye power production). 

Fig. 5 shows a table of the results. The output in map form permits data 

of the nodes and lines to he printed on the very place of a preyiously dra'Hl 
map. It is realized so that the co-ordinates of the optimal place of printing 
will he measured on the 5cheme of the network drawn hefore on a paper, and 

the8e co-ordinate8 will he given on the data card after the nodes and after 
the data of the nodes in.dicating the end of the lines. Fig. 6 show,. a print in 

map form, as an example. 

The computer prints III the node:;; the node yoltage, the active and 

rt'active power and on the lines the actiY(~ and reactive power as well as the 
percentage of loading. The power data of tht, lines are positive if the pO\l-er 

flows from the node of higher to that of lower numher. 
The algorithm of the program in map form will not he descrihed here in 

detail. A description in detail of the program will be published later, contain­
ing the algorithm, the handling of the program, different output possibilities, 

the methods of the computation of the hasic state and the modifications, etc. 

5. Computation experiences 

The effective digital program is ·written in ALGOL language COITt·spond­
mg to the RAZDA~ computer rt·pre~elltation. In view of the computer 

characteri:3tics, the program in its pre~ent form is suitable for tbt· calculation 
of a network containing :200 nodes and 300 liIlt':':. This capacity can he inereased 

by refining tht· program. The control calculation;: were carried out on tllt~ 

Hungarian 120-220-400 kY co-operation network containing 100 node~ by 
a :,eries of load-flow calculations. The computer tim,· needed for th .. calcula­

tion of basic state in details is composed of: 
a) data input from data tape: alJout 2.:; s. 
b) data transformation: ahout 45 ~. 

c) total computer time of the setting up of the matrix Ye and of the 
total scrie!;' of basis transformation: about 40 s. 

cl) computer time of each step in the series of iterations described III 

item 4.:2./d: about 6 s, 
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e) printing of the results on line-printer in table form (tht' angle to the 
yoltage of the reference point, the absolute yalue of the node "oltages as \I'dl 

cc" the actiYe and reactiYe load of each branch on hoth f~nds): ahout90 ~. 

f) printing in map form the results at basis ::itate: :2 minutes. 
The iterations willlJe continued until the change of tht' t'lements of the 

yoltage difference yeetor (both the acti"e and the fpClctiYe component) relatt'd 

to its YCllue in the previous iteration dilllinishpsto a yalue giyen on thp data 

tape. Thi" yalue was fixed hI' test calculations at 0.1 kY: according to the 

experiences it would haye been useless to gin' a lowpr yalne because the halancp 
failures in the yalnes of the actiyp and reactiYe power of the individual nodes 

were throughout helo'" 0.3 ::\IYA (for most nodes helow 0.1 ::\IYA !). 
In the peak load state of the analyzed network (in this case the itt'ratioll 

process COllyerges more slowly than it wonld conyerge in low load ppriod) 

generally 9-10 iterations were needed to reach the limit of error mentioned 

ahove. 
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Thus the total computer time of the calculation of the base state is about 
6 minutes including the printing for the network in question. If calculations 
are needed for several networks and load states, then these may folIo·w in 
turn the calculation of the basic state. If a switch on or sv"itch off has to be 
analyzed then the calculation begins from the beginning; if there is only a load 
modification then the calculation will continue at the iterations in the program. 
The time needed for the iterations of a new state is generally less; 4-6 cycles 
are mostly sufficient. Considering all these if the calculations of several states 
are carried out in expedient groups one after the other, the average computer 
time demand is 2.5-3 minutes including the printing. (From this the printing 
takes about 2 minutes.) It must be mentioned that if in the individual states 
not all the results are needed, but only certain basic informations, then this 
can be reached by appropriate control -panel action and in this case much of the 
printing time can be sayed. 

.1Yotatiolls: 

11 

e 

Current,;;; 

Yoltages: 

Powers: 

Appendix I 

number of nodes in the network: 
number of hranch('s of the looped net\\"ork. 

load current of the ith node (positiye if it flows out of the node), 
node current Yector of n-l elements, 
branch current column Yeetor of e ('lements, 

lth hranch current. 

yoltage of the reference node (line to ground voltage), 
eolumn matrix of order n-l of the yoltages relatetl to the referenee 

point, 
node yoltage (line to ground) diagonal matrix of order 1l, 

diagonal matrix of order n-l of the yoltage related to the reference 

point, 
branch voltage eolumn matrix of e elelllents, 
yoltage drop of the fth branch. 

Se column matrix of the apparent power of the node loads. 
Impedances and admittances: 

.) Periodit'a Polyteehnica El. XX;;;. 
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(¥) 

¥e 
Zc = 
Y t 

¥,:-l: 

L. Rcicz et af. 

diagonal matrix of the branch admittances. 
node admitt'lnce matrix, 

admittance of the lth hranch (the Ith diagonal element of ¥). 

