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Introduction 

In preyiou:" publicatiolls [1. 2], tht, tht~ory of multiphast' transmission 
liw's was estahlished on the basis of tht, n,'ld theory. In practice_ phase com­

pensation is usually employed in multipha;;:e transmission lines. Puhlications 
exist on the integration of transmission lint's \I-ith transpo,.ition [3], and of the 

calculation of the influPl1c\' of du' grollllll \I-in' [4] into the general theory of 
transmission line:', In the abon: papt'!';: tIlt' calculation of singl{· and double­

circuit thre(~-phast' iransmi:;;sion liIlt~S i;: descrihed for the case of a general 
compensation. Gf'neral compensation means in tll(' caSt' of double-circuit 

transmission line:;; that tht' mutual im!)('dance and admittance of any of the 
t\I-O leads in either SySt!'lll are identical. Phase compensation, is, however, 

limited in many cases to t'Ilsuring identical mutual imittances only bet\n~en 
the leads of the two syst(~ms haying idt'lltical serial Ilum\)!'r;;, In the present 

paper the question is f'xamined how the calculation of such transmission lines 

can he intt'gratt~d into tht· gf·neral thl'or:- of transmis:3ion lines, 

Starting c(Iuations 

In the followings tht, theory of t ransmissioll lillt, ,;Y:3tems consisting of 

Tl leads arranged over-ground, parallel \Iith ('ach other and with the ground 

is summarized briefly. Tht> ground is supposed to be limited hy a homogeneous, 

and lossy plane. The electromagnetic fields of the currents in the leads are in 
coupling. For such a coupled transmission lint' system the ,;ystem of difft>rential 

equations 

di 

dz 

tIll 

dz 

(1) 
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is valid, "where z is the place coordinate in the direction of the transmission 
line, i and 'li are the column Yectors formed of the currents of the leads, and 
of the yoltages between the leads and the ground surface, respectiYcly, Yp is 
the parallel admittance matrix related to unit length, and Zs the serit's impt'd-

, i 

\~ 

ance matrix related to uNit length. These are quadratic matrices 
order. In the case of double-circuit thrt'e-phase transmission lines Il 
Y p and Zs are calculated on the basis of formulae 

}1 

of tht' 11-th 

:2 x3 6. 

(2) 

Here E and p are the permittlYlty and permcability of the air. respectiyely. 
}:I is a symmetrical quadratic matrix dt'pt'nding on the geometrical arrange­
ment of the system, in which the 1.--th element in the .i-th row is 

In (3) 
r ., 

Tjk denotes the distance of the .i-th lead from the k-th lead, '!}J; that of the mirror 
image (Fig. 1). The symmetrical quadratic matrix Zb is the sum of two ma­
trices 

(4) 

Zv is a diagonal matrix, the elements of its main diagonal are the skin imped­
ances of the individual leads. 

Z,. Zn Z,:.! Z"lJ~ (5) 
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Zj is the ground impedance matrix, its elements can be determined by the 
help of rows [1], [2]. 

The solution of the system of differential equations (1) is found to he 

Il(z) = e-rz C&-) e-rz L~~-) 

i(z) Yo[e- rz q_.) - e-rz F&-l] , 
(6) 

where C~-) anci C;J-) are the column vectors formed of the values of the voltages 

propagating in the directions -;'-z and -z, respectively, assumed at z = o. 
r is the propagation coefficient matrix, the square of which is 

(7) 

and th(' expression of the wave admittance matrix Yo is found to he 

(8) 

:Matrix functions in (6) can he expressed with the help of the matrix L~\GRA:'>GE­
polynomials 

n 

f(X) ::. 2'!(i.d L,. (9) 
k=1 

).1; (k = L 2 .... , 11) are the eigen,-alues of X. thest' can he determined from 
the equation 

det X i.E = 0 (10) 

where E is the unit matrix of 11-th orelf>r. The definition of matrix Lagrange­
polynomials j" giYfm hv 

(ll) 

Accordingly. the relationships (6) can be written also III the following form: 

(12) 

i(z) 

{'le is the square root drawn from the eigen values of r~ which falls into the first 
quarter of the number plane. 
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On the basis of Eqs (12) the phenomenon taking place on the transmission 
line system can be interpreted as follows. The solution for both voltage and 
current consists of two parts. One consists of the generally attenuated waves 
propagating in the direction the other of those in the direction -z. 
The members of the sum correspond to one mode each. One propagation 
coefficient (I'd helongs to the individual modes. The number of modes cannot 
he higher than the number of leads. If the characteristic equation of r 2 has 
coinciding roots too_ thl'l1 the number of modes is lower than thl' number 
of It'ads. 

The nliues C~;;-) and C;)-) in the equations can he determincd from the 
conditions arising at terminating the system. 

Consideration of the compensation 

Compensation hrought ahout by phase change can ])(~ takt'll in to cOllsid­
-'ration in the determination of matrice:, Y: and Zs. For tht, Syst('lll "'ithout 
compensation. the matrix Y!, and Zs of the sixth order can ]w 'Hittf'll in 
the form 

x (13 ) 

,,-hcT(' X{I. x;2- x~I' x~2 arf' quadratic matrices of the third order. and x;! 

eontains data pertaining to onf' of the three-phase systems, x~2 those of tl](' 
other. In consequence of phase change, the own immittance values occurring 
ill the individual matrix block;; are (>quaL and the value of the mutual immit­

tance between any two leads can also be taken as equal. This mcans that in 
place of the quadratic matrix of the third ordf'r. df'signated in (13) hy X;1 
and x22. of the form 

[X" 
X 12 x'"] X .- X~l X 22 X:!a 

X;n X:l~ X;\:l 

(14) 

calculations can he carried out by tIll' matrix 

(I5 ) 

where 

(16) 
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:--;--1----0: 
Fig. :! 

X;2 amI X;1 contain the mutual characteristics of the two systems. If along the 
length of the transmission line a phase change is applipd ill such a way that 

the leads belonging to the same system huye all the thr('(' possible positiolls 
along the third of the line length (Fig. 2). then hy taking the compensation 
into consideration, matrices x~1 and x;2 of the form (14) will be eyclicaL 
that is. tht,y can be writtell in the form 

[' () 

:] X:2 ==. c 

rl c " 

(17) 

wlwre 

~) ==.-

1 
(xI~ ._- x~:; 

:3 
(18) 

1 
:3 (Xl:; -- X~l - .. x:d· 

On the hasis of the aforegoillg, the compensation is taken into consideration 
in such a way that matrices YIJ and Zs are clpterminpd for the case 'without 
compensation. and replaced in the calculations by a matrix of the form 

(19) 

where XII and x~~, Xl~ and X~l resp., can he formed out of the 1natrice5 of 
the form (15) and (17) resp .. and of th(' corresponding block of thc matrix of 
thp system without compensation of the form X', by using (16) and (18). 

For the operations performed with matrices of the structure (19) the 
following rules apply. as can be realized easily. The linear combination of 
matrices of the examined type is also of this type. The product of t'\\,c matrices 
of this type is a matrix in which the quadratic blocks of the third order are 
cyclical matrices. Accordingly the Lagrange polynomials of matrix (19) as 
defined in (11), further the matrix functions formed according to (9) are ma­
trices in whieh the fluadratic bloeks of thp third order are cyclical matrices as 
given under (17). 
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It follows from the foregoing that for the double-circuit three-phase 
system built with phase change the r 2 under (7), the propagation coefficient r, 
and the wave admittance matrix Yo under (8) have third order hlocks which 
are cyclical matrices. 

Determination of eigenvalues and eigenvectors 

In the folIo wings the cigem-alues and the eigenvectors of the matrix 

(19) are determined. 
It is known [6] that the eigcnyectors ,l'ld eigenvalues of the cyclical 

matrix (17) are the following: 

where 

So 

er -" '1--'0 - l 

a 
} 

e 

S., = ~[~ 1 - I 3 .) 
a-

(:20 ) 

(:21) 

Designate somc eigellvector ]n- s. the corresponding cigcl1\'ahH' ]n- 7. Then 
the eigenvector of the matrix (19) IS 

Designate its eigenvalnt· b~- I .. In this case namely 

hence 

j X 11 

! X:!l 

I. II ,<; 

(23 ) 

(2-1) 

(25 ) 

(26) 

Designate the eigenvaluhi of matrices Xli' X1~' X~l' x~~ pertaining to s hv 

CP'11' CP1~' (r 21' (r 22' respecth-ely. Thus 

From these 

II ((11 S :- r ({12 S = I. II S 

1I ':{ 21 oS -:- r (r 22 S = I. l' is • 

;.) -:- r fT12 0 

II rr 21 r(fT22 - ;.) = O. 

(27) 

(28 ) 



CALCCL-JT10.'· OF JIATRICE." 397 

The obtained relationships form a homogeneous sYstem of equations for u 
and v. This has a not triyial solution. if 

(rn I. ?:l~ 0 - (29) 
. r21 ?~~ I . 

hence: 

i. = -'-"'-=--_-'-_=_. __ _ _ ~-_-.:...=-=-.--.. -. 12 q;2L (30) 

The quotient !lJt' can be determined from (:28). 

lL (31) 
r 

For lL and v an equation can he obtained also from that condition that 

(32) 

where * designates the transpose. and . tht· cunjugate. Thus 

[ll s* 
[

ll S] 
v s*] ~ 

r S 

1 (33) 

henc(' 

