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Introduction

In previous publications [I.2]. the theory of multiphase transmission
lines was established on the basis of the field theory. In practice. phase com-
pensation is usually employed in multiphase transmission lines, Publications
exist on the integration of transmission lines with transposition [3], and of the
calculation of the influence of the ground wire [4] into the general theory of
transmission lines. In the above papers the caleulation of single and double-
cireuit three-phase transmission lines is described for the case of a general
compensation. General compensation means in the case of double-cireunit
transmission lines that the mutual impedance and admittance of anv of the
two leads in either syvstem are identical. Phase compensation, is, however,
limited in many cases to ensuring identical mutual imittances only between
the leads of the two systems having identical serial numbers. In the present
paper the question is examined how the calculation of such transmission lines

can be integrated into the general theory of transmission lines.

Starting eguations

In the foliowings the theory of transmission line systems consisting of
n leads arranged over-ground, parallel with cach other and with the ground
15 summarized briefly. The ground is supposed to be limited by a homogeneous,
and lossy plane. The electromagnetic fields of the currents in the leads are in

coupling. For such a coupled transmission line system the system of differential

equations
i
idi =Y, u
(1)
1
Mz
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is valid, where z is the place coordinate in the direction of the transmission
line, ¢ and u are the column vectors formed of the currents of the leads. and
of the voltages between the leads and the ground surface. respectively, Y, is
the parallel admittance matrix related to unit length. and Z; the series imped-

Fig. !

ance matrix related to unit length. These are quadratic matrices of the n-th
order. In the case of double-circuit three-phase transmission linesn = 2.3 = 6.
Y, and Z; are calculated on the basis of formulae

Y, =jomer M,

z.=%"y 7.

e

Here ¢ and 1 are the permittivity and permeability of the air, respectively.
M is a symmetrical quadratic matrix depending on the geometrical arrange-
ment of the system, in which the k-th element in the j-th row is

(3)

.
m,; = In 2
,.,>;.

rj; denotes the distance of the j-th lead from the k-th lead, g;, that of the mirror
image (Fig. 1). The symmetrical quadratic matrix Z, is the sum of two ma-
trices

Z == Z - Zj (4)

Z, is a diagonal matrix, the elements of its main diagonal are the skin imped-
ances of the individual leads.

Z,= 72,72, ... Z (5)

zn/
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Z; is the ground impedance matrix, its elements can be determined by the
help of rows [1], [2].

The solution of the system of differential equations (1) is found to be

w(z) = e TEL) — -T2

: oy ey (©)
i(e) = Yole ™ Uf) — o4 1)

where U™ and U}~ are the column vectors formed of the values of the voltages
propagating in the directions s and ——z, respectively, assumed at z = 0,
T is the propagation coefficient matrix, the square of which is

=Z.Y,. (7

-1
—

and the expression of the wave admittance matrix Y, is found to be
Y,=Z;'T. (8)

Matrix functions in (6) can be expressed with the help of the matrix LAGRANGE-
polynomials

£(X) = _zf(/ (9)

2. (k=1,2,....n) are the eigenvalues of X, these can be determined from
the equation

det X -ZE =0 (10)

where E is the unit matrix of n-th order. The definition of matrix Lagrange-
polvnomials is given by

. n X / E

LX) = [f =2

,'__:1 /.’; /‘.‘;‘.

NS : ’

(11)

Accordingly. the relationships (0) can be written also in the following form:

u(z) = > L; (T2 TUG) e 4 U €]
a (12)

LT [U§ e - U 6]

v; 1s the square root drawn from the eigenvalues of I'? which falls into the first
quarter of the number plane.
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On the basis of Eqs (12) the phenomenon taking place on the transmission
line system can be interpreted as follows. The solution for both voltage and
current consists of two parts. One consists of the generally attenuated waves
propagating in the direction —=z. the other of those in the direction —=z.
The members of the sum correspond to one mode each. One propagation
coefficient (y;) belongs to the individual modes. The number of modes cannot
be higher than the number of leads. If the characteristic equation of I'* has
coinciding roots too, then the number of modes is lower than the number
of leads.

The valaes L7 and l'((,,‘) in the equations can be determined from the
conditions arising at terminating the system.

