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Introduction 

:\"etworks composed of transmission lines are frequently applied in 
ultra-short waye and microwave engineering, e.g. for filters, distributors. 
hyhrides, matching elements. A method for calculating transmission line net
'works with the aid of the graph theory is giyen in [1]. discussing primarily 
energy distribution lletworkE. In the present paper a dC',"eloped version of 
the above mentiolwd procedure is presented, with the calculation methods 
for the admittance matrix Y. inipeclance matrix Z. and reflection matrix S 
of the transmission line network. The re:;;ults can 1)(' used aboye all in tell'
(·'.l111111Unication engineering calculations. 

The graph of the transmission line network 

Tllt' examined n{>twork consists of passiYe transmission line ,.ections. 
The t>ncls of the individual sections form the connection points of the network. 
At these points the examined 11(>t,,"ork is connected to other networks. Let 1/ 

denote the number of these. Accordingly the examined network is an n)< ~-polt' 

lor n-port). The ends of the transmi:;;sion line sections are named yertice,.. 
Consequently, the individual sections join by yertiees. Two nodes hdong to 
a ,-ertex. The calclllation is p(~rformed for the case when impedances, such 
as capacity, short circuit, break, can be connected to the transmis8ion line 
5ections at the ,,-ertices. The number of ,,-ertices is denoted by c. that of the 

,;"ctions by k. 
A graph is ordered tu the network. A hranch of the graph corresponds 

to a transmission line section, and a Yertex of the graph to a Yertex of the 
network. The graph ordered to the network shown in Fig. la is seen in Fig. lb. 

Let us arbitrarily indicate the directions of the branches of the graph 
and give them order numbers. Vertices are also designated by order numbers. 
To this end yertices are classified in three groups. To the first group belong 
tho:;;e ,,-ertices, which are also the connection points of the network. The number 
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of these is n. The second group contains the vertices not included in the first 
group and the termination of which is not a short circuit, i.e. the connected 
impedance is not zero. The third group contains those vertices which are ter
minated by a short circuit. Yertices arc numbered by considering the respective 
groups, i.e. by 1,2, ... , n; n + L ... ; first group, and the subsequent order 
numbers to the vertices of the second and third group respectively. E.g. 
among the vertices of the graph indicated in Fig. Ib, belonging to the network 
shown in Fig. la, those having the order number L 2, 3 belong to the first 
group, the order numhers 6. 7. 8 to the s('cond group. finally .:t. and ,5 to the 
third group. 

[I,} (2) 

(5) {7} (8) 

@ (5) (3) 

Fig. I 

The graph of the examined network eontains also terminal elements. 
For charactt'rizing a graph containing terminal ('It'ments the vertex matrix A 
is best suited. In this a vertex corresponds to each row in tht' order of tl1(> 
numhering of the vertices, and a bran eh corresponds to each column in the 
order of numbering of the branches. Tht' j-th elemt'nt in the i-th row of' the 
vertex matrix is aij. If the i-th yertex is matched to the j-th branch, then 
aij = 1. if it is not matched. then a,j O. The value of two elements in each 
column is 1. ,,-hill' the others are O. since each branch is matched to t·wo 
vertices. 

For writing the equations of the network, the indiyidual hranehes are 
givt'n a direction. For characterizing the directional graph, the directional 
vt'rtex matrix Ai can be used. The elements of this are L -I and O. Namely 
ao = L if the i-th vertex is matched to the j-th branch and the direction 
of the j-th branch is away from the i-th vertex. ao = -L if the i-th ver
tex and the j-th branch are matched and the direction of the j-th branch is 
towards the i-th yertex. In the individual columns on.~ element is 1. another 

while tht' rest is O. 
1 

In the followings we shall need also the matrices (A -+- Ai). and - 2 . 

1 1 
--- (A - Ai)' In matrix -- (A - A;) ail' = L if th.· j-th branch is matched to 
2 2 
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the i-th Yertex, and its direction is away from that. otherwise aij = O. In 
I 

matrix 
2 

(A - Ai) aij = L if the j-th branch is matched to the i-th Yertex, 

and its direction is towards the i-th Yertex, otherwise aij = O. In each column 
of these last mentioned two matrices. one element is L while the others are O. 