Other concepts: 

unit matrix of 11 dimension,.. 

ith unit vector 

summarizing vector 

sign of logical multiplication 
conjugate valul' 

Appendix n 

e 
1l 
1 
1 

Three-phase net·works of symmetrical structure and operation can be 

represented hy their single-phase positive sequence scheme. In load-flow 
calculations the node currents are given, so a current generator must be 

inserted het,\·een the 11-1 node of an 11 node network and the nentral husbar. 
1l 

As e"\"identlv "5' ic. = o. so the current of the nth node is alread v determined 
,; ~. ' 

i=l 

hy the others, and it cannot be chosen independently: between this point 

(so called reference point) and the zero hushar a voltage generator mu:,;t he 
inserted \,,-hich determines the voltage of th.> reference node. Dra wing the graph 

of the net,\-ork containing 12 1 nodes - taking into considl'ration that cnr­

rent and yoltage generators represent a disconnection and a short circuit. 

resppctively - a graph of n nodes is obtained. The 11th node correspond" tl) 
the rt'fprence node. The rank of the incidence matrix Aa (vertex matrix) i,. 

11 50 one row may be omitted: it i" practical to omit the row corresponding 
to tlH' reference row: thereby the matrix A to he used in the following i,. 
obtained. In this case. Kirchhoff'" Ist law can he writtcn in matrix form for 

each node of th.> network (except the rpference node): 

.-1 . I (F. 1) 

Considering an arhitrary tree, the corre:-:ponding fundamental loop set and it:' 
matrix Bl can be determined. The rank of thi~ matrix (and the number of it:' 

rows as well) is equal to the nullity (I' - 11 ..L 1) of the graph; each row hdong" 
to a fundamental loop, then columns to the individual hranehe", so it~ tran;;­

posed matrix can he multiplird hy A. Tt can IH' pron·d that 
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A·EJ = 0 (F. 2) 

Kirchhoff',. 2nd law can be 'written for the independent loops determined by 
the fundamental loop set chosen: 

o (F.3) 

Based on (F. 2) th~ base·s formed by A and Bj are orthogonal, on the other hand, 

as the ranks of A and Bj are 11-1 and e - n + 1, respectively, so they deter­
mine together the e-dimensional space where the U and I vectors can he 
interpreted as ·well. Based on (F. 3), U is orthogonal to the basis formed hy 
Bj and so it must lie in the 11-1 dimensional suhspace characterized by the 
h""is A. Then U can he exprei'sed by a linear combination of the column Yec­
tor;; of A: 

u (F. 4) 

\\'here the j Ue YeetOT eontains the e00Tllinate~ of U in the basis A. The vector 
J Ue if obviously of 11-1 dimension and as the rows of A belong to the indiYicl­
ual nodes, so the elements of J Ue are the so-called node voltages referred 
to the reference point. (The asterisk supersrript of the matrix indicates a trans­
posed matrix.) It is eyident that for any Ith hranch of the network: 

I! Y"Ut (F. 5) 

and for the whole network 1= Y U. (F. 6) 
Premultiplying Eq. (F. 6) by A and taking into consideration (F. I) 

and (F. 4), it can he written that 

(F.7) 

As the yoltage of the reference point i~ Co 50 the diagonal matrix formed by 
the effectiye node yoltages 

(F.8) 

Furthermore it is obvious that the Yector of the node current can b(" calculated 

in the following way: 

le -1·S. (F. 9) 

Relatiomhips (P. 7) and (P. 9) deliyer the basic equation of the load-flow 
calculation: 

(F. 10) 
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Appendix HI 

The matrix equation (F. 10) is nonlinear according to Chapter 2, and 
it can only be soh'ed by iterative methods. According to literature data, the 
releyant methods can be divided into two main groups: 

a) . inversion-iterative methods, 
b) pure iterative methods. 
ad a) From Eq. (F. 10) premultipliecl by y;l we obtain: 

y-1. /U .-1. S 
C ,Cl C (F. 11) 

(F. 11) is the basic equation of the iteration. At the beginning of the calcula­
tion the vector !.l Gc is not known. Then, after the first iteration, based on 
(F. 8) and (F. 11): 

.J Gf(li 
1 

. IS~- (F. L2) =-_. 
U" 

Genprally after the ith :'tep: 

JGC(f) y~l. -1 . Se (F. 13a) (i-l) 

and 

U C1i ) = [J,E: JUc (F. 13h) 

According to experiences, the iteral"ion is divergent only in the limit 
cases of the steady state stahility and in the cases near to net·work resonance 

("ery long, unloaded transmission line, etc.), in other cases it converges. 
ad h) A common feature of these methods is that the algorithm takes 

one after the other the equations of the non-linear equation '"ystem forming 
the mathematical model anrl it conects the value of the node yoltage of the 
proper llumber of every equation, and at the next equation already this 
COITf'ct(~d yalue is taken into consideration. 

A hig group of the solutions starts from the matrix equation (la) ·which 
is of p(ywpr dimension and performs the it(:1'ations according to ::'\ewton's 
method. 

The other main group start;;: from Eq. (F. 10) and applies one of the 
approximate methods used for the solution of linear equations for example 
the Gauo":3-Seidel method for the calculation of the elements of .d UC' 

In general, these method~ cOllverge essentially slower than that pre­
sented under a), thus more iteration steps are needed for the solution, there 
is, ho\\-ever, no inversion and generally the operation demand of the individual 
iteration:- is rpduced. 
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SUnlmal'V 

A special load-flow algorithm and digital computer program ba"cd 011 inyer~ion­
iteration method is described. where the inverse of the nodal admittance matrix is not formed 
in the usual matrix form, but a so-called "product-formed" inver,;e i" computed; the informa­
tion, of this latter are stored in a Hry compact form by the algorithm, highly reducing thereby 
the operation demand of the iterations and the nece:;sary machine store capacity. The algo· 
rithm for the computation of optimal node-sequeuce is also descrilwd. 
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