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Introduction

In a previous paper [1] we have dealt with the propagation and reflec-
tion of electromagnetic plane waves in the presence of isotropic substances.
It has been shown that assuming a time dependence exp (j o ¢), the basic para-
meter of all wave phenomena is the complex refractive index

n=n-jn" (1)

where n" > 0.

The material constant characterizing the non-magnetoactive substance
is the complex permittivity

g=¢ ~je" =n*. (2)

The imaginary part of the complex permittivity and the generalized conduc-
tivity are proportional. The reversal of the conductivity results in the reversal
of the imaginary part of the permittivity. Taking this fact into consideration
the paper compares the scattering on ohstacles differing only by the sign of
the conductivity.

Characteristics of the scattering of the electromagnetic plane waves

In this paper the following terminology will be used:

1. The electromagnetic plane wave induces a polarization current in the
obstacle placed in the wav of propagation. The secondary field generated by
the polarization current is the scattered field, the phenomenon is the scattering.

2. In the case of a finite and non-zero conductivity as the result of the
presence of the conduction current the scattering ohstacle absorbs power
from the incident wave, This phenomenon is the absorption.

3. The power density propagating in the wave behind the obstacle
differs from that of the incident wave as a result of the scattering and absorp-
tion. This phenomenon is the exiinction.
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The connection among the above mentioned phenomena is
extinction == scattering -+ absorption

To characterize the plane wave arriving from free space, let us set up
a right-handed co-ordinate system whose unit vectors are u . u; and u in this
order, and u points to the direction of propagation (Fig. 1). In this system the
effective values of the field strengths of an arbitrarily polarized plane wave
can be written as follows:

E = (E u+E u)eivr = F ¢ (3)
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Fig. 1. Co-ordinate svstems to describe the incident and scattered waves

2z
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— is the wave number in free space and Z is the wave impedance
/

where bk, =

of free space.
Let the scattered field be investigated in the direction of the unit vector u’

(u, u; and u’ are coplanar). The components of the scattered field at a suffi-
ciently large distance R are

_ e——jl:R . . e —jkk
E= R —(Ecay — E pu,) = “E_ Fe..
" (5)
— —JkR -
H,, = £ ’}" {u"x Foa)
R Z,

The connection between the twice two scalar parameters characterizing
the incident and scattered fields is given by the scattering matrix

{‘?lsca] _ [Sz('ﬁe 7) S_g(ﬁ, ?) [Eﬂ

Ersca S E—ri} ‘

_ ‘ (6)
Sy(¥. ) Si(?. )
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Considering linear substances, the elements of S depend only on the size.
form and material of the obstacle if ¥ and ¢ are given. Knowing the scattering
matrix, the power of the fields of different kinds can be determined.

The time-average of the power carried by the scattered field is

Psca == Re ¢ (Esca > —H— 2) dA = | ";1" Fsm 20, (7)
© Lt v}

A o

We have to integrate over a closed surface containing the scattering obstacle.
2 marks the unit sphere, d is the clement of the solid angle.
The absorbed power is:

Po.= Re \J‘j B <A*) dA = e, | " EE Al = 2me, | n n’ EE* Al (8)

.
A v \e

In the tirst integral E=E + E..and similarly H = H, — H... The meaning
of - is as before. The sign is negative, because the normal vector of the closed
surface is chosen to point outward: but the absorbed power is usually considered
to be positive if the energy flows into the obstacle. The second and third inte-
grals are to be extended for the volume of the scattering obstacle and hoth of
them are directls following from Povnting’s theorem [2].