Characterization of the elements of the network 

In our problem the branches of the graph correspond to two-port, 
differently from the known graph theory calculation method of networks [2]. 

~ 
Ui ! 0-0--_____ - - - - - -------00 ! 0 

0-0------- - - - - - -------00 
!i} (;) 

Fig . .2 

For eharactt,rizing such a branch the correlation her'H'en two voltages (ll" llj) 
and two currents (i" ij ) should he given (Fig. ~). Considering that the direction 
of the moth branch is from the i-th .-ertex towards the .i-th. we find that 

(1) 

The matrix Y", of a non-reeiprocal transmission line section should he deter
mined by considering non-reciprocity. If the moth tram:mission line section 
is a symmetrical reeiprocal two-porL in the knowledge of the wayI' admit
tance Yo,w of the propagation coefficicnt i'm. and of the If'ngth lm of the 
transmission line section, Y", can be written as follows. 

Thus. in this case 

Pm 

gm 

cth I'l7llm 
(2) 

cth Yl7llm 

tm = }~'1Ii cth i'mlm 

fm YaI1l!shYl1l lm· 
(3) 

Let us form diagonal matrices from each of the "alues Pm, g"" f m • tm charac
terizing the indiyidual hranches. 
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p PI P~ p,\ ., 
Q ·Q1 Q2 q,,/ (4) 
R= 1'1 1''2 r li. 

T t1 t2 tl,: 

In the followings the matrices P. Q. R. T will be used for characterizing the 
transmission line sections of the network. In the case of a symmetrical reciprocal 
network P = T and Q R. 

Let us form a diagonal matrix from the Zbi yalues of the impedances 
cOIlIH'cted to the yertices. in the order of numbering of the vertices. 

(5) 

Partition Zb in such a way that the Zh: yalnes corresponding to the H'rtice,;; 
belonging to a singlc group should form a block. 

Zi'~ (6) 

In Zbl each element in the main diagonal 15 ". III Zn~ the dements in tht' 
main diagonal are xc or haye a finite yaltH> diffen'nt from zero. All tht' elements 

of Z,,:! are O. 
W·c shall need tht' n>ciprocal of matrix Z;, as well. The partitioned form 

of thi8 is 

y;, Z. I o (7) 

Here all elements of Yel are zero. the elements III the main diagonal of Yb~ 
haye finite values. whilt' all the Plt'mt'nts in the main diagonal of Y':l art' "'. 

Circuit equations 

In the followings current generators of known source current are con· 
nected to each connection point of the examined network (Fig. 3) and the 
corresponding Kirchhoff equations are written for the network. 

Circuit equations are written in the following in such a way that voltage 
equations should be automatically satisfied, and consequently only a number 
of c independent node equations are to he written. In thc equations tht' voltage 
at the vertices also of a number c is the unknown value. Thus, the voltage 
of the vertices can be determined from the node equations. 

From the voltage of the yertices the currents flowing at the ends of the 
transmission line sections ean he determined. and so can be the currents in 
the impedances at the vertices. 
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The currents flowing out of or into one of the nodes of some of the ver
tices are written as the sum of three groups. To the first group belong those 
currents, the reference direction of which is identical with the direction of the 
respective branch. To the second group belong those the reference direction 
of which is contrary to the direction of the respective branch. Finally, the third 
group includes the currents flowing through the generator or impedance 
between two nodes of the vertex. 

Fig. 3 

In the knowledge of the currents of the three groups the node equation 
is written for one of the nodes of each vertex of the network. 

If the moth branch is matched to the i-th and j-th vertex and its direc
tion is from the i-th towards the j-th, then the current of the branch belonging 
to the first group is given by 

(3) 

Similar equations can be written for all branches. The system of equations 
obtained in this way can be summed up in the follo'wing matrix equation. 

