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The symbolism of vector analvsis concepts is more than one hundred
years old. Such notions as scalar product. vectorial product. gradient,
divergence, curl are common not only for the physicist but also for engin-
eers. Recently. with the extending of modern control theory based on
state space techniques, especially with the application of the optimum control
theory of PoNtryAscIN and Berimax, as well as with the stability theorems
of LyapunNov. n-dimensional vector spaces are often used. Instead of the clas-
sical vector notations the matrix notations are introduced and preferred.

The present paper has the aim to show how the introduction of the differ-
ential operator, similar to the classical Hamiltonian nabla operator. leads
to a systematical treatment of some problems encountered in control theory.
By the way it is also shown how the classical notations of vector analysis can
be replaced by this modern symbolism.

Fundamentals of vecior analysis

In the vector analysis of the Euclidean space, there are introduced,
—in addition to the so-called scalar-scalar functions

g = gx) (1)

(that s, scalar functions with scalar argument). — also scalar-vector functions
— c 9

g = &x) (2)

(that is, scalar functions with vector argument). and vector-vector functions
g = g(x) (3)

(thatis, vector functions with vector argument). All these represent special cases
of the most general, — fairly rare, matrix-matrix or tensor-tensor functions

G = G6(X) (4)
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{that is, matrix functions with matrix argument, or tensor functions with
tensor argument). Scalar-scalar, scalar-vector, or vector-vector functions are

often multivariable, such as
f=few) f=fxw = fxu) (5)
or may invelve also the independent time-variable t:
= flx, u, 1) f=(x 1t = f(x, u, t) (6)

It is essential to establish certain rules of differentiation. A derivative with
respect to a scalar is quite simple, for example

d o [dx dx, dxn_T_“q_: : LT g _
Sy =[< dtw~e&}~4mﬂpufﬁ~nm ()
ayy(f),  ap(t), - 5 ay()
_dd_A(t)i‘. d:’l(t)v d'l?(t)" cre d:}n(t) — ;&(t) (8)
t .....................
dml(t)v dm‘l(t)= M dnm(t)

In physies, however, the concepts of gradient, divergence and in three-dimen-
sional space, of curl are widely used. The gradient of a scalar-vector function

is the column vector

82‘(‘X) oglx) 'Sg'(‘X)} (9)

whereas the divergence of a vector-vector function is the scalar

d

)éagl(x) - ng(x) L . agn(x) (10)

div g(s = - ! =
By ox, dx,

Finally. the curl of a vector-vector function is the column vector

curl g(x)j—;[agg _ ag‘l , Sgl o ag? . ag'l o agl 1 (11)
ox, Oy ox, Ox, 8x, GE
The Jacosian derivative matrix
[ 8¢ agl. .__i&f
ox,  Ox,  ox,
og, g, 08,
J=Jgx)=| 8x, " ox, ax, (12)
aglﬂ aglﬂ . Ocnl
Ox, ’ Bx, ’ ox,, |




RECENT NOTATIONS IN MATRIX ANALYSIS 159
is often encountered; and so is the so-called nabla operator proposed by

HamirTon
. o 3] 3 I )
v‘:_l[h—, ——J (13)

Making use of the nabla operator, the above definitions may be expressed
as follows:

grad g(x) = yg(x) (14)

divg(x) = v [g(x)] = v’[s®)] = [e®)]"V (15)
curl g(x) = v, X [g(x)] = — [8(x)] X vs (16)
J(g. x) = [g(=)]v" (17)

where the dot-denotes a scalar or inner product. and the mark < denotes
a cross or outer product.

The veetor product is defined exclusively in three-dimensional space
and hence, the nabla operator expressing a vector product has three partial-
derivative operators. Vectors encountered in control engineering do. however,
usually belong to the n-dimensional Euclidean space E” and, therefore.
we shall desist from any further discussion of the curl operator.