The definition of the extinction power is

Poo=Po— P (9)
Dividing the powers in Eqs (V) to (9) by the power density
= = 1 .
bj = ]{(J(E_; A7) = - F - (10)
‘ Z

quantities of surface dimension result. Thev are the scattering cross-section.

the absorption cross-section and the extinetion cross-section, respectively:

5]
F sca < abs . Pe.\;z

— Taps =7 01

ey T (11 a. b, ¢)
S:’ S[’ o AS:‘ ’

There are other usual definitions to characterize the scattered power in
a defined direction such as the bistatic cross-section

4‘7'F:tca(\‘}') :
— Fi»

o(d, ¢) = o(uu)

(12)

3 Periodicy Polvtechnicw Fio 1534
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and particularly in the opposite direction of the propagation of the incident
wave the monostatic or radar cross-section.

o, = c{u --u) = ‘—’¢u)l—u (13)

The so-called efficiency factors are obtained by dividing the cross-sec-
tions defined above by the geometric cross-section G of the obstacle perpendi-
cular to the direction of propagation

0="1. (14)

For linear media the ¢ and the Q are independent of the field strength.
They depend only on the refraction index and the geometry.

The general properties of the efficiency factors

Theorem 1

Owa > 0: (15)
0(9.y) > 0: (16)
0. >0 (17)

independently from the permittivity.

Proof
Each of the above statements directly results tfrom the definitions (7) to (10)

and (12) to (13), considering that in Eq. (11) S; > 0 and in Eq. (14) G > 0.

Theorem 2
For a scattering object whose ¢’ does not reverse the sign

sign Qup. = sign ¢” = signn” . {18)

Proof

The statement is obvious on the basis of the definition integrals in Eq. (6)
considering that n' - 0.

Theorem 3

Let the geometry and &’ (or n’) be fixed. There is such a value of ¢ (or n")
that |Qaps| is maximum [3].
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Proof

In the case of an ideal dielectric ¢" == n” = 0. Consequently on the basis of
Eq. (8) Qaps = 0. If n — o then Qaps - 0. One can approach this value either
by Je" — ~ or by |n" — =. Qans(e"} or Qaps(n”) are non-zero functions.
We can suppose that both of them are continuous. This statement is physically
plausible. Thereafter our theorem results from Weierstrass’ theorem.

Two dual theorems are

Theorem 4a

For a fixed permittivity of negative conductivity and a given geometry there
is at least one frequency for which Q. = 0:

Theorem 4b

For a fixed permittivity of negative conductivity and a given frequency there
is at least one among the bodies of similar shape and the same orientation
where Qexe = 0.

Further two dual theorems are

Theorem 5a

For a fixed permittivity of negative conductivity and a given geometry there
is a frequency where —Qey is maximum.

Theorem 5b

For a fixed permittivity of negative conductivity and a given frequency
there is one among the bodies of similar shape and the same orientation where

—Qexy 15 maximuin.

Proof

Suppose that the largest linear size | of the obstacle simultaneously satisfies
the conditions ky/ <1 and (nl kyJ < 1. This is the case of the Rayleigh
scattering [4]. The change of the amplitude and the phase of the incident
wave around and inside the hody may be neglected. All the induced polariza-
tion and conduction currents are in phase, The whole body can be considered

as a radiating short dipole. The scattering matrix is a simple diagonal one:

S=Fky cosd 1 (19)
where
7= (n* - 1F. (20)

Here n is the refractive index of the obstacle and ¥ is its volume.

3*
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Supposing that K = E and using Eqs (0) to (8). (10) to (11)

s = (21)
O
and
= k, Relj}) - (22)

Presuming that 7 is independent of /. the scattering cross-section is
proportional to 7 —* F? while the absorption cross-section to 2 ~' I, When this
volume is small (77— 0). the absorption. if there is such. is the stronger effect.

Consequently in the case b/ < 1

Q\ - Qa’o> (23)

i.e., the extinction efficiency factor of an obstacle of negative conductivity
and a sufficiently small size is negative.

On the other hand., if even the smallest linear size [ of the obstacle satisfies
the relation kyl > 1 then Qg = 2. independently of the refractive index. This
is the extinction paradox recognized by StratTON [5].

It may be assumed that (. is a continuous function of the relative char-
acteristic size k,l. Stating this assumption. Theorems 4a and 4b are the direct
consequences of Bolzano's theorem.

