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Introduction 

It is known that every transfer voltage-ratio function with negative 
poles and nonpositive zeros is realizable by means of RC ladder networks. The 
transfer function can be expressed in terms of the paramptprs of the two-port: 

(1) 

Aceordingly, for the first step of the synthesis the parameter Zll or Y~2 is chosen 
so that its numerator agrees 'with the denominator of the transfer function to 
he realized. The denominator is chosen so that a driving-point function realiz
able by an RC network arises. This driving-point function has to he synthetised 
and meamdlile the zeros of the transfer function realized. The synthesis can he 
n.:ecuted by the method of the removal of poles. Here an outline is givcn of 
this procedure in order to point out the difficulties emerging in the synthesis. 
The zero shifting is the first step to realize every zero. Hence, either a "shift
ing" impedance (Zt) is removed in the series arm so that the remaining imped
ance should have a zero at the zero (Si) to be realized (Fig. la), or the shifting 
impedance is removed in the shunt arm so that the remaining impedanc 
should have a pole at the point Si (Fig. Ih). Consequently in the first case 

(2) 

and III the second case 

Zi(SJ. (3) 

" This paper is abridged from a Doctor's Thesis presented at the Faculty of Eleetrical 
Engineering of the Technical Lniversity. Budapest. 
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The following decomposition can be performed according to (2): 

·where 

I 

Z;(s) 

as I 

a = lim 
s-"s, Z;(s) 

( 4) 

Thus the shunt arm contains an R and a C in series according to the decompo
sition; this ensures that the transfer function has a zero at Si, and the remain
ing driving-point function (Zi+l) is by one order less than Zi (Fig. la). Aftel' 

Zt 

.. ~~ ~;T·t _Zi -i- ~ __ y. _ 
T 

cv ® 
Fig. la, 1b 

this the following zel'O can be l'ealized. In the case of Fig. lb a series arm con
taining an R and a C in parallel l'ealizes the zero accOl'ding to the following 
decomposition: 

where 

Z;(S) = _a_ Zi+l(S) 
S-Si 

Cl = lim (S--Si) Z;(s) 
S-"-Si 

(5) 

If Zi(Si) 0 or Zi(Si) = =, the zero shifting is omitted. Thel'efore the deno
minator of ':;11 and )"~~ is chosen so that as many of its zeros as possible coincide 
with the zeros of the transfer function. 

Naturally both Zt(s) and Zi(S) must he drivingpoint impedances realiz
able by RC networks. In the case of a shifting impedance in the series arm this 

means that Zt{s) may have poles only where Zi{S) has too, and the following 
relationships must be fulfilled: 

o <: ResZt(s) < ResZi(S) (6a) 
S=Sj S=Si 

o limZt(s) < limZi(S) (6b) 
5 _____ 0:: S-w:;'; 

where S j represents the poles of Zt{s). The corrcsponding residues of ZI(S) and 
Zi(S) cannot be equal because then Zi(S) would have no pole at Sj and thus 
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S j would appear as an undesirable zero in the transfer function. In the case of 
a shifting impedance in the shunt arm the function Yt(s) IjZt(s) may have 
poles only where the function Yj(s) = IjZi(s) has too, and the fono"wing rela
tionships must be fulfilled: 

0> Res Y~(s) > Res Y~(s) (7a) 
S=Sj S=Sj 

° < y~(o) < ~(o) (7h) 

where Sj represcnts the poles of Yt(s). It can be proved that in every case a 
driving-point impedance is found which satisfies the conditions (2) and (6), 
and another which satisfies the conditions (3) and (7), that is the zero shifting 
can be performed either in series or in shunt arm. But the form of function 
Z,(s) is of importance. The simplcr the form, the better, and the best case is 
where the shifting impedance is a single resistance. In such a case. on the basi~ 
of (2) and (3) we haw 

(8) 

According to this and to (6b) or to (7b) thc zero shifting can be perfol"llH>d 
"with a single resistance if 

