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A primary requirement in the design of control systems is the stability
of the operation. At the same time the quality requirements of the technical
process to be controlled must also be satisfied by the control. These quality
requirements prescribe on the one hand the static state (stationary error),
on the other hand the dynamic state (controlling time, overshoot, number of
oscillations) of the control [1, 2].

The analysis and synthesis of linear control systems start generally
in the frequency region. whereas the effective and the prescribed quality
characteristics may be compared by examining the dynamic behaviour of
the control system. i.e. by turning from the frequency region into the time
region.

The most classic and most general way for studying the transient and
the stationary states of the controlled system is to write up the differential
equation of the system. For the deterministic investigation of linear systems
a so-called typical test signal is generally applied to the system input. In the
case of arbitrary input signal, the output signal may be determined. — in
knowledge of the system’s weighting function, — with the help of the convo-
lution integral. Regarding that the setting up and solution of the differential
equation for more complex systems, and the computation of the convolution
integral for more complex input signals often hurts to serious difficulties,
various methods have been developed for simplifving the investigation.

The computational difficulties inherent with the differential equation
method and the convolution integral may be eliminated by transforming the
differential equation describing the system into an algebraic equation with the
help of the Fourier transformation, or of the more generally applicable Laplace
transformation. The time behaviour of the system may be deduced by the
inverse transformation of the result obtained in the operator region bhack into
the time region.

The computational work is greatly reduced by the Laplace transforma-
tion. but the inverse transformation causes problems in many cases,
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1. Determination of the time funection
of a linear conirol with dead time

In the case of linear controls containing dead time delays, the inverse
transformation from the operator region into the time region raises no special
problem in principle. but its evaluation is rather lenghty.

Let us consider e.g. the linear control with dead time shown in Fig. 1.
The dependence of the controlled characteristic on the reference signal is given
by the transfer function of the closed system:
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The above expression of ¥ (s) may be expanded in series. if the condition
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is satisfied, as follows:
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Assuming unity feedback. i.e. Y,(s) == 1. (1) may be simplified to
W) = 3 (- 1Y (e @)

By the inverse transformation of the infinite series obtained for W{(s), the
weighting function of the system is obtained. The dynamic behaviour of
control circuits is most often characterized by the unit step response. The unit
step response of the linear control with dead time shown in Fig. 1 may be
determined by utilizing (2) in the following way:

v(t) = L1 {-1—5’ (— 1)“‘1[1"1(5)9_5’]”} = S‘ (— 11 — nt)o’(t - nt). (3)
S n=1 n=1
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The unit step response may be produced with the expansion theorem in
a form holding for multiple roots as well, For determining the unit step re-
sponse, the inverse Laplace transforms of as many terms are required as there
are needed up to the stationary state.

In many cases it is sufficient to determine the maximum overshoot
position and value, but even in this case the inverse Laplace transforms of
the first two or three terms are mostly insufficient (demanding relatively less
computation work).

The determination of the closed system time function is laborious because
of the lengthy evaluation of the coefficients. But with the help of the digital
computer it is simple to prepare a program giving the values of the time
function coefficients for a given control circuit. Of course the evaluation of the
coefficients takes increasingly more computer time with the increase of the
number of the terms to be transformed in inverse.

The time region and operator region tests published up to the present
are difficult to apply to the investigation of the dynamic properties of linear
controls with dead time. Therefore in many cases empirical relations concerning
the interrelation between the frequency function and the time function can
be done with establishing the relationship between the maximum value of
the closed system frequency function absolute value M, and the unit step
response overshoot. The value of M,, may be established with the help of the
constant M — « curves, or the Nichols curves [1].

The design of the control circuits is further simplified by the fact that
conclusions concerning the quality characteristics may be drawn already
from the knowledge of the opened eircuit frequency characteristic curve,
If the circle of unity radius is intersected once by the Nyquist diagram of the
opened up system—in the following we shall call this type of control a normal
behaviour control—the maximum overshoot of the unit step response may
be deduced from the empirical relations between the phase margin ¢’ and the
value of M, [1].

In the following we shall study, for the case of a concrete example as
well, the variation of the stability region of a linear control with dead time
versus the phase margin and the time constants of the system.

Previous papers [4—7] have already dealt with the determination of
the variation of the stability region for the control with second order lag and
dead time [G(s)], with a unit feedback. compensated in the general case by
a PID element [C(s)], as shown in Fig. 2 (¢" = 0). Further papers are published
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presenting diagrams of the variation of the stability region to provide any
arbitrary phase margin for the control shown in Fig. 2 in case of various types
of compensation.

2. Determination of equations for an arbitrary phase margin
in the case of a PID compensation

The transcendent equation for the determination of the critical angular
frequency, (@, = @) to reach an arbitrary phase margin for the control
shown in Fig. 2 can be written as follows:

T ot — tan™! _Te -+ tan™! T, = —a-+q¢, 4)
2 1 - T 1 - T, T,0°
where
7 — dead time,
T — time constant of the element with second order lag.
{ — damping factor.