Qex: = 01 kI = 0. Between this placc and the smallest of the one whose
existence has been proved above the function Qeg(k,l) is continuous and
negative. Consequently, Weierstrass’ theorem proves Theorems 5a and 5h.

Discussion of Theorems 1 through 5

The statements of Theorem 1 are obvious and express only the fact that
the scattering oceurs independently of the sign of conductivity.

Theorem 2 verifies the usual terminology: the concept of negative con-
duetivity and that of negative absorpticn are equivalent.

Theorem 3 gives an account of au interesting “matching” mechanism.
It is particularly notable that an active reflector may be constructed whoese
“negative’” absoxbed (i.e. emitted) power s maximum though its negative
conductivity is finite. ,

To explain Theorems 4 and 5 we have to clarify the physical content of
the extinction efficiency factor. Hulst ([4] p. 30) proves that this quantity is
propm‘tional to the difference between the power density of the incident wave
and that of the forward propagating wave behind the scattering obstacle at
a sufficiently large distance. Consequently Qe = 0 means that the power
density behind the obstacle in the “shadow region™ is the same as that of the
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incident wave. When (y; is negative, the power density in this direction
increases,

In accordance with the preved theorems ecach scattering obstacle of

. . ' [
a linear and active nature has a relative size k// |a ratio 4—} when the propagat-
2

ing power density before and behind of the obstacle is the same. What is more,
there is a range of sizes where the power density behind the shadowing obstacle
is greater or even maximum.

. Sei i
- N7

Fig. 2. Perpendicular incidence on straight circular evlinder

Itis noteworthy that an active medium of very large dimensions decreases
the transmitting power density according to the extinction paradox. similarly
to the passive cases. This result is more surprising than the theorems of groups
4 and 5 and suggests an interference phenomenon similar to the one discussed

in {1].

Scattering on an infinite straight circular cylinder

Partly to illustrate our statements, partly to investigate the reversal of
the conductivity we performed detailed calculations for circular cylinders.
This scattering problem was solved for a perpendicular incidence by Lord
Rayvleigh in 1881. For oblique incidence Wait [6] and Wilhelmsson [7] have
solved the scattering problem of a dielectric eylinder. For the sake of simplicity
we are dealing with the perpendicular incidence only but with complex refrac-
tive index.

The possible polarizations and the markings are shown in Fig. 2.

The solution of the vectorial Helmholtz equation can alwaysv be reduced
to the determination of two properly chosen scalar functions {8], [9]. In the
following we shall mark these two functions with u and 7 after Hulst [4].
It can be proved that for perpendicular incidence
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Eo=2 (24)
ar
E.=nkyu (25)
Ho=n" (26)
or
H.=nmkiv. (27)

An arbitrarily polarized incident wave may be decomposed to two inde-
pendent waves on the basis of Eqs (24) through (27). With the chosen v = 0
the vector E; of the incident wave is parallel with the axis of the cylinder
(Case I), while the chosen u= 0 results in an H; that is parallel with the axis
(Case II). Using the series expansion of the incident wave by Bessel functions,
a similar expansion of the scattered wave by Hankel functions of second

kind and the symbol
F = ( - 1) elnit — jut

we get the following:
Case I © =0

U= N Fn[J.(ker) b, HO(E,1)] rioa
(28)
L= Fn dn ‘]I(,_l k() I') ra

o
g
i
[ —

and the boundary conditions for the tangential components ui the fields on
the surface of the cylinder

.
_ _ Bu .
nu and 7 — are continuous at r = a (29)
Br
Case Il u =0
v >

v= 3 F,[Juker) @, HP(k,r] r

\.
|
0
§
p—

(30)

/A
=

v= 2 F.e,J (nkyr) I

and from the boundary conditions

— v :
n*v and are . continuous at r = a. (31)
r
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Satisfying Eqs (29) and (31) and introducing a new marking ke = «

j — PJn(x) Ju(x) — Jn(nx) Jnlx)
" nJ(ax) Ho(x) — J,(nx) Hyn)

(32)
and

T Th(Ax) Ho(x) — R (Rx) Hi(x)
where H,(x) = H,(Z)(r) = Jn(x) — jN,(x).

(33)

It is easy to accept that b, = b_, and a, = a_,.
Using the approach of the Hankel function valid for great arguments

aZV*i—fW“M+?iw) (34)
- akyr
where
T,(9) = :f' b, ein? = S‘ e, b, cos nd (35)
n==— oo n=0

ep=1 if n=0
=2 if n=12 ...

The role of the function T,(9) is analogous to that of the element S, of the
scattering matrix,
With similar considerations for Case Il we get the function

T, = 3 a,e" = ¥e,d, cos nd (36)

=== n=0

which is the counterpart of the matrix element S.,.
In the case of perpendicular incidence the S, and S, have no counter-
parts, the character of the polarization of the scattered wave does not change.
The efficiency factors for both polarizations

Qes: = 2 Re T(0) (37)
X
1 = 1y, B Iy
Qsca e j 'T(ﬁ)sz (38)
ax
0
Qabs - Qext - Qsca' (39)

Bistatic cross-section in the plane of the incidence

~

Q) == T(#)? (40)

R e
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and thé monostatic (radar) cross-section

2

Q!_ =l T(T) LR (4'1)

X

The quantities defined in Eqs (37) through (41) were obtained by means
of the Razdan-3 computer of the University Computer Center. Budapest.
The basic data: 1 = !’2(1 -~ j)* and x = 0.2(0.2) 10. We introduce several
results in diagrams.

Qexf i
% R S E—————

n=V2[i+j]

o
T

—2 L . . L . . B —

Fig. 3. Extinction efficieney factors of the eviinder of negative conductivity

In Fig. 3 the value (. is shown as a function of x. with negative cou-
ductivity. For small x the sign of the function is negative as it was expected.
In both cases of negative conductivity one can find the values connected with
the maximun or with the zero value of —(ey. From the shape of the curves
it follows that these values of x are in existence for arbitrary polarization
as well.

For increasing values of x, Qe -~ 2, in accordance with the extinetion
paradox.

To provide a basis for comparison with the results obtained above we
give the values Qey; for the appropriate positive conductivity in Fig. 4. This
curve was calculated by Hulst [4] up to x = 4. It is interesting to note that

* This particular value was chosen to compare the results obtained here with the results
of Herst [41 by n= 21 — ).
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while for positive conductivity a single point satisfies the equation Qe =

=0Qexts. in the case of negative conductivity there are two such points

It is easy to prove for small values of x that
Qex - Qex{ : (42)
n"=<0

<ext
a1t 0

If we examine Eqs (32) and (33) it turns out that in Case I, b, is domi-

nant among the coefficients while in Case II. a; and a_ | have the maximum

5pc e : o
= n=y2{i-j] Tl &>
4 L R : o . X . : Py
s
S @]
2 b — oo === —
3 4 5 6 7 8 q 10 x=%,a

a

7 Z 3
Fig. 1. Extinction efficiency factors of the evlinder of positive conductivity
value for small x. This fact is in good accordance with the physical picture:
in Case I the first approximation of the currents corresponds to a monopole

{line source). in Case II to a dipole. Using Hulst's results [4]

axt o, .
by 77 (nr 1) (43)
1
- axt ot o1
a, o ] e {44)
4 n* =1
Compare these with the result
. .'T;Y’l PN -
Co=byo e (nr 1) (43)
32
we can accept the validity of the approximation.
In Case I
2 - L. ox .
— Reby = axn'n" = — & (46)
:)
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while in Case II

2 4n’n’”
Qext o = — Re(a; + a_,) = 7x — 5 =
x -

28" (4{)

X mm—————
(€ 1R+

Obviously, for small x the sign of Qex; depends only on the sign of n” (or &"),
and is equal to it.