Lately, since division by a vector is not defined and, hence, no misunder-
standing is possible, the nabla operator is frequently replaced by the equivalent

differential operator
- T
i:[ﬁ_. © _G_J (18)

dx 8x,  Bx, " 8%,

Denoting the transpose of the differential operator (its row matrix) in the form

2 T

[_O_, E,__@_]:[i] _ 4 (19)
8x, 8w, 8%, dx dx”
we may rewrite (14), (15) and (17) to read

grad gfx) = ~ g(x) = S5 (20)

dx dx
oo d N g d 215
div g(x) = T g(x) = g'(x) . (21)

d

Jg. x) = g(x)

dxT

In order to avoid the somewhat awkward notation, the JAcoBran matrix is
symbolically expressed as

Jg, x) = 186 (23)

dxT

1
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and its transpose is written as

deg¥(x
Pigx = € (24)
dx
The transpose of the gradient vector is
{o(x) 1T de(x) )
[grad g(x)]T = de(=) 1" dex) g x) (25)
dx dx* '

whereas the divergence may he denoted by either (21) or by the trace of the
JacoBran matrix

divg(x) = tr J{g. x) = tr delx) (26)
dx?t

When applied to multivariable vector functions with vector arguments such
as f(x. u), the nabla operator is distinguished by a subscript. or partial differ-

ential operators are introduced:

5 |6 g | & .
x T oee— T St jrustund X e e (2 {
v 3% t Bx, V-] [ ox” 20
oy o R T
Yo = o = — V1] = {‘f} (28)
du Bu, | BuT

For example, the partial vector derivatives of the scalar function f(x, u. )
or vector function £{x. u. t) are the column matrices

ofxut) oz

SX 811 ¢ .‘}).
or the JaicoBran matrices
&f(x, 1, 1) af(x,u, 1)
axT ut
The total derivatives with respect to time
Afxewn 8 dx 8f du (29
di axt di sul  dt
and
Hxown of dx of du o (30)
di T &t au® At &

are formally similar (the first relationship can be derived directly from the
second if the vector f is replaced by the scalar f). This is the great advantage
of this notation.
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Incidentally, for a function g(x) not explicitly dependent on u and ¢,
(29) and (30) give the often applied expressions

dg(x) dg dx

a -d? di 1)
and
_d_g.(ﬁ.: dg dx (32)
de dsT dt ’
The transpose of the latter is
dgl(x) __de dg’ (33)

dt dxT dx

Let us point out that the second partial derivatives may be written, for exam-

ple. in the form
f(x,n,1) Bf(x,u,1)
T T

5xout B3udx

The notation suggests that in the first case, for example, we have the partial
derivative of the row vector gf/ou” with respect to the column vector x,
but the reverse sequence is also legitimate, that is, we may form the partial
derivative of the column vector 5f/gx with respect to the row vector u” as well.
Thus the above notation does not record the sequence of partial derivations.

Finally, let us bear in mind that the second partial derivative of the
vector function

3 f(x, u, )

etc. is not a rectangular matrix any more. but a parallel-epipedic one, just as
the third partial derivative of a scalar function.

Some rules of differentiation

The derivative with respect to a scalar can be readily extended to pro-
ducts. It is important however to keep up the sequence of multiplications:

Ty T .

d(ui: du n qu_‘ (34)
dr dt di

dAz) _dA 4 42 (35)
dt de dt

d(AB) dap 4B (36)

dt dr dt
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In order to define the rules of derivation with respect to a vector, let us first
notice that

dx d
=x =1 (37)

dxT dxT

On the other hand, the chain rule of the derivation of a compound function
will be
df(g(x)) _df dg

dxT  dg' dxT

(38)

since. similarly to (32),

of(g(x)) _ df og (i=1,2,....n)
ax,- dgT dxi’ o (

vields the i-th column vector of the Jacosran matrix. The result (38) can be
arrived at also by forming, similarly to (31), the derivative

df; _ df; dg
dxT  dgT dxT

which is the j-th row vector of the JacoBian matrix df/dx".