After simplification and standardization we have:
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With the angular frequency value obtained from the iteration of the limit
position of the stability region to reach the arbitrary phase margin is:

; i 22y L 2&- Y
K — o W TPe?)? + (ATo)* "
l (1/T1 - Td(!)*_‘)‘_' e w?

From the above forms of (5) and (6), the equations for P-, PI- and PD-controls,
with the adequate choice of Ty and 1/T,; may be estahlished:

Proportional control: 1YT; =0, Tyg=0
Proportional-integral control: Ty =0, (7)
Proportional-differential control: 1T, =0
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2.1. Proportional control

The transcendent equation for the calculation of the angular frequency
determining the reaching of the arbitrary phase margin, by utilizing relatios
(5) and (7) is:

2T 7 «
07 + tap™l ——— = — — ¢’ . (8)
1 — TP 2

o1

001

Fig. 3. Proportional eontrol

The value of o = o, ., obtained by iterating (8) substituted into relationship
(6) — utilizing that Ty = 1/T; = 0 — the limit position of the stability region

182

K=o0|1 - T+ (2iTo)r. (9)

Figs 3 to 8 present the values of K = K, . in the region of 0.01 <
=, /T = 100 for damping factor values { = 0.1, 0.3, 0.5, 0.7, 1. 2, for phase
margin ¢’ = 30°, 45°, 60°, 75°. The diagrams were plotted with the values
of the critical loop gain for ¢’ = 0°, in conformity with [5].

From the figures the following conclusions may be drawn:

a) For high dead time values the loop gain tends to 1,——as expected—
independently of the { and ¢’ values.

b) For low dead time values the stability region keeps decreasing with
the increase of the phase margin.

¢) For values of { = 0.7 in the region 0.5 < 7/T < 2 the dashed func-
tional relationship K = K(z/T) does not correspond to the stability region

2 Periodica Polytechnica 15/3.
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Fig. 5. Proportional control



STABILITY DEGREE ANALYSIS 173

limit to reach the phase margin ¢ = 30°, 45°, 60°, 75% For the time constant
values belonging to these dashed sections, the control behaves anormally
(see item 1). The loop gain satisfying the arbitrary quality requirements
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obtained minimum positions are:

T T T T
- and e DD e e

T Vi- 28 T 120 =20

respectively, The minima of the loop gain are:
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and K,=1,

respectively.
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Fig. 8. Proportional control

2.2, Integral control

The transcendent equation used for determining the angular frequency
er,r, = ¢ belonging to the phase margin of the required value is:

2iTew

I | AP/ (10)
1--Tw?

mT <+ tan~t
The relationship of the time constants belonging to the phase margin with
the given angular frequency value obtained by iterating the equation at an
arbitrary accuracy may be determined from

/T, = ot} (1 - T?e?? + (2{Tw)? (11)

where T is the integral time constant.

The ©/T(7/T; {; ¢') curves determined by using Eqs (10) and (11) and
plotted with the help of a digital computer are shown in Figs 9 to 14.
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The following properties may be read off the diagrams:

a) For 7/T -+ 0, the functional relationship 7/T; = G(z/T) is linear, there-
fore the functional relationship G = G({: ¢') must be satisfied.

b) Yor ¢/T — =< /T o — (7/2 ~—— ¢'), whatewer the { value.

¢) For low values of the damping factor and dead time, the control is of
anormal behaviour (see item 1).

The first two statements are easily admitted.

For low values of 7/T the dead time is negligible in comparison to the
element with second order lag and the integral element. The transfer func-
tion is

1 1
sT; 1--20Ts -+ T2s2

Y(s) =

After the s = jo substitution and standardization the frequency function is:

Y (jo) = —— ! et ERE) 1y
- T, oT | (1 - T°?)? & (2T0)

For reaching an arbitrary phase margin, the equality

=

Y (jow) | ef1) = 1+ e=i150°-7) (13)
must be satisfied.
From the equality of the phase angles we have:

Z:TC!) -
tan™l o = 90° — ¢”.
1 — T2w*

From the resulting quadratic equation, the real solution of the angular fre-
quency, after standardization and simplification. is:

ermi—-:+3;~+ta11~(90 ——f/)_ 1 F(e:q), (14)
T tan (90° — ¢’) T
where
. — 2V i tan?(90° — ¢ -
F(gg)= "2 12T tan00 =) (15)

tan (90° — ¢")
On the basis of (14) we can write:

T
ot = F({;¢")—.
( f)T

From the equality of the absolute values and utilizing (12), (13) and (15),
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after standardization — denoting F = F({; ¢)—we have:

/T, = F V(1 — F2? -+ (2(F)* - T (16)

From (16) it is seen that when /T — 0, then
“« T -
T/T1=G(ééff)',1—,-, (17)

which is in agreement with our statement under a).

In the case of 7/T — oo, the controlled section may be substituted by
an element with pure dead time. For reaching an arbitrary phase margin,
the equation

e—jmr

Y(jo) = K- = 1+ i1 (18)
joT,

must be satisfied. From the equality of the phase angles

ot = ?; — (19)

From the equality of the absolute values and using (19) we have, for /T — =

T/CF[ =T = -':T— 0’ . (20)

which is in agreement with our statement under b).