We have accepted that (Jexi =< Qaps. consequently the statement about
the sign is valid for the absorption efficiency factor too, as it was expected.

In the case of Eq. (46) it is quite obvious that the defined quantity is
equal to the absorption efficiency factor. For small x the amplitude of E can
be considered as equal everywhere inside the cylinder. Consequently the power
absorbed by a section of length I and radius a is

P =0 E2xa%e. (48)

The power density of the incident plane wave is:

S, = =1 —|Eppte (49)

Knowing that G = 2al and using Eqs (11) and (14) we obtain directly Eq. (46)
(o)

because & = and x = kga.

we

The scatteriglg and absorption efficiency factors are shown in Figs 5 and 6.
The bistatic efficiency factors calculated on the basis of Eq. (40) are illustrated
in Figs 7—8 for negative conductivity and in Figs 9—10 for positive conduc-
tivity as a contrast. The parameter of the curves is x = k,a. Let us consider
the fact already noted: for polarization I the field has monopole character for
small radii while for polarization II the field has dipole characteristics. The
maxima and minima of higher order will appear only with a larger relative
radius. Their successive appearance and their gradual shift to the direction
of smaller angles in the case of increasing values of x are common properties
of both signs of the conductivity. Incidentally this behaviour corresponds to
that of the ideal dielectries [10] (Fig. 11).

In general, the character of the histatic curves is similar and the differ-
ences are more quantitative than qualitative. To illustrate this fact another
comparative diagram is shown for x = 3.8 (Fig. 12).

The radar efficiency factor vs. x is given in Fig. 13. Investigating this

efficiency factor and that of angle § = 'y (Fig. 14) the most striking fact is
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that the values in Case II are strongly oscillating in comparison with the values
of Case I. Our explanation for this fact is the following. In the change of the
bistatic efficiency factor — and particularly the radar efficiency factor —
the influence of the surface waves is very strong. These waves are affected

50

B Lk

- n=12(1))

n

a1

o 2 4 6 8 10 12 x=koa

Fig. 5. Scattering efficiency factors

by the current flowing within the scattering obstacle. In the case of ideal
dielectrics no damping effect takes place at all, here the interference character
is very strong [10]. The reason of this phenomenon is obviously the fact that
the polarization current has no component in phase with the field in an ideal
dielectric. But in a lossy dielectric the current has a component in phase with
the field and this component dampens the surface waves. The effect of this
damping is far stronger in Case I. where the current flows parallel with the
axis, than in Case II. Thus in the latter case the interference character is
stronger. The phenomenon is well-known for ideal conductors [11].
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To illustrate the existence of the extremum of the absorption efficiency

factor we looked analytically for the extremum of Qapsy (=2 Qeyto) defined by

Eq. (47). We found that for fixed n' the extremum could be obtained with

iQabsl

: 4 & 8 1012 x= ke

Fig. 6. Absorption efficiency factors

On the basiz of Eq. (50) n” = 1.05 belongs to n” = 1. We give the curves of

1Qaps) for m=1-130.1: 1 —jl: and 1 =+ j10 in Fig. 15. It is easy to sec
that around n” = 1 we get a maximum of Qaps for greater values of x too.
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A similar result was cbtained by Bach Andersen and Majborn [12]
in their investigation of the field of a circular cylinder of negative conductivity

posted in a rectangular waveguide.

The high frequency approximation of the radar
and scattering efficieney factors
It appears from Figs 5 and 13 that the radar or scattering efficiency
factors tend to a given value if ko has a high value.i.c.. the radius of the evlinder
g o g )

Z
= N
[

55 L -

03 s

Fig. 7. Bistatic efficiency facters of the eviinder of negative conduetivity (fase 1)

is large in comparison with the wave-length, We shall determine this Hmit
with the rav-optical approximation as follows (Fig. lo).

