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It will be supposed that the permittivity varies in the transverse direc-
tions only and in the direction of waveguide axis itis constant. Such waveguid-
es are important as isolators, phase shifters. attenuators and as the parts
of material testing equipments.

Two important groups of the applied computational methods are

1. variational methods,

2. generalized telegraphist’s equations.

The purpose of this paper is double. First new, simpler generalized
telegraphist’s equations are given. Second, the connecection between the two
methods is pointed out.

For the sake of simplicity it is supposed that the permeability is constant
and the permittivity is isotropic.

1. Introduction

The essential point of the variational method is to find a functional
(“variational” formula) which gives the value of the propagation factor, and
which contains as function variable the electric and/or magnetic field strength.

» — F(E; H) 1)
Substituting the exact electric and magnetic field strength we obtain the exact
value of the propagation factor

7o = F(Eq; Hy) (2)

The formula is variational or stationary, if its variation about the exact value
with respect to the field strengths is zero:

by = [0 F(E; H)]g, 5, = 0 (3)
This property allows that approximating the field by a suitable trial function

gives a good approximation of the propagation factor. (The error in propaga-
tion factor is of a higher order smaller than in the field strength.)
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The field strength is often approximated as sum of functions with
unknown coefficients

=2U;e (4)
H::J'Iih_;. (5)

Then coefficients U; and I;, giving the best approximation can he determined
from the system of equations

3y
=0 (6
53U, )
oy -
=0. 7)
al; (

This is the Rayleigh—Ritz method.

The variational formulae of the propagation factor have been summarized
by BERk [1]. N1KoL’SKT has expanded the results for the case of anisotropic
dielectrics [2] and using the empty-waveguide modes as expanding functions
he has given the matrices from which — as eigenvalues — the propagation
factors can be determined [3].

Let us turn to the generalized telegraphist’s equations. It is well known
that the field coefficients of the homogeneous waveguide satisfv telegraphist’s
equations. These equations can be generalized [4]. [5] to take the current den-
sity and the surface excitation into consideration.

The telegraphist’s equations with respect to the inhomogeneously filled
waveguide — these will be seen to be special cases of those in [4] — were first
derived by ScHELEUNOFF. In his paper he has not used the results of [4].
but set out directly from Maxwell’s equations. He has taken into account the
effect of the dielectrics bv the polarization current density.

Because of place shortage. instead of presenting Schelkunoff’s dedue-
tion to full length, only a part from it will be quoted to show an incorrect
result, which appeared in the literature. Eq. (39) in [6] referring to isotropic
and non-magnetic dielectrics is

d T
(m) __ ; . -
"‘(’i—”“ = J Uy I(m) — X(m) I’:‘(m) (8)
where 7, and I, are the modal voltages and modal currents, y( is the
eigenvalue and V7 (,, the modal voltage belonging to the longitudinal com-
ponent of the electric field.
Eq. (44) in [6] for the isotropic case:

1";(rz) ‘S‘j‘]’(’)é‘ Z(n) T(n) T(nz) dS = I(m) . (9)
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To eliminate ¥V, (,, from (8), we must form a matrix inversion in (9). Let us
mark the elements of the inverse matrix by “Z- then from (9) we obtain

V:v(n) = = Iun :Z(n) (m) (10)

Before introducing (10) to (8) an index change is needed. Schelkunoff calls the
attentien to it: (p. 795 in [6]) “Before substituting in Equation (8). the sum-
mation index m in (10) should be changed to avoeid conflict with m in the for-
mer equations.” After substitution and index change. (8) takes the form:

AV

d" B j(') ILIO I(m) Z(m):Z\r:)(m) I(‘rr) (11)

The authors of [7] do not change the indices in (10). but they substitute m in
the place of n. So they obtain Eq. (5) in [7]. So they replace the matrix in (9)
by a diagonal matrix. This substitution — as can be seen from (9) — is correct
only in the case of constant e. Surelv. then

o 1 ,
H T Ty Ty dS = ——0,, (12)

Loy

where 0,,, is the Kronecker symbol. In the case of constaut ¢ the incorrect
Eq. (3) in (7) transforms to the correct transmission line equation

AV, : 7% .
e (J(" Ho = '/:(m) I, (13)
dz joed
However, when e is a function of transverse co-ordinates. then (5) in (7) is in-
correct.
As (11) shows. the result of Schelkunoff is rather difficult to treat.