(34) 

where it was taken into consideration that 

1. (3.3) 
Thus 

and t· = 
k 

(36) 

In the foregoing we obtained six eigenyector:3 and :3ix eigenyalues. ::\amely S 

may denote anyone of Sw SI' 8 2 , and accordingly on the basis of (21) anyone 
of rH' (F12' rH' (h2 may assume three different yalues. Since (31) supplies two 
solutions for u, and (30) two for i., thus, upon substituting the corresponding 
er values we obtain six values for i., and six yalues each for u and v, that i5 
we obtain the complete eigenyector and eigeuyalue system of the sixth order 
matrix X. 
Determine also the Lagrange polynomials belonging to the indiyidual eigen­
vectors. These can be calculated from the eigenyectors T on the basis of rela­
tionship 

L ']' T*. (37) 
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Thus 

[

ll s] 
L =. [u s* 

vs 

v s*] 
II V S S*] [U

2
1 

V2 s S* = II V I 

11 VI] 

r2I 

(38) 

where 
I = ss'" (39) 

that is 

f
ill] -~'11I: 

3 I 1 1 1 
L 

1 [1, (I a
C

] 
(1- 1 Cl : 

3 a Cl~ 1 

1 
l~ = 

3 [! ~~ ~"]. 
a" ([ 1 

(40) 

According tu the six eigcllyt,durs. SIX Lagrallf,(!' polynomiab can he obtained 
'with the hf'lp of the above expre;;osion. 

Decolllposition of volt ages and currents 

according to the eigenvectors 

On tll(' basis of (:21) and (30) tIlt' t·igynnllues of matrices r:~ and Yo 
can be determined. Dcnot!' these by the indexed symbols r'tl' ;'~2' ;'TI' ;'T2' i'~;' 
;'~2' and Y Ul ' Y 02 ' Y!!, Yl~' Y"l' Y~~, respectiyely. The part of eolullln vector 
u(z) in (I::!) rdatecl to the wan' propagating in th(' direction -!-z. can be expres­
sed in terms of thes(' a~ follows. 

( 41) 

where C~) ) is the column \Tctor forlllNI of yoltages conllt'ctt'cl to the leads of 
the transmission line at the point z O. 

The column yector of current ,raYf'S propagating in th(' direction z 
is found to he. on the basis of (12): 

2 

:>'}-nme>H"Lm"l'l) ) 
m=l 

(42) 

It is eyidcllt from th(~ obtained results that in consequence of the interaction 

of the two three-phase systems in general two components of zero order, two 
of positiy!O ord!>r. and two of negative order arise. 

Symmetrical arrangement 

Examine the frequently occurring case ,vhere the two three-phase systems 
are of symmetrical arrangement relatiyp to each other (Fig. 3). In this case 
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0 0 

0 0 

0 0 

Fig. 3 

r2 = lri r~J 
r~ r~ ., 1 

(43) 

and 

Yo G: Y2j 
Y 1 

(44) 

where rI, r~, Y1' Y 2 are symmetrical matrices of the third order. Conse­
quently, on account of symmetry arising in the matrices, IJill = (F 22 and 

(r 12 = Q21' that is, according to (30) and (31) 

;. = q:11 er 12 (45) 

and 

1. (46) 

Thus the Lagrange matrices are 

LIl1 [Ill Ir} L,,:!= [ 
III 

1" 1" III 
Ir:] (47) 
In 

(n 0,1,2) . 

If the two systems are connected in parallel at .:; = O. then 

[
U(+, )J' U(+) 

[) lJ(-'-) (48) 

where 

(49) 

u\+), U~-), U~7) are the voltages connected to the individual leads at.:; O. 

Then the voltage wave propagating in direction .J....:;. helonging to the matrices 

L 01 ' Lw L21 is found to be 
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(50) 

and the voltage pertaining to the matrix L 02 ' Ll~' L~2 is expressed as: 

[~J (51 ) 

:(n = 0, 1, 2.) 

That is, in the case of symmetrical arrangement and parallel circuit, voltage;; 
pertaining to three eigenveetors are equal to zero, the volt ages pertaining 
to the further three eigenvectors correspond to the symmetrical components. 
The eigenvalues pertaining to the latter can he calculated according to (45) 
on the hasis of relationship 

I. (52) 

that is, the eigenvalues of matrices r~ and Yo are given as the sum of the 
corresponding eigenvalues of the different hlocks of matrices (43) and (44), 
respectively. 

SUIllmary 

In previous publication,. conditions in Illultiphase transmission lines were set out on 
the basis of the field theory. considering a complete compensation for the effect of phase 
change. These results are further developed in the present paper for the praetical case where 
in consequence of compensation, mutual immittance between two leads of identical serial 
number of two three-phase systems is identical. 
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