° Zj(Si)::;: limZi (s) or Zi(S) Zi(O) (9) 
5->= 

Since lim Z(s) < Zi(O) and Zi(Si) may assume a negative value, it may occur 
s-, .. ~ 

that neither of the aboye-mentioned inequalities is fulfilled. In such a case a 
shifting impedance of several elements must bc used, which contains also ca
pacitances. This has some disadvantages. First of all, more network elements 
are needed, thc net"work hecomes more complicated. Second, as the values of 
the elements of the built network cannot be exactly equal to the computed 
values, parasitic zeros and poles appear in the transfcr function. Thirdly, the 
calculation work becomes more complicated. Among others one or more roots 
of the denominator or numerator of Zt(s) must he computed for determining 
Zt(s). The inaccuracy grows with the complexity of the calculation, hadly 
affecting the result of the synthesis. 

Whether it is possible to realize all zeros only hy shifting resistance de
pends mainly on ho"w the denominators of Zll or )"22 are chosen, and in .. "hich 
order the zeros are realized. There is no generally valid method for this; but 
only for particular cases. The first par tof this paper is dealing with such partic
ular cases. First, high-pass and low-pass RC ladder networks will be discussed, 
based to a certain extent on a paper by FUJISAWA [2]. To generalize these two 
particular cases, a third case will he considered .. In the second part of the paper, 
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hased on the results of the first part, a modified yersion of the method detailed 
above will be presented, where the zero shifting can always be performed with 
a single shifting resistance. As a result the realized network contains a minimal 
uumber of capacitances, exactly the same number as the degree (n) of the de
nominator of the transfer function. The number of the employed resistances 
is 2n at most, but generally it is less. The pole and zero distribution of a transfer 
function 'with a denominator of degree n heing characterized by 2n data, we 
must state it is a fairly good economy to use not more than 3n elements for 
the synthesis. The method has other adYantages, too, which 'will he mentioned 
later, e.g. it can be easily programmed for computers. So we have made a 
program which pt'rformed the synthesis of RC ladder networks on the basi~ 
of this method. 

High-pass and low-pass RC ladder networks 

First two special classes of networks will he dealt with, the high-pass and 

low-pass ladder networks in Figs 2a and b, respectiyely. The first contaim: 
capacitances only in the series arms and shifting resistances in the shunt arms 
and the second inversely. The transfer function to be realized is of the follo'w

ing form: 

(10) 

wher!' 
and 

The following can be stated of the transfer fUllctions realizahle by the aho"\.T 
two classes of networks. 

Theorem 1. The tram:fer function in (10) is realizable hy the high-pa"" 
ladder network in Fig. 2a if and only if 

111 = 11 

(i=I,2, ... n) 

(lla) 

(llb) 

K=1 (llc) 

Theorem 2. The transfer function in (10) IS realizahle hy the low-pas8 
ladder network in Fig. :2h if and onh- if 

m<n 

( i 

J\. = rJIJj~ ... Pr: 
Xl:Z~ ... Xn: 

1,2 •... 171) 

(12a) 

(12b) 

(12(') 
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Before proving the theorems, the example in Fig. 3a shows the straight 
line segment approximation of the logarithmic magnitude curve of a transfer 
function which satisfies the conditions given in (ll) and that in Fig. 3h the 
same for a transfer function which satisfies the conditions given in (12). 

First we prove Theorem 1. Let the input impedance of tht' network be 
of tht' following form: 

(13) 
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where 

P2'< ... < Pn . 

