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Introduction 

:\" onreeiprocal elements, particular} circulators are often used in modern 
microwave circuits. They can he utilized in filter-multiplexers, hefore para­
metric and paramagnetic amplifiers, etc. A circulator can he made of wave­
guides (Fig. 1) or strip lines. The ideal cireulator is also an important elempnt 

from the point of view of network theory [10]. 

Fig. I F'ip:. ~ 
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The ideal circulator is a nonrcciprocal clement having three or more t('l"­
minal pairs (ports). The total input power entering any port leaye5 perfectl;' 
through the terminal pair in turn. In the ease of three terminal pairs the POWPI" 

entering the port 1 leaves on the terminal pair 2, in accordance with the direc­
tion of circulation, while no power 'will reach the terminal pair 3 (Fig. 2). Prac­
tically, the ideal circulator can only he approximated, since 1055e5 and reflec­
tions occur. Its characteristics: 

insertion loss (forward attenuation): 0.2-0.5 dB 
isolation (backward attenuation): 20-30 dB 

The effect of circulation is mostly produced hy circular or triangular based 
ferrite cylinders, pre-magnetized hy a permanent magnetic field (Fig. 1). 
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The exaet calculation of wayeguide Y-circulators requires the solution 
of lVIaxwell-equations 'with inhomogeneous boundary conditions. The calcula­
tion encounters significant difficulties duc to the complicated geometrical 
arrangement. In order to simplify the problem, some authors [1-4J set out 
from theories reflecting the fundamental physical properties, hut they did not 
,.:triYe for completeness. 

In this paper the analysis of wayeguidf' Y-circulator is donc on tl1{' basis 

of [5 J, in the following main steps: 
As a first step, through thc cxact functional analysis of the idcalizcd 

electrodynamical problcm, the general lumped equiyalent circuit of the net­
work is determined. (By idealization is meant hcre the' assumption of linearity 
and exemptness of losscs.) 

As a second step, this nun-reciprocal network of infinitc dimension,; is 

approximatcd in an arbitrary [coo, WiJJ (0 .:::::. (0,,':::::' «la .<: ,,) frcqucncy region 
by a network of finite dimensions. Thc approximate net\\-ork will he thc more 
complicated, the wider the uhseryed frequency region and the dost,r the 

original network is to be approximated. 
As a eonclusion, thc general results al'e applied to analyse numerically 

the ccrvity arrangement in Fig. 1. With thc knowledge of the giycn geometrical 
arrangement and thc chal'actel'istics of the materials we determine the para­
meters of the equiyalent circuit and compare them with results of measure­
ments. 

The differcnct' hct,\-een the measured and calculated yalues will appear 

to be bclo,r 10~;r 

1. The general lumped equivalent of microwave networks 

Determination of the general lumped equiyalent circuit is suitahly set 
out from the general cavity arrangement in Fig. 3. 

The closed cavity V is bounded hy a continuous and sectionally smooth 
surfacc F. 

Let the permittiyity tensor EO€ and the permeahility tensor ,I' otJ. he sec­
tionally smooth functions of place coordinates. 

Be the tensors € and [J. linear, hermitian and positiyely definitc ones. 
(Conditions of linearity, exemptness of losses and positiYC field energy.) 

These conditions are closely approximated in thc cases of most practically 
used cayity arrangements. 

Electric and magnetic fields of the cavity are described by suitably cho­
sen complete ortho-normalized function systems. Each of these function sys­
tems can be combined of two suhsystems, hy uniting a solenoidal and an irro­
tational one. 



Fig. 3 

The Ea, Ha solenoidal functions of series-expansion are defined by the 
following system of differential equations: 

rot Ha(1') = ka €(1') Ea(1') 

rot Ea(1') = ka[l.(1') H,,(1') 

Ea(l') xn(1') = 0 

Ha(1') xn(r) = 0 

(1 ) 

The Ed , Ho irrotational functions of series-expansion are defined hy the 

following systems of differential equations: 

Ll[J.(l') Hb(l') + kS Hb(l') = 0 

n(l')[J.(l') Hb(l') 0 

div /1.(1') Hb(l') = 0 

Ll€(r) Ed(r) k~ Ed(r) = 0 

div €(r) Ed(r) = 0 

o 

rEV 

r EFl: 

l' E F:\1 

rEV 

(:2) 

(3) 

where n(r) is the outer normal, FE is an electric wall, and Fh! i~ a magnetic 
wall. Both latter united give the total hounding surface F. 

The eigenfunctions helonging to different k" eigenyalues are orthogollal 
to each other. There heing a finite numher of linearly independent eigenfunc­
tions haying the same eigenyalue k" they can he orthogonalizecl, for instance 
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hy the Schmidt-procedure [14]: 

_10 v U' 
r)n' - I 

' [1 U =U' 
(4) 

ke .\,. H; p.(r) Hq dV = 6l'q !J[}Q = {O P q 
, 1p=q 

v, If E { a} ...:.- {d}; p, q E { a} ~ {iI} 

k, - constan t of normalization, 'with the dimension [11 m]. 
Let us arrange hoth the electric and the magnetic functions of series­

expan;:ion into column-vectors of infinite dimensions in the same 'way: 

'" <=, r:: x ~:, rH 
(5) 

The electric and the magnetic field of the cayity can be descrihed by the 
equations (5) as follows: 

E=I;FU (6) 

(7) 