Consideration of the compensation

Compensation brought about by phase change can be takeninto consid-
sration in the determination of matrices ¥, and Z,. For the svstem without
compensation. the matrix Y, and Z; of the sixth order can be written in
the form ’

X r“ N2 (13)

where x{. x/,. X, X50 are quadratic matrices of the third order. and x|,
contains data pertaining to one of the three-phase systems. xj, those of the
other. In consequence of phase change, the own immittance values occurring
in the individual matrix blocks are equal. and the value of the mutual immit-
tance between any two leads can also be taken as equal. This means that in
place of the quadratic matrix of the third order. designated in (13) by xj,
and x3,. of the form

X1 X1a X3
: )
R S| Faa Loy (14)
Xy Y30 Xy

caleulations can be carried out by the matrix

% p ?
3»1 - Ij) % ,—3 (15)
3 z x
where
1
%= 3 (xXp1 = Xan — )
(16)
1
f== e (g, 4 Xy - xy) = (g = gy = 20)
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Fig. 2
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X, and x5, contain the mutual characteristics of the two systems. If along the
length of the transmission line a phase change is applied in such a way that
the leads belonging to the same syvstem have all the three possible positions
along the third of the line length (Fig. 2). then by taking the compensation
into consideration, matrices X, and x/, of the form (14) will be cvelical,
that is. they can be written in the form

;‘;' 0 &
X, == £ :/' () (1-‘7)
0 & -
where
1
Y o= %“ (4\'11 X -'\':‘.::)
1
0 = —(xy, + xay + Xay) (18)
3
1
&= ‘3 (X = X = )

On the hasis of the aforegoing. the compensation is taken into consideration
in such a way that matrices Y_ and Z; are determined for the case without
conipensation. and replaced in the caleulations by a matrix of the form

X — {XU

Xy

A
o4
1%

(19)

[
15
&

where x;; and x,,. x,, and x,, resp.. can be formed out of the matrices of
the form (15) and (17) resp.. and of the corresponding block of the matrix of
the syvstem without compensation of the form X'. bv using (16) and (18).

For the operations performed with matrices of the structure (19) the
following rules apply. as can be realized easily. The linear combination of
matrices of the examined type is also of this type. The product of twe matrices
of this type is a matrix in which the quadratic blocks of the third order are
cyclical matrices. Accordingly the Lagrange polynomials of matrix (19)
defined in (11), further the matrix functions formed according to (9) are ma-
trices in which the quadratic blocks of the third order are cyclical matrices as
given under (17).
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It follows from the foregoing

1

14GO

that for the double-circuit three-phase

system built with phase change the I under (7), the propagation coefficient I,
and the wave admittance matrix Y, under (8) have third order blocks which

are cyclical matrices,

" Determination of eigenvalues

In the followings the eigenvalues and
le o

(19) are determined.

and eigenvectors

the

eigenvectors of the matrix

It is known [6] that the eigenvectors and eigenvalues of the cyelical
matrix (17) are the following:
1 1 10 1 1 o
So ‘1?:1 ; 81~—‘T-—§‘: a* Sg:T%:a (20)
‘ 1 “la ' a®
o=V -=0— ¢ q, =1 a0+ as; g, =73+ ad — a% (21)
where
a=re 7 (22)

Designate some eigenvector by 8. the corresponding eigenvalue by ¢. Then

the eigenvector of the matrix (19) is

us .
|3, (23)
v SJ
Designate its eigenvalue by 2. In this case namely
X, X0 ] jus .fus
i 12 =y 57 (24)
[ Xa Xa0] (TS [vs
hence
UX; S —U0X;,S=2US (25)
UXy S +UX,S=/7108. (20)
Designate the eigenvalues of matrices x,;. X5, X,. X,, pertaining to s by
P11> Pro> Pars Poo- Tespectively, Thus
UG S — U @aS=/US -
27)
U S =~ U (anS = /18,
From these
w(gyy — A) = v g, =0 (28)
U Goy =+ tFo —2) = 0. »
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The obtained relationships form a homogeneous system of equations for u
and v. This has a not trivial solution, if

2P iz _ g (29)
Fan Far 7 -
hence:
= FuT Ge = oy~ ¢20) — 4010901 . (30)
5 ‘

The quotient u/v can be determined from {28).