(9) 

(The asterisk '* denotes the transpose of the matrix.) 
For the moth branch the current belonging to the second group is found 

to be 
(10) 

Such equations can be written for each branch. This system of equations is 
the following: 

(11) 

6* 
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The current flowing in thc vertices is written as the sum of two currents. One 
is the current of the current generators. while the othcr the current flo"wing 
in the passive elements. Thus the current of the i-th vertex is found to he 

Y o; lIi (12) 

where igl is the source current of thi' current generator of the i-th vertex, 
and Ut the voltage hetween the nodes of the i-th vertex. If no generator is 
connected to the vertices, then ig; = 0 and ic; = -- 1'1" Lt!. At the connection 

points Y bi 0 and thus ic! = ig!. By' "Titing Eq. (1:2) for all the vertices. 
these can he summed up in matrix equation 

(13) 

where 19 is the column vector formed of the SOUTce current of the generator:
in the vertices, and U is the column vector formed of the vertex voltages. 
Ig can he partitioned according to the three groups of vertices. 

(14) 

The currents have to satisfy the node equation. The currents written in l' are 
flowing away from OIle of the nodes of the verticei'. Form of these the sum 
of those helonging to the individual vertices and dpllote the column matrix 

formed of these by l~. 

n.3) 

Branch currents forming 1" are fIo"wing out of onc of the nodes of the vertices. 
Form out of the sum of currents flowing out of a vertex the eolumn matrix l~. 

1" c J:.. (A - Ai) 1" . 
2 

(16) 

Currents figuring in le arc flowing towards that node of the vertex, from 
which the corresponding current of l~ ancll~ is fIo"wing out. Thus the matrix 
form of the node rule, hy using (13), (15). (16). further (9) and (11). is found 
to he 

-i- (A 

1(= 1 {(A -,-- Ai) [P(A -- Ai)* -'- Q(A 
4· 

(17) 
Ai)*]) U ~- Yb l7 - 19 = O. Ai) fR(A -'- Ai)* + T(A 
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Introduce the designation 

Ye = ~{(A + Ai) [P(A + Ai)*+ Q(A Ai)*] 
4 

(A -- AJ [R(A -'- Ai)*+ T(A Ai)*]}. 

By employing this, from (17) we have 

387 

(18) 

(19) 

It should be noted that if all transmission line sections of the network are 
reciprocal and symmetrical, then P = T and Q = R, and thus 

~A(P + Q)A*, 1 A)P 
22· 

Q) A/. 

Partition equation (19) according to the grouping of the vertices: 

[Yn Y1:! Y",][C,] [0 (,] [~,] Y~l Y~2 Y~3 (~2 -'- ~~2 [~2 
Y31 Y3:! Y 33 [, 3 )' 03 [:) 

where 

Co: = () 

From equation (21): 

[Yn 
Y:!l Y 2:! 

Y" ][t'] 
Ye:! C:! 

{'1{'1 
[:!.J 0 

Determination of the matrices characterizing the network 

From the equation (23): 

Thus 

V-1_ 
~I -

[

Zll 

Z:!l 

Zl:! 1 

Z:!:! -- z!;J . 

(20) 

(21) 

(22 ) 

(23 ) 

(24) 

(25) 

(26) 
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Zll is the impedance matrix of the network, 

Z (27 

the reciprocal of which IS the admittance matrix 

(28 

For determining the reflection matrix of the network, define the diagonal 

matrix which can he formed from the wave admittance of the hranches match
ing to the coanectioa places. 

(29 ) 

The order number of wave admittances is identical with the order number of 
the vertex to which the branch is matching. If two or more branches are con
nected to a vertex. the sum of the wave admittances of the branches is ·written 
in the place corresponding the ·vertex in the ahove matrix. 

Decompose colullln vectors Cl and 11 = Y Cl to the sum of colullln 
vectors descrihing the incident and reflected waves. respectively. 

C 1 

11 = 1(+) + 1(-) 
(30 ) 

where 
1h - J = Yo U(+) 

1(-) Yo C(-) 
(31 ) 

that is 
(32) 

hencp 

(Y" (33 

and thu:, 

(34 

The definition of the reflection matrix S is given by the equation 

C(-) S C(~-) (35) 

that is. hy comparing ,,-ith (34), the reflection matrix 

(36) 

,,-here E is the unit matrix. 
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Summary 

Transmission line systems are calculated by the help of the graph theory. Voltages and 
currents arising at the vertices are expressed from matrix equations. By using this result 
a general method for determining the matrices characterizing the network, such as the admit
tance matrix Y. the impedance matrix Z. and the scattering matrix S, is presented. 
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