To find the relationship between quantities Xi and "'/i, let us build the network 
from the output terminal-pair toward the input terminal-pair and examine 
how the poles of the driving-point impedance migrate meanwhile. The poles 
of the impedances of the parallel RC configurations in the series arms mean 
the zeros of the transfer functions. Upon connecting such an RC configuration 
in series with the part already considered of the network, the poles of the driv
ing-point impedance remain unchanged, but a new pole appears, 'which is t11{' 
zero of the transfer function realized by the RC configuration examined. Thc 
driving-point admittance of an RC net'work increases monotonously as a func
tion of the real values of s, except for the singular points. That is why conncct
ing a rcsistance in parallel with the part already considered of the network, 
i.e. adding a positive constant to thc driving-point admittance, its zeros. i.e. 
the poles of the driving-point impedance are shifted to the left along the real 
axis, so that their ahsolute values increase. Thus it can be stated: For an ar
bitrary point on the negative real axis no more poles of the input impedance 
can lie to the right of this point, than are zeros of the transfer function to the 
right of that point. Here every zero must he counted according to its multi
plicity. This condition can hc expressed as: 

r i ( . - 1 ') ) z - ,~, ... Il (H) 

leading directly to conditions (lla) and (llb), these being at the same time 

sufficient conditions. ~amely their satisfaction permits to choose the input 
impedance zl1(s) so that (H) is satisfied. In the course of the synthesis that 
zero is al'ways realized to which the greatest shifting resistance helongs, that is, 
the value of the shifting resistance is given by the formula: 

max [Zi( -xj)] 
J 

(15) 

where Zi(S) represents the driving-point impedance to be realizcd at the given 
moment of synthesis and the Xl represent the absolute values of the zeros not 
yet realized. If a value Zi( -xi) is not finite, ohviously this zero is directly 
realized without shifting resistance. This method, after realizing a zero, leads 
to a driving-point impedance, thc poles of which, together 'with the not yet 
realized zeros of the transfer function satisfy condition (14). This is obviously 
from the follo'wing consideration: Removing a parallel resistance from the 
driving-point impedance and reducing its magnitude gradually from a very 
great value, the poles of the driving-point impedance migrate gradually to the 
right. Namely the driving-point admittance increases monotonously a;; a 



function of the real s values, except for the singular points, and subtracting 
an increasing conductance shifts its zeros to the right. The formula (15) gives 
exactly that value of resistance for which a pole of the driving-point impedance 
first arrives to a not yet realized zero of the transfer function. That is why the 
condition (14) keeps satisfied after the removal of the shifting resistance. This 
is not altered by removing a parallel RC configuration in the series arm and 
effacing the same yalue among both the poles of the driYing-point impedance 
and the zeros to be realized. On the other hand, if condition (14) is satisfied, 
one zero, more precisely the one with the smallest absolute value, can be real
ized by a single shifting resistance. Namely, the driYing-point impedance has 
no pole to the right of this zero (-xi) and so 

(16 ) 

hence a shifting resistance can be remoyed in the shunt branch. 
The network in Fig. 2a does not attenuate at infinite frequeney, as ex

pressed by Equation (Hc). 
The proof of Theorem 2 will be presented only briefly because it is similar 

to the previous one. The synthesis of the network in Fig. 2b must be hegun 
,\ith the output terminal-pair, hence from the parameter )'22' Let be .'Y22(S) of 
the following form: 

(17) 

It can easily be proved that the follo'wing eondition must be satisfied: 

I'i (i = 1,2, ... 111) (18) 

Condition (12h) follows from this. (Condition (12a) is self-evident.) 
If (12h) is satisfied, .'Y22(S) ean be chosen so that (18) too is satisfied. In 

the course of the synthesis the zero to which the smallest shifting resistance 
belongs is to be realized throughout, i.e. the yalue of the shifting resistance i~ 
always glyen by the following formula: 

~ = G~ = max [Y~( -xi)] 
Ri j 

(19) 

where Yt(s) represents the dri"dng-point admittance to be realized and the 
x; represent the absolute values of the zeros not yet realized. If the zeros to he 



10 A. JUGOS 

realized include infinity then the value lim Yi(s), too, is to he considered when 
s-;,-'" 

choosing the maximum. The network in Fig. 2b does not attenuate at zero 
frequency, as expressed by condition (12c). 

Notice the advantage of the network that all capacitances are grounded, 
a special advantage for integrated circuits. On the other hand, it is a disad
vantage that there is no resistance connected in parallel with the output ter
minal-pairs to represent the load. 