Let a plane wave arrive perpendicularly to the axis of an infinitely long
straight circular evlinder, Let us divide this plane wave into small beam pen-
cils, which attain the surface of the cylinder between the angles & and 4, -~ d9,,.
The cross-section of a pencil is lecos ¥, dF, (for the length [). The total
power carried by the pencil is 5 la cos ¥, df,  where S, is the power density
of the plane wave (ef. Eq. 10).

Let the reflection ceefficient on the surfuce he 7. The coetticient of the
2. The reflected wave travels in the direction J =

power reflection is ir
= 7 — 2¢, in a small sector marked by d# =2 d#,. Let the intensity
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of the power at a sufficiently great distance be S(). Because of the equality
of powers

7258;la cos 9,d0, = S(&)IridD] (52)
10 78 7{66 e
i,
Q) s f
5 R Y Y A L /_-;7'2
1
) 14
0,8
0. i
PR — . e
06
a6
16
R - - 2
05 b— —f— ——
Ok
z,
02
16
Kl
008 e
gl b x=02
?
n=v2[1+j)
75
L L
90° 180° 5

Fig. 8. Bistatic efficiency factars of the cylinder of negative conductivity (Case 1I)

the ratio of the power densities (using Eq. (34)) is
S(9) Y 2

== — T(H)? 53
S; o Thyr @) (53)
hence

T(3)2 = -—ix 2 cos (54)

with the usual mark x = kya. The formula is valid for both polarizations.
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The ray-optical deduction given above neglects the diffraction. Thus
among the bistatic efficiency factors calculated in this manner only the radar
efficiency factor gives a correct result. Choosing § = =, #, =0

0 == 7 (33)

2

for both polarizations.

(541

14
12

0,5' L @tAE

\\

04
45
02 = s

02

. x =02
07 Bt e e St i M,A_.E
n=VZ(1-)) |

qos :

0° 90° 180° ¥

Fig. 9. Bistatic efficiency factors of the cylinder of positive conduectivity (Case I)

The result is known for an ideal conductor (ir] = 1) [11]. In the case
of m = 141 & jl.41 for both polarizations |7|> = 0.28 and Q, = 0.44. Fig. 13
indicates this value and the agreement with the value calculated from Eq. (41)
is very good.

This result is obviously wrong for the case of negative conductivity
(n = 141 + j1.41) in spite of the fact that the absolute value of the Fresnel
reflection coefficient is the same for both signs of conductivity.

The error we have committed here is that we have neglected the beams
travelling inside the cylinder. This neglect does not lead to a mistake in the
case of positive conductivity because the power propagating in the refracted
beams is absorbed quickly. For negative conductivity this power density
increases inside the scattering object. In [1] it has been demonstrated that on
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the flat surface of a half space filled with a medium of negative conductivity
the reflection coefficient is

Rz =-- — (50)

ou

Fiz. 10, Bistatic efficiency factors of the eviinder of positive conductivity (Case Th

where 77 is the Fresnel reflection coefficient of the medium with positive con-
ductivity of the same absolute value. The asterizk denotes the complex con-
jugate. (A similar conclusion was obtained in [13].)

In the case of n = 1.41 — j1.41. the value 'RI %= 357 and thus
Qr = 5.0. (; is in a good agreement with this value. The hehaviour of ¢,

shows the same tendency but the calculated points do not give a sufficient
basis for the evaluation of the curve in detail.
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The calculation of the scattering efficiency factor cannot be performed
by the direct substitution of Eq. (54) into Eq. (38) for the reason we have
mentioned already: the ray-optical approximation does not consider the dif-
fraction. Hulst [4] gives a formula for the sphere which takes the diffraction
Into consideration

Qua =1+ e (57)
1209
aa°
. o
’:Oo S o P s . Co O s oQLClen
759
o Maxima
‘ 0%, .
s Minima St
o c
0
0.8 2.0 40 &0 30 00 x=xz0

Fig. 11. Angular locations of the maxima (@) and minima (o) of the bistatic efficiency factor
of the straight circular cvlinder (Case L. n = 1.46) [10]

where the term 1 refers to the role of the diffraction and w is the part of the
scattering efficiency factor obtained by the direct ray-optical caleulation
from the reflected and refracted waves, i.e.