It wants a forming of matrix inversion. This is a consequence of the fact that
he has expanded the displacement vector D and the magnetic flux vector B.
Our results will be simpler, because we expand the electric and magnetie field
strength vector.

2. Recapitulation of the results for the homogeneously
filled waveguide

The field of the waveguide can be obtained as follows. We solve the
equation :
A g = ki g =0 (14)

with the boundary condition ¢ = 0. and we solve the equation

digrg Ky =20 (15)
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. .. 1 . .
with the boundary condition -— = 0. Here ., is the transverse Laplacian.
5n
the index in brackets means TE mode. while the index in parentheses means

TM one.
We form the vectorial mode functions:

em = Vifm (16)
hey =Ko, (17)
ef] kv, g (18)
by ==\ (19)

where V', is the transverse part of the gradient. and k is the unit vector in the
z direction.
The vectorial mode functions are orthonormal:

| e ey ded =0 (20)
A

g e ey dad =9, (21)
A

| e epdd =0 (22)
A

‘\' hiy by dAd =9, (23)
A

\‘ highy, dAd = o, (24)
A

\ b, hypdad =0 (23)
A

In view of the above it follows

- 1

\ (]‘1(1') Tim, dd = T ’)I'm (26)
A i)

. 1 . o

S 20| $m) dAd = T O:‘m (2 t)
A k2

‘With the aid of the vectorial mode functions. the transverse field of the wave-
guide can be expanded:

E:= MUpen — Uinep (28)
H, = ¥Ihg — Iy (29)

1
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The system e;, h; is complete in the following sense. The necessary and sufficient
conditions to expand in mean square a given transverse electric field by the
series (28) is that the given field is sectionally continuous and differentiable.
The necessary and sufficient condition to expand in mean square a given trans-
verse magnetic field is that the given field is sectionally continuous and differ-
entiable and the divergence of the given field is zero at the boundary.

U; and I; are the modal voltage and modal current. They satisfy the

transmission line equations

eU; : kG | s

EM_Q fmand Jt"} Uy o _‘32— ](5) (30)
8z Jjo g,

sUs: . .

_ E ..[f_]_ _—:](-) Ug L[,‘] (31)

3z

ol . - |

o joe, v, 52
aly, . ki -

I e, — P (33)
8z ‘ Joug]

Finally let us express E, with the aid of the modal current.

Loy e
o kinge - (34)

Jwe

E o~ -

3. The excitation effect of currents flowing inside the waveguide [4, 5, 8]

If transverse current J;, and longitudinal current J, flow inside the wave-
guide, then Eqs (30) to (33) alter to:

S| ‘. [ . oy 1 . . -
st W= ljo Ly J—(f—)— Iy — —— {V.J. epdd (35)
0z Jw &g Jwe, A
5Us .
= jo ey Iy (36)
9l . . . -
oﬂ(_;’_ =joe, Uy + {epJ dd (37)
oz A
F\I il . kl - , - N
- __:::‘__[.J = |Jw&y, — "—[ﬂ—} U — | ep JdA. (38)
GH ‘ Jo g A

From physical point of view it is evident that no longitudinal current density
generates TE mode. Surely TE mode has no closed magnetic line of force in
the transverse plane. This fact can be easily verified also by vectoranalytical
method. So the second term of the right-hand in (35) needs not appear in (36).
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4. Generalized telegraphist’s equation of waveguides
filled with inhomogeneous dieleetrics

The effect of inhomogeneous dielectrics is taken into consideration with
the aid of the polarization current density

J =joeye, — 1)E. (39)

Here we expand E according to the empty waveguide modes. The consequence
is that (generally) everv mode will be self-coupled and will be mutually coupled
with other modes according to Egs (35) to (38).

Now we examine the form of Egs (35) to (38), if the polarization current
density was due to TE or to TM mode. The second term on the right hand
side of Eq. (35) will be zero in the case of TE mode, because then E, and con-
sequently J: is zero.

From (39) follows that J, vanishes at the boundarv. Then the second
term in the right-hand side of (33) simplifies. We prove

ﬂ Vedo Ve g dd = kg, S Jogpdd (40)
A A

where we have substituted e, from (16). The starting point of the proof is
the identity

VAT Viegw) = Ve do Vo0 — J: A 76 (41)

(41) is valid in distributional sense, supposing J; has countable discontinuities
and g(; has continuous derivatives. Integrating both sides of (41) with respect
to the cross-section, the Gauss theorem generalized in distributional sense [11]
can he applied:

)Ff 8w g — \\1. JovViredd = [ digedd. (42)
dn :

A

The left-hand side vanishes in view of the boundary condition.
Multiplving both side of (14) with J. and integrating over the cross-
section., we obtain

J‘ J:A f/(‘,) d_f/l “'— k(]l) .\‘ J: (]-’(i) d:_l = (. (43)
A A

Comparing (42) and (43) vields (40).
On the basis of (34), expanding J. according to TM modes:

. _ . . & —1
Jz =Jjw Eo(er 1) Ez - Zl(m) k(lwl)—':g—‘ Fimy - (-44)
m
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Utilizing (40), the second term in the right-hand side of (35) becomes

12 e
- N gy By
Jwe, 3w 2,

1 -
BRACHRAG) dA. (40)

The series in the integral is convergent in mean square. therefore it converges
almost everywhere in absolute sense. With the aid of Lebesgue theorem [12]
we can interchange the integration and the summation

k? . -
","-(E)_‘ 2 I(_m) k(m) S - (F(m) q (6] d"l -
JO & m A &
Ky < , [ P «
T I(m) k(m) g Femy ¥ () dA - ‘ — Fem ¥ dA}. (46)
Jwe, m A A & .

The first term in the brackets equals so the final form of (35) is

“{m)
aly; : k2 . 1 -
- _(I‘)‘ = Jo Uy I(i) - @ ‘}_ I(m)k(m) \ - (PCm) ‘f/A(i) d.d (.I"‘)
Oz Jw gy A &

Let us examine (37). With the aid of (39) and (28)

J. = j(') eo(Er - 1) : (U_(m)e(m) + U[m]e[m]) .

m

After substituting this into the second term of the right-hand side of (37)
and interchanging the integration and the summation again, we obtain

jorey 3 Uyl [erepmendd ey e dd] -+
m A A

. o ‘ (48)

— joreg N Uy [ K & €y ep) A S e e[,,,]d_cl].

m A A

The second term in the first bracket is 9, so it eliminates the first term on the
right-hand side of (37). The second term in the second bracket always vanishes
according to (22). The final form of (37) is

8l; . S o I
D = g > Upny § & e eam dd +joe 3 Uy j eepemdd . (49)
Oz m A m A

The transformation of Eq. (38) is identical with that of (37).
For the sake of survey we write once more the coupled transmission line
equations
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al; . ok - I | .
- D = o g Ly + 2 3 Tk {— 90y @emy 44 (50)
oz J@ &y "m A &
aUyy . o
Uy 1y, 1)
Oz
81 i\ . v ~ ) . ~ T . -
”—¥/“ =]Jwe 2 & (m) ﬂ Er €y €y dd = jore, ; Utn) (, €r €(i) ©[m] d.d ()2)
= m A m A
a1 il k., ... g . . S ~
~ _h._ﬂh = U+ joe, SUpy (e erep dd — joe, X Uy, {erepemdd .
oz J@ i A m A

(53)

If the permittivity is homogeneous, then ¢, is factorizable out of the integral
sign. Then, on account of the orthogonal relations, the set of (50) to {53) trans-
forms to the set of (35) to (38). Eqs (51) to (33) are identical to the equations
of Schelkunoff for the isotropic case. But Eq. (50) does not need a matrix
inversion, so it is more practical than Schelkunoff’s one.