LR Al S (P11 G — 4410 ¥y (31)

v 2¢a;

For u and v an equation can be obtained also from that condition that

T*T = 1 (32)
where * designates the transpose. and -- the conjugate. Thus
us
[us* rs*] =1 (33)
rS
hence
-t =1 (34)

where it was taken into consideration that

Thus

and v = f":'f],\;itf . (36)
=

In the foregoing we obtained six ecigenvectors and six eigenvalues. Namely s
may denote any one of §,. 8. 8,. and accordingly on the basis of (21) any one
of ¢11- @1a: Pa1» Gan may assume three different v-alues. Since (31) supplies two
solutions for u, and (30) two for /. thus, upon substituting the corresponding
7 values we obtain six values for 7, and six values each for u and v, that is
we ohtain the complete eigenvector and eigenvalue system of the sixth order
matrix X.
Determine also the Lagrange polynomials belonging to the individual eigen-
vectors. These can be caleulated from the eigenvectors T on the basis of rela-
tionship

L=1TT" (37)
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Thus
us u2 s §* uvss® uzl uvl
L= [us* v§*] = = (38)
rS v sST 28 §F uvl 121
where
[ = s3* (39)
that is
1lll 1laa2 lla(z o
=111k h=—fa 1 af L=-fa 1 . (10)
111 a a1 a’ a 1

According to the six eigenvectors. six Lagrange polynomials can be obtained
with the help of the above expression.

Decomposition of voltages and cuirents
according to the eigenvectors

On the basis of (21) and (30) the eigenvalues of matrices I'? and Y,
. . 2 “ “
can be determined. Denote these by the indexed symbols 33, 75, 27, v, »3.
2 - - - - - - . :
voe and Y 0 Y .0 Y0 Y L0 Y, Y, respectively. The part of column veetor

u(z) in (12) related to the wave propagating in the direction --z. can be expres-
sed in terms of these as follows. '

2 /(:) = j ‘i‘ e :Lmzz (~((l ) (41)

=0 m=1

where U477 is the eolumn vector formed of voltages connected to the leads of
the transmission line at the point z = 0.

The column vector of current waves propagating in the direction -z
is found to be, on the basis of (12):

2 2
i —‘)(:) = 2 ;‘ Y ekl e Lr;m l"‘(l, T (42)

n=0 m=1

It is evident from the obtained results that in consequence of the interaction
of the two three-phase systems in general two components of zero order. two
of positive order, and two of negative order arise.

Symmetrical arrangement

Examine the frequently occurring case where the two three-phase systems
are of symmetrical arrangement relative to each other (Fig. 3). In this case
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and

(43)

(44)

2 2 . . » . 3
where T, T'5. Y¥,. Y, are symmetrical matrices of the third order. Conse-

quently, on account of symmetry arising in the matrices, ¢,; = ¢,. and

@12 = (o;. that is, according to (30) and (31)

=Gy G (45)
and
k=21 (46)
v
Thus the Lagrange matrices are
1 . 1 .
Il”1 — [lll I : L”‘l: 17: ll.v (4-;-)
11: ln - 1,1 ln
(n=10,1,2)
If the two systems are connected in parallel at z = 0. then
, U] ;
Ty — .
Uj [U(‘)J (48)
where
Uy
U = Ugl+) (49)
'L/_:(;‘)
[—'l_(l_:-)t U(g_): Ufo;) are the voltages connected to the individual leads at z = 0.

Then the voltage wave propagating in direction —z. belonging to the matrices
2 tel o bl be

L, L. Ly, is found to be
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Lnl el L,‘gv-) = Dgim? [ln] Lf(_;.) (50)

(n=20,1,2)

and the voltage pertaining to the matrix Lg,. L;,. L,, is expressed as:

(1)

That is, in the case of symmetrical arrangement and parallel circuit, voltages
pertaining to three eigenvectors are equal to zero, the voltages pertaining
to the further three eigenvectors correspond to the symmetrical components.
The eigenvalues pertaining to the latter can be calculated according to (45)
on the basis of relationship

4=y T F1a s (52)

that is, the eigenvalues of matrices I'¥ and Y, are given as the sum of the
corresponding eigenvalues of the different blocks of matrices (43) and (44).
respectively.

Summary

In previous publications conditions in multiphase transmission lines were set out on
the basis of the field theory, considering a complete compensation for the effect of phase
change. These results are further developed in the present paper for the practical case where
in consequence of compensation, mutual immittance between two leads of identical serial
number of two three-phase systems is identical.
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