1 U 1 ’ f_» }
w=——| T(>d¥ = = T3 ocos dodf, = | 72 d{sin i) (58)
ax Z J
) 0 At-;‘g o
and consequently
i
Qe =1 - | T2 d(sin¥,). (59)
O

The expression is valid for both polarizations if we substitute the proper r.

4 Periodica Polytechnica El 1574
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%3
ot
1%

For the refractive index n = 1.41 — j1.41 |r}, o[> vs. sin 9, ;is given in
Fig. 17. Using these curves, the limit value of the scattering efficiency factors
may be obtained by numerical integration. For positive conductivity

Orica = 1.25; Qica = 1.4.

01

” % !

B0° S

Fig. 12. Bistatic efficiency factors

Both values are good approximations as seen from Fig. 5.
For the corresponding negative conductivity we have used the RZ

values to obtain the limits. Theyv are

Oree = 3.78: OQiica = 5.7.

These limit values marked in Fig. 5 are good approximations. This fact proves
on the one hand the applicability of Eq. (59). on the other the practical impozr-
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tance of the surface reflection coefficient defined for an obstacle of great
dimensions and negative conductivity. The result above includes the state-
ment in [I1] that the power transmitted across a very thick layer of negative

1007 ; VTR T

2 “ /\@Q
B e ee=ll

)
|

Uy

A / |
| . Wrt 5 / 56

[E%
|

\[\L\IU\ EOPZfIT" |

AVAVACA TS =—mm—
! Qs @ |
K L n=i2{1-j)
~oH- . S, ,,.,-_..V___.__“.i___ e
i
2 4 6 8 0 72 x=kea

Fig. 13. Radar efficiency factors

conductivity is zero. In the deduction we consider only the reflected wave
neglecting the rays after a multiple inner reflection.

Our previous two examples support the correct choice of the absolute
value of R in [1]. Nevertheless, the arcus of this quantity has not been dealt
with. On the hasis of Eq. (58), it is equal to the arcus of the Fresnel coefficient
oun the surface of a substance differing from the previous one by the sign of

4%
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B ) B
the conductivity only. To prove this, we caleulated the value of — T(0) = Q-+ jP

for both polarizations. This quantity was represented by Hulst in a diagram
([4] Fig. 81) for n = 1.41 — j1.41. Hulst has demounstrated with the help of

. - . P . /’14 T
Fig. 14. Bistatic efficiency factors {// “’_.")

heuristic arguments that the curve approaches the point (2: 0) on the complex
plain along an asymptote that includes an angle of 60° with the real axis.
The consideration of the edge effects shows that the angle with the asymptote
is proportional to the angle of the refraction index if the kya produect is large
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Fig. 15, Absorption efficiency factors vs. refractive index

enough. In Fig. 18, the complex diagrams of the ) — jP vs. kya are indicated
for both refractive indices n = 1.41 = j1.41. It is apparent that the asymptotic
bhehaviour is the same for Case I. This fact is a heuristic argument to support
the adequacy of the definition in Eq. (50).
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Fig, 17. Power reflection coefficient vs. the sine of the angle
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Fig. 18. Plot of () — jP. The parameter is v = kya

The author is grateful to Prof. Dr. K. Smmox~yi, Dr, 1. Bozsoxr and Dr. G. ReiTER
for their valuable remarks on the subject of this paper as well us to G. Kis (University Computer
Center., Budapest) for the numerical caleulations.

Summary

A previous paper by the author has investigated the changes in the manner of the prop-
agation and the reflection of plane waves in the case of the reversal of the conductivity.
The results presented in that paper are made use of in the present paper. demonstrating the
change of the characteristics of the electromagnetic scattering if the sign of the conductivity
reverses. The general results are supported by the numerical results of the scattering of plane
waves on a straight circular cylinder. These calculations show that the differences between
the two cases are quantitative rather than qualitative.
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