The chain rule applies, of course, also to the case where some of the vec-
tors f. g, x degenerate to scalars. By the first rule (37), the derivative of the
scalar product x"e = ¢'x is

Ty 1w
de’x = cT———(hL = ¢ = ¢t (39)
dxT dxT

whereas that of the vector Ax is
dAx A dx AT— A (40)
dx* dxT

In deriving both formulae we have taken into consideration that, on the one
hand. the differential operator row matrix d/dx" always multiplies from the
right side and, on the other hand c¢” and A do not depend on the vector x.

By the chain rule, the derivative of the quadratic form Q = Q(x) =
= x"Ax can be determined. Let y = Ax and f(x.y) = x'y = y'x whence,
by the chain rule

dQ _ o , o dy

dsT 5x'  8y" d<*
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Similarly to (39):
A e

oxT axT
———a;f—- — SXTy == XT
ayT ayT
and, by (40)
dy_ _ dAx
dx  dxT i
Hence
TA<
%{Q;:%A}«:yT+XTA:XTAT+XTA:XT[AT—{—A] (41)
If A is symmetric then
-g:g- = 2xTAT = 2xTA (42)
Furthermore, if A = 1. then
A’ g (43)
dxT

By the chain rule, or by (41), the derivative with respect to x" of the quadratic
form Q(u) = u"(x)Ru(x) is, clearly,

T T
du™Ru _ du™Ru du — uT[RT - R] du

dx? du? dxT dxT

(44)

whereas the derivative of the more general bilinear form u"(x)Rv(x) reads

TR TRe Jdv TRT .
du™Rv _ du'Rv dv . dvIR™n  du _ uTRi L yTRT du_ (45)
dx"* dvl  dxT du®  dx* dxT dx” '

On the other hand, putting R = I. we get

Ty X
duty T dv Ly du (46)
dxT dxT dxT

It is necessary to obtain derivatives also with respect to x. In such cases,
we multiply by the differential operator column matrix d/dx from the left side:

T
‘i 1 (47)
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T (g(x)) _ dg" dfT

(48)
dx dx dg
1xT .
dx¥e (49)
dx
T
Ay (50)
dx
T "
dxTAx - [AT - A]x (51)
dx
and for symmetiric matrices A
T .
IAY oAy — 24Ty (52)
dx
Furthermore
T
=% _ oy (53)
dx
T T
da Ru _ du [R* + R]u (54)
dx dx
T T 7T
du'Rv _ dua Ry - dv Riu (55)
dx dx dx
Ter T T
du'y _ du v+ dv u (56)
dx dx dx

Some conclusions

In this paper it was shown how the proposed logical notation of the
JacoBian matrix and its inverse lead to expressions of the vector analysis,
which are formally very similar to the expressions of the scalar analysis, the
only difference being in the consistent application of the superscript T, which
denotes the transpose of an mn matrix. By this minor trick, the common
rules of matrix multiplication can clearly be generalized also for the cases
where the differential operators d/dx or d/dx” are encountered, the former
being a column matrix, whereas the latter a row matrix. The only fact to he
reminded of is the rule that d/dx multiplies always from the left side and cor-
respondingly, d/dx" multiplies from the right side.

Some applications of the proposed method are also shown, for example
the rule of the total derivatives, the chain rule, the differentiation of various
quadratic forms. and so on.
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Some elements of the proposed method can be found here and there in
the technical literature dealing with control engineering problems. sometimes,
however, the notation of the transpose is left out, giving rise to some misunder-
standing. To the Author’s best knowledge, this is the first time where this
logical and systematic treatment of the problem is published in full detail.

Summary

In this paper a logical notation for the Jacopian matrix. thatis. df (x)/dxT or 8f(x, u)/axT
as well as for its inverse dfT(x)/dx or 3fT(x, u)/5x etc. are proposed. It is shown how the expres-
sions of the vector analysis are similar to the expressions of the common sealar analysis.
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