Example 1 

Let us realize the following transfer function: 

In our case 

G(s) = (s+l) (s+3) (s+6)~ 
(s+4) (s-1-8) (s...LI0) (s+13) 

10 P. = 13 

This means that the transfer function satisfies condition (Il), hence it is realiz
able by the class of network in Fig. 2a. The input impedance is assumed in the 
following form: 

( 
(s+4) (s+8) (s+10) (s+13) 

:11 s) ==.---~--~~--~--~ 
(s...Ll) (s+6) (s+9) (s+Il) 

F(f!.. ·f 

Zeros s = -I and s = -6 can be realized directly, without shifting resistance. 
For this purpose decompose Zll(S): 

S2 20.837 s + 107.363 
Here a = 5.67, b = 1.493 and Zz(s) = -----c--,..,-----::--

S2 + 20s + 99 

It follows from this that (Fig. 4) 
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Cl = ~ = 0.176 RI = 5.67 C" 
a 

1 
= 0.670 R~ = 0.249 . 

b 

11 

Zeros S1 = -3 and S~ = -6 remain still to be realized. The values of Z~(s) 
at these points are: 

Zz(-3) = 1.164 and Z2(-6) = 1.223 

From this obviously the zero s~ = -6 is to he realized first. The value of the 
shifting resistance is 

Rn 1.223 

The driving-point impedance reamaining after the removal of the shifting 
resi"tance is decomposed in the foUo'wing way: 

23.67 s+10.527 

s-'-6 0.18226 s-!-1.8675 

Hence: 

C3 = 0.0423 and R:! 3.94 

Now, only the zero s -3 keeps to he realized. The detailed calculation gives 
the following values: 

RI~ = 5.698 Cl = 0.00271 RI 123 R; = 147 

The complete network is st'cn in Fig. 4. 

The synthesis of the general transfer function 

These results can be generalized at a little effort. Let the transfer func
tion be again of the form: 

(20) 

wht'rc m <n 

Let some zeros and poles of the transfer function which have the smallest 
absolute values and the number of which is r, satisfy the condition stated at 
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the treatment of the high -pass ladder networks and let the other zeros and poles 
satisfy the condition stated at the treatment of the low-pass ladder networks. 
That is 

and 

where 0 <r< m 

if i = 1,2, ... r 

if i = r + 1, T -L 2, ... m 

(2Ia) 

(2Ib) 

The extreme cases r = 0 and r m = n correspond to the already treated 
low-pass and high-pass transfer functions respectively. If r differs from thcse 
yalues, the transfer function has a bandpass character. 

The realization of transfer functions satisfying condition (21) consists 
in the follo'wing steps. By means of parallel RC configurations in series arms 
the r zeros with the smallest absolute values are realized and the other zeros 
by means of series RC configurations in shunt arms. Accordingly, Z11(S) has 
to be chosen carefully so, that r of its poles with the smallest absolute yalues 

satisfy the condition (14), that is, with the symhols used in (13). 

" . i I for 1,2, ... r. (22) 

In principle, it ought to he cared that (n - r) zeros of z11(S) 'with the greatest 
ahsolute values should satisfy a condition analogous to (18), hut this is satisfied 
automatically because of (2Ib). Before each step of the synthesis it can be 
decided whether the zero to be realized is in the shunt or in the series arm. 
If it is in the series arm, then from the possible zeros (for these i < r) the one 
is chosen for realization to 'which thc greatest shifting resistance belongs. If 
this zero is in the shunt arm, from the possible zeros (for these i r 1) 
the one with the smallest shifting resistance is chosen. It is easy to proye 'with 
a simple reasoning, similar to the preceding one hut somewhat longer, that 
this method is expedient, i.e. the transfer function can he realized by using 
only resistances in the zero shifting. 

If the transfer function does not satisfy condition (21), then no rule for 
choosing zu(s) [or Y:ds)] and for the order to realize the zeros can he established 
to ensure the possibility of zero shifting in all cases hy means of a resistance. 
Let us reconsiderate the two groups of zeros of the transfer function. One of 
these contained the zeros then realized in shunt arms, and the other contained 
the zeros then realized in series arms. Factorizc now the transfer function to 
the product of two factors, a low-pass and a high-pass type satisfying condi
tion (12) and (11), respectively. It is easy to proye that this factorization can 
always he performed in seyeral ways. The two respective transfer functions 
are realized separately, then the two networks connected in cascade so that 
the impedance leyel of the second one is chosen much greater than i~ that of 
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the first. It is obvious that the transfer function of the total network nearly 
corresponds to the transfer function to be realized. The second part of this 
paper will deal with the problem of how the synthesis can be performed if the 
impedance levels of the two parts of the network are not to be chosen so differ
cnt and the transfer function is to be realized accurately. 

Example 2 

Let us realize the following transfer function: 

G(S) I( _____ s~(_s_:_1~)~(s_-_'_1_2)~ __ _ 

(s+2) (s+4) (s+7) (s+10) 

The transfer function is seen to satisfy condition (21) and r 2. The zeros 

SI = 0 and S2 = -1 are to be realized in series arms, and the zero S3 = -12 
and the zero at infinity in shunt arms. Let us choose the input impedance in 

the follo'wing form: 

(s+2) (s+4) (s+7) (s+1~) 

(s+1) (s+3) (s+5) (05+8) 

Of course, the zero s~ = -1 in series arm is realized first, this needing no shift
ing resistance. The input impedance is decomposed in the following "way: 

From this RI = 2.893 and Cl = 0.346 (Fig. 5). 
Let us now realize the other zero in series arm, namely the zero SI = O. The 
yalue of the shifting resistance is: 

Rn Z~(O) = 1.773, 

The driYing-point impedance, 'which remains after the removal of the shifting 
resistance in the shunt arm and its decomposition are as follows: 

Z~(s) 
1 S3+ 19.11052+ 114.6s+212.8 

1 0.437s:1+5.22s2 +14.4s 

Z2(S) Ril 

a Z ( .. 14.8 s2+12.65s+37.4 -+ 3 05)=---
05 s 0.437s2 +5.22s+14.4 
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From this Cz = 0.0676. 
"No·w, only the zeros in shunt arm~ are to he realized. _-is 

2.03 and lim Z3(S) 2.29. 
s-o-" 

R; 

Fig . .) 

the zero S3 = -12 is realized first, heeause the shifting resistance belonging 
to this is smaller. The realization of the zero at infinity remains the last step. 
The detailed calculation gives the following values for the respective elements 
(Fig. 5): 

RI? = 2.03 R3 = 0.562 C3 = 0.148 

2.52 Ri = 13.1 

SUIllmary 

The synthesis of' RC ladder net".-orks can be performed by the method of the removal 
of poles in such a way that the zero shifting is done only by resistances. using a minimum of 
capacitances for the synthesis. Two special classes of ladder network, the high-pass and low
pass networks have been dealt with. 

The necessary and sufficient conditions for transfer functions to be realized by these 
classes of networks are presented together with the method of realization. The synthesis of a 
more general transfer function and opportunity for realizing entirely general transfer funptions 
are treated. too. The second part of the paper will deliver ample detaiL,. 

References 

1. FIALKOW, A.-GERsr, 1.: The transfer function of an RC ladder network, Journal 2iIath. 
and Phys. 30, 49-72. (1951). 

2. FUJISAWA, T.: Realizability theorem for mid-series or mid-shunt low-pass ladders without 
mutual induction, IRE TraIlS. CT-2, 320-325. (1955). 

3. WATANABE, H.: Synthesis of band-pass ladder networks, IRE Trans. CT-5, 256- 264. (1958). 
4. WEINBERG, L.: Network analysis and synthesis, 2iIcGraw-Hill, Xew York, 196,1-
5. CHEN. Wo. H.: Linear net'I'ork de;jgn and synthesis, 2ilcGraw-Hill, Xew York, 196-1. 

Dr. Andras MAGOS, Budapest, XI., Egry lozsef u. 20, Hungary 