Thc correlation hetween electric and magnetic fields is described hy the 
:\Iaxwell equations, Their form is, in case of harmonic time-dependence: 

rot H(r) j(!)cu E(r) E(r) (3) 

rot E(r) - jC'J/l(l [J.(r) H(r) , 

Let us multiply the first equation of (3) hy column-vector 13* and the second 
one hy column-yector 'JC*, and integrate hoth equations for the yolume }-. 
After appropriate yectoranalytical transformations, and using Eq. (7), the 

columnvectors formed from the coefficients of series-expansions of electric 
and magnetic fields, and the column-yectors determined from the excitations 
are correlated by the following algebraical system of equations: 

I~ 
m 

U iQA QA ~J~ 
~1 (9) 
e 

J --QA QA Yu; 
- !- 1 
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The meaning of the given quantities: 

In = number of magnetic apertures: 
e = number of electric apertures; 

J~ = '\F:Uk Hi (~*xn) dfk 

U; = ,\ FEZ El (';rc*xn) dfI 

diagonal matrix; 

k = 1,2, ... , m 

1 = 1,2, ... , e 

for solenoidal functions of series-expansion; 
for irrotational functions of series-expansion; 
relative frequency; 
impedance unit chosen 

A= [Q2 

65 

(10) 

(11) 

(9b) 

The net,rork, given by the system of equations (9) disintegrates to an 
infinite number of mutually independent two terminal pairs, Q, A being dia­

gonal. One of the two terminal pairs is shown on the framed part of Fig. 5. 

Fig. 1 

THt U ~ (1) 

Fig. 5 

1: IT! 
,.....--<>---1 arcT 

I 

-arcT -

The so-called internal cavity-terminal pairs of the different caVItIes de­
fined by the equations (7), (10) and (11) connected by a common aperture 
cannot be connected directly. For this reason by generalizing REITER'S [9J 
procedure, we expand in a series the tangential electric and magnetic field of 
each aperture with the aid of a real, complete, ortho-normalized surface fune­

tion system: 

5 Periouica Polytcdmica El. XIY/l. 
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In case of electric aperture: 

Eii = U~i et 

Hu xn = - i.~i e! 

G. 1l.nDIER 

HI:' = J FEI el Et! dj; 

iEi = JFEl e! (Htlxn) ~f; 

In cas!' of magnetic aperture: 

H u, = iJ0.l: hi 

Ell: xn = u;w: hi,. 

i\U: = JF.llio ilk Ht!: df: 

U,\IJ: =, I'F.llk hJc (Eu: xn) clj;: 

(12) 

(13) 

(1:1) 

f15 ) 

The network between the internal cavity-terminal pairs and the so-called 
aperture terminal pairs defined by the equations (12)-(15) is ohtained hy 
expanding into series the column-vectors if, and :re with respect to the function­

systems hi: and eh respectively. 

:rC(r) xn(1') = TE; e;(1') } 

T El =- JFEI e;(r) (:rCT (1') Xl! (r)) dj; 

iEI --- TE [( --J) U; = T~T liE [ 

&;(r) xn(1') = T,wi h;Jl') 1 
T\lk = JFJli,hk(r) (1£7(r) xn(r») dj;, J 

(16) 
(17) 

(18) 

(19) 

Thesc nctworks can be built up with the aid of transformers of complex 
transformation ratio [5]. A transformer of complex T ratio can be estahlished 
hya cascade connection of an ideal transformer of ratio !Tt and a nonreeiproeal 
phase shifter (Fig. 4). 

Fig. :) shows the general lumped equivalent circuit of the cavity. 
The corresponding aperture-terminal pairs of the cavities coupled through 

a mutual aperture can be interconnected directly in case of electric aperture, 
and through a transformer of ratio 1 : --1 in case of magnetic apertul'{', 
due to th e continuitv of Et and 

2. The simplified equivalent circuit of the coupled cavity-system 

Th(' general equiyalent circuit of the coupled cavity-system ·with respect 
to Fig. 5 i:- too ccmplicated for practical calculations. For this reason thif' 
network ·will he approximated hy a net,York of finite dimensions, For sake of 
:-implificatioll the fUIlction system of series-expani'ion ({ Er}, {Hi}) are diyided 
in the same wav into two groups, t and 1", re:::pectiyely. 
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To the group t belong a finite 2V number of modes. The number and type 
of selected modes are partly determined by the frequency-region, and partly 
by the accuracy desired. The wider the frequency-region observed, and the 
less the error permitted, the more modes must hp takpll into account for thp 
group t. All the other modes belong to group r. 

The simplified network of eayities :x and ;3, coupled with each through 
a mutual aperture, is composed IJY cascade connecting thrce partialnct·works 
(Fig. 6). The first and the third part consist of the internal eayity-network of 

~ r-1 z 
jJ 

y 

Fi[!., 6 

dimensions j\~ and "V,1 belonging to the i'uitably ChOE't'll fUllctions of series­
expansion of coupled cavities :x and ;3, while the second part joins the N~ ter­
minal pairs of thc cavity x, and JY,; tprminal pair~ of the cayity (J, by a nptwork 
given by its Y or Z matrix [5J. 

I Il case of electric aperture: 

(20) 

where I, run throuf:h l'aeh of the modes cV" and "Y 

<Pi' <Pt' are the solutions of the following integral (,quations: 

1:21) 

where 't]~"'cjl - the tensor kernel of the integral equations: 

YJ\-"cjl(r, s) =,!J .y Ar (H,(r) xn(r») o( Hr(r) xn(r»)* , (22) 
r"rjