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The symbolism of \ ector analysis concepts i~ more than Ollf' hundred 
years old. Such notions as scalar product, Yt~ctorial product. gradient, 
diyergence, curl are common not only for the physicist but also for engin
cers. Recently, with the extending of modern control theory hased on 
state space t~chniques, especially with the application of the optimum control 
theory of PO"TRYAGIX and BELLMAx, as well as 'with the stability theorems 
of LYAPLi"OY, ll-dimensional vector spaces are oftcn used. Instead of the clas
sical Yector notations the matrix notations arc introduccd and preferred. 

Thc present paper has the aim to show how thc introduction of the differ
cntial operatoI', similar to thc classical Hamiltonian nabla operator. leads 
to a systematical treatment of some prohlems encountered in control theory. 
By the way it is also shown how thc classical notations of n~ctor analysis can 
he replaced by this modern symbolism. 

Fundamentals of vector analysis 

In the "ector analysis of the Euclidean space. there are introduced, 
-Ill addition to the so-call~d scalar-scalar functions 

g(x) 

(that is, scalar functions with scalar argumcnt). 

er 
b g(x) 

(1) 

also scalar-vector functions 

(2) 

(that is, scalar functions with "ector argument). and ycctor-ycctor fUIlctions 

g g(x) (3) 

(that is, Yector functions with Yector argument). All the8c represcnt special cases 
of the most generaL -+ fairly rare, matrix-matrix or tensor-tensor fUllctions 

G G(X) (4) 

1 * 
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(that is, matrix' functions with matrix argument, or tensor functions with 
tensor argument). Scalar-scalar, scalar-vector, or vector-vector functions are 
often multivariable, such as 

f = f(x, u) f= f(x, u) f f(x, u) (5) 

or may involve also the independent time-variable t: 

f = f(x, u, t) f = (x, u, t) f = f(x, u, t) (6) 

It is essential to establish certain rules of differentiation. A derivative with 
respect to a scalar is quite simple, for example 

-x t - --d (.) r dX1 

dt - - dt' 
x(t) (7) 

or 

= A(t) (8) 

In physics, however, the concepts of gradient, divergence and in three-dimen
sional space, of curl are widely used. The gradient of a scalar-v('ctor function 
is the column vector 

[ 

8a(x) 
gradg(x) /'.. ~-, 

8'~1 

8g(x) 8g(x) ]T 
--- ---

8x
2

' '8xll 
(9) 

whereas the dh-ergence of a vector-vector function is the scalar 

diy g(x) 
8g1(x) -L 8g2(xL-L 

oXl 8x:! 

8g/l(x) 

ax/; 
(10) 

Fillalh-. the curl of a vector-vector function is th(' column Yector 

curlg(x) ,-, ~ - ~, 
[ 

8a 8 a , 

8x~ 8x:l 
(ll) 

The JAcoBlan derivative matrix 

r 8g, 
8g1 8g1 

~Xl ' 8x., 8x ll 

og:!, _8g:? 8g~ 

J J(g, x) ,-
, 

8x1 8x2 8xn (12) 

8gm 8gm 8gm 

8x1 8x2 

, 
8xll 
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IS often encountered: and so is the so-called nab la operator proposed by 
HA:.\ULTON 

v [6:1 ' 6:~"'" 6:JT 

(13 ) 

l\laking use of the nabla operator, the above definitions may be expressed 
as follows: 

gradg(x) Vg(x) 

div g(x) = V· [g(x)] = VT[g(X)] = [g(x)]Tv 

curl g(x) Vs X [g(x)] = -- [g(x)] X V3 

J(g, x) = [g(X)]VT 

(14) 

(15) 

(16) 

(17) 

where the dot· denotes a scalar or inner product, and the mark X denotes 
a cross or outer product. 

The vector product is defined exclusively in three-dimensional space 
and hence, the nabla operator expressing a vector product has three partial
derivative operators. Vectors encountered in control engineering do, howen>r, 
usually belong to the n-dimensional Euclidean space E:' and, therefore. 
we shall desist from any further discussion of the curl operator. 

Lately, since division by a Yector is not defined and, hence, no misunder
standing is possible, the nabla operator is frequently replaced by the equiyalent 
differential operator 

(18) 

Denoting the transpose of the differential operator (its row matrix) in the form 

[ 
6 

6x
1

' 

we may rewrite (14), (15) and (17) to read 

d 
gl'adg(x) = -g(x) 

dx 

div g(x) 
d d 

-- g(x) = gT(X)_ 
dxT dx 

J(g, x) 
d 

g(x)-
dxT 

(19 ) 

(20) 

(21) 

(22) 

In order to avoid the somewhat awkward notation, the JAcoBlan matrix is 
symbolically expressed as 

J(a x) A dg(x) 
~, dxT 

(23) 
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and its transpose i" written a~ 

.F(g,x) 

The transpose of tIll' gradit~n t Y('ctor i" 

clg(x) 

dxT 
J(g,x) 

(:24.) 

(:25 ) 

'whereas the div('rgt'nc(' may 10(' elt'noted hy pith\'!' (:21) or \1\' tht' tracp of the 

JAcoBlan matrix 

(liv g(x) = t1' J(g. x) 
d~(x) 

tf - (:26 ) 

\Vhell applied to multivariable vector functions with vector argument;; snch 

as f(x, n), the nahla operator is distinguisllf'd by a subscripL or partial diffcT

ential opeTatnrs arc introc1ucI·d: 

ox., 

8 a S 
\In 

QU.) 
[ T]T 'Vu 

r 0 IT 
I i,xT 

[S;lTT 

(:2 7) 

(:28 ) 

For example. tllt' partial vector derivative;; of the :,calar funetioIl fix. u. t) 
or yt'ctor function f(x. n. t) an' tll(' eolumIl matriee:=; 

3f(x. lL t) 

3x 

3j(x, u. t) 
1'(·s1" 

3u 

or the J .,\.COBlan ma triet's 

of (x, 11, t) sf(x. n.l) 

The total dm'iyatiye:" with n~:3p('C t to tinH' 

(\((x.u.t) of clx of tIn 
(:29) ---- -

dl 8xT ell auT dt at 
and 

elf(x, 11, t) 61' clx of tIn 3f 
(.30 ) 

ell 3xT ell SUT cll at 

are formally similar (the first j'(>latioIlship can }w derin·d directly from the 

second if the \-('cto1' f is rpplaceel by the scalarfl. This is the gn'at a(h-antagt' 

of this notation. 
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Incidentally, for a function g(x) not explicitly dependent on u anel t, 

(29) and (30) give the often applied expressions 

dg(x) dg dx 

elf dxT elf 
(31 ) 

and 
dg(x) dg elx 

dt dxT df 
(32) 

The tram:pose of the latter is 

dgT(x) elt dgT 
----

df dxT elx 
(33 ) 

Let us point out that the second partial deri,-atives may be written, for exam

ple, in th" form 
82f(x, u, t) 

8x8nT 

8'2f(x, u, t) 

The notation suggests that in the first ease, for example, we have the partial 
derivatin' of the row vector of/ouT \\-ith respect to the column vector x. 
hut thc reyerse sequence is also legitimate, that is, we may form the partial 
derivath-e of thc column vector of/ox ,,-ith respect to the l'OW vector UT as well. 
Thus the above notation does not re eOI'd the sequence of partial deriyations. 

Finally, let us bear in mind that the second partial deriyative of the 
veetor funetion 

8~f(x, n, t) 

Qx8uT 

etc. is not a rectangular matrix any more. hut a parallel-epipedic one, just as 
the third partial deri,-ative of a sealar funetion. 