It is worthwhile to note that for the evaluation of the angular frequency
determining the value of 7/T;, some numerical methed must be used te solve
the transcendent equation {8) producing it. This is a rather lenghty operation
even with a digital computer, or it may he divergent if the initial value for
the iteration process has been improperly chosen.

In the present case the determination of the initial value iz greatly
facilitated by (14). (17) and (19), (20), respectively. Let us determine on the
basis of Fig. 15 the intersection B of the straight line v/7T,;==7/2 —¢" belonging

) g JET v 4 ging
to the high dead time values with the linear approximation belonging to the
low dead time values. Let us choose for initial values for the numerical solution
of the transcendent equation (8) the following », radian frequency values:

wy = ——= for
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and
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(8]

respectively.

By choosing an arbitrary numerical method for the solution of the trans-
cendent equations and by substituting the values of (21). a convergent solution
is obtained.
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Fig. 9. Intezral contrsl

The data in Figs 9 to 14 were determined —under the above considera-
tions —by a digital cemputer. For the solution of (8), the Newton—Raphson
iteration formula was chosen.

The PROCEDURE written in the ALGOL program language for the
determination of the stability region permitting to reach an arbitrary phase
margin of alinear control with second order lag and dead time, with a unit feed-
back and integral compensation, is found in the Appendix. The procedure is
suitable for the determination of the stability region limit position (¢" = 0°)
as well. For this purpose the relationship given in [5] was utilized, according
to which

for /T —0.
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This was necessary because Eq. (14) used for the approximation of

the angular frequency for low dead time values becomes meaningless for
¢ = 0°.
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Fig. 14, Integral control
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Coneclusions

As it has been already established in [5], in the case of a linear control
with second order lag and dead time, with a unit feedback, the choice of
a control compensated in series by a proportional element is advised for low
dead time values (see Diagram 2 in [5] and Diagrams 3 to 8 in this paper),
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while a control compensated by an integral element connected in series proves
to be more advantageous for high dead time values, as seen from Fig. 7 in
{5] and Figs 9 to 14 in this paper.

A further advantage of the diagrams presented in this paper is that

14
when the phase margin value is chosen higher than -, a control system satisfy-

ing also the quality requirements of the control can be constructed.

In subsequent papers we shall study the pattern of the diagrams deter-
mining stability regions which permit to reach an arbitrary phase margin
when the series compensation is done by proportional-plus-integral (PI),
proportional-plus-differential (PD) and proportional-plus-integral-plus-diffe-
rential (PID) elements, respectively.

Appendix

Procedure in the ALGOL program language for determining the stability
region of a linear control system with second order lag and dead time with
a unit feedback compensated by an integral element connected in series,
to reach an arbitrary phase margin.

PROCEDURE INTEGRAL (FIPM. ZETA, A, O\IEG-& K):
VALUE FIPM, ZETA. A; REAL FIPM, ZETA, A, OMEGA. K.
BEGIN REAL Z,Y, W, M1, M2, T, M3, B, I. 314, M5. 6. },“. FI. DFI;
Z: = 3.141593 + (90 —FIPM)/180;
ITF FIPM =0 THEN Y:= SIN

END
ELSE F: = (—ZETA + SQR ’“(\I’ - \'A 20X
B:= Z/F/SQRT((1 -«T* 7) 2 + (M1=F)*12;
14: IFA < BTHEN B fCI.  [F FIPM =0 TH N BEGIN
OMEGA: = A;
GOTO L3
END
ELSE OMEGA: = F =A
END

ELSE OMEGA: = Z;
M3+ OMEGA; M5: = (T= OMEGA) 1 2; M6: = 1 — M5;
0 THEN BEGIN M7: = 1.570796;
GOTO L1

L3:M4:
IF M6

l

I
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END;

M7: = ARCTAN(M4/M6);

IF M7T <0 THEN MT: = M7 -~ 3.141593;
L1:FI: = 1.570796 - OMEGA - M7;

IF ABS(FI — W) < ,,-6 THEN GOTO 12
ELSE
DFIL: = 1 - (M3« (1 + M5))/(M64 2 - M4 12);
OMEGA: = OMEGA — (FI — W /DFI GOTO 13;

L2: K: = OMEGA = SQRT(M6 12 - M4 1 2)
END INTEGRAL;

Summary

The variation of the stability region permitting to reach an arbitrary phase margin ¢’

of a linear control system with second order lag and dead time with a unit feedback and in
the general case with a series PID (proportional-plus-integral-plus-differential) compensation
is determined and diagrams produced with the help of a digital computer for proportional
P and integral I compensations, respectively, are presented for the region 0.01 < +/T = 100,
where 7 represents the dead time and T. the time constant of the second order lag. The damping
factor £, varies between 0.1 and 2. The variations of the stability region are given by the
diagrams for the values ¢’ = 0, /6, /4, =/3, 57/12 of the phase margin.
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