In the case of multiply connected region -— restricted to the self-coupling
of TEM mode — the set of (50) to (53) vields

a3l .
. %) = jo u, Iy (54}
ol . C .
=0 —joe, | e efydA. {(53)
0z A

So we obtain a method frequently occurring in the literature, the so-called
“‘method of static effective permittivity’. From (55) it is evident that the
static effective permittivity equals

e = | e efydal (56)
A

So the method of static effective permittivity can be considered the first

approximation of the set (50) to (53).

3. Counnection of the method of coupled transmission lines
and the Rayleigh—Ritz method

Let us start from the stationary formula for the propagation factor [1]

| (y H2 = cE2) dd

. A
TIPS E e H)kd A

A
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The condition of stationarity for E is to satisfy the boundary conditions on
the waveguide’s wall.
Expand H according to the mode functions of the empty waveguide.

H?‘ = ,"' — H' = S If I"! 111' 11”1 -
i m

: (58)

S > N Eig ke Unn U v ¢

- i1 Blm) Y Y Iml PUY ¥
(]() wy)? ‘}’ =
using the relationship
) 1 L g -
H.=  —— Xk Ugom o (59)
JO 1ty =

and marking the modes TE and TM equally without parentheses.
Taking into consideration the orthogonality we obtain that the expression

| jou,H* dA

A

becomes after substitution

Tjou, BT + U< ki >U (60)

jo

i

where U and I are column vectors consisting of modal voltages and currents.
E is the unity matrix. the tilde marks transposing. the broken bracket marks
diagonal matrix. Only those elements of the diagonal matrix differ from zero,
which belong to TE modes.

Let us expand E according to the empty waveguide modes. Then

{joege, ErdA = [joee Eidd + {joee EIdA =
A A

A
. . . 1
= Jogg (& > DU L eendd — \]coe &, -~—-———~—02 N LI ik ik i@ yEomy dA4
A z' m A (](’)808 )“ m
(61)
Let us introduce matrices
Vo =Jorgq [ & €€, dA (62)
A
1 L1 ) )

Sim — I‘“(x) l"(m) s = @iy Can) d4 (63>

Jjo g &, :

the elements of latter differ from zero only for TM —TM coupling. (61) becomes

\'jwene,E2dA=ﬁyU-%—izI (64)

5 Periodiea Polytechnica El. 154
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Finally it is well known [8]

2 ((ExH)kdd =2UEI (65)
A

Using (60), (64) and (65), (57) becomes

ijco,uOEI-l— ﬁ< .k[,-] >U -f—INJ'yU—}— izl
®
y=—m 5 - (66)
2UEI
After reducing the numerator:
L_UYU +1z1 67)
' UEI

Z and Y appear to be identical with the matrices standing on the right hand
side of (50) to (53).
Let us use the shortened form of (67)

p=- (68)

Minimizing (68) according to the Rayleigh-—Ritz method leads to the following
conditions

8%_ - (M — yN) =0 (69)
5 . -
~ (M — yN) =0 (70)

These equations lead to the system of equations
YU—yI=0 (71)
ZI —yU=0 (72)
Eq. (71) is identical with (52)—(53), while (72) is identical with (50)—(51)
supposing we examine a solution of the form ¢~ in (50)—(53).
Thus we proved that the Rayleigh—Ritz method and the coupled trans-

mission line method are the same if the empty waveguide modes are used as
the trial fields.
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Summary

To calculate the electromagnetic field of waveguides filled with inhomogeneous. isotropic
dielectrics, Schelkunoff has derived coupled transmission line equations. It is shown that
these equations can easily be derived from the Marcuvitz—Schwinger equations. One of
Schelkunoff’s equations contains the inverse of an infinite matrix: instead of it a simpler
equation is given. A faulty Interpretation of this equation, which occurred in the literature is
pointed out. Finally. it is shown that applying the Rayleigh Ritz method in the variational
formula of the propagation constant — using the empty-waveguide modes as co-ordinate fune-
tions — the result is identical with the coupled transmission line equations.
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