Some rules of differentiation 

The derivative with respect to a scalar can be readily extended to pro
duet,::. It i;,: important however to keep up the sequence of multiplications: 

cl(uTv) duT cl....-
(3-1 ) ----=--v uT_ 

dt dt ell 

d(Az) dA A dz (35 ) z 
dt df elf 

d(AB) dA B _ A dB (36 ) ---
elf df elt 
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In order to define the rules of derivation with respect to a vector, let us first 

notice that 

dx d 
--=x--=I 
dxT dxT 

(37) 

On the other hand, the chain rule of the derivation of a compound function 
will be 

since. similarly to (32), 

Sf(g(x)t 

SXi 

(38) 

yields the i-th column vector of the JAcoBlan matrix. The result (38) can be 
arrived at also by forming, similarly to (31), the derivative 

which is the j-th row vector of the JAcoBIan matrix df/dxT. 
The chain rule applies, of course, also to the case where some of the vec

tors f, g, x degenerate to scalars. By the first rule (37), the derivative of the 
scalar product xTc = cTx is 

dcTx T dx 
=c 

dxT dxT 
(39) 

whereas that of the vector Ax is 

dAx (Ix· _. = A = AI = A 
dxT dxT 

(40) 

In deriving both formulae we have taken into consideration that, on the one 
hand, the differential operator row matrix djdxT always multipli~s from the 
right side and, on the other hand cT and A do not depend on th~ vector x. 

By the chain rule, the derivative of the quadratic form Q = Q(x) 
= xTAx can be determined. Let y = A.x and f(x, y) = xTy = yTx whence. 
}n- the chain rule 

dQ Sf...i... Sf dy 
dxT axT I ayT dxT 
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Similarly to (39): 

and, by (40) 

Hence 

dQ 

dxT 

If A is symmetric then 

Furthermore, if A = I. then 

~_= dAx =A 
dx dxT 

163 

(41) 

(42) 

(43) 

By the chain rule, or by (41), the deri,-ative with respect to xT of the quadratic 
form Q(u) = uT(x)Ru(x) is, clearly. 

(44) 

whereas the derivative of the more general hilinear form uT(x)Rv(x) reads 

duTRv dv 

dvT dxr 

On the other hand, putting R 

dvTRTu du 

duT dxT 

I, we get 

( 45) 

(46) 

It is necessary to ohtain derivatives also with respect to x. In such cases, 
we multiply hy the differential operator column matrix d/dx from the left side: 

dxT 

-=1 
dx 

(47) 
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dfT (g(x)) _ = dgT dfT 

dx dx dg 

dxTc 
c 

A 

[AT A] x 

and for symmetric matrices A 

Furthermore 

dxTAx 

elx 
:2Ax 

dxTx _ ~x 

elx 

dtiTRu _ du
T [RT ~ R] 

- I - u 
dx dx 

cluTRv = duT Ry 

dx elx 

elx 

elvT 

--RTu 
dx 

dvT 
--u 
dx 

Some conclusions 

(48) 

(49) 

(.')0) 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 

In thi,,- paper it was shown how the proposed lugieal notation of the 
JAcoBlan matrix and its inverse lead to expressions of the vector anah-si;:. 
which are formally very ;:imilar to the expressions of the scalar analysis, the 
only difference heing in the consistent application of the superscript T, which 
denotes the transpose of an 111 ~< n matrix. By this minor trick, the common 
rule:" of matrix multiplication can clearly he generalized also for the cases 
where the differential operators cl,dx or d/dxT are encountered, the former 
heing a column matrix, whereas the latter a row matrix. The only fact to he 
reminded of'is the rule that d/dx multiplies always from the left side and cor

respondingly, cl/cb.-? multiplies from the right side. 
Some applications of the proposed method are also shown, for example 

the rule of the total derivatives, the chain rule, the differentiation of yarious 
quadratic forms. and so on. 
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Some elements of the proposed method can he found here and there in 
the technical literature dealing with control engineering problems, sometimes, 
ho"wever, the notation of the transpose is left out, gh'ing rise to some misunder
standing. To the Author's hest knowledge, this is the first time where this 
logical and systematic trpatment of thf' problem is puhlishf'd in full detail. 

Sununarv 

In this paper a logical notation for the .L-l.COBIunlllatrix. that i,.. d f (x) 'dxr or Sf(x. u)6xT 
as well as for its inverse dfT(x)'dx or SfT(x, u)!6x etc. are proposed. It is shown how the expres
sion:' of thc ,"cctor analysis are similar to the expressions of the common scaJar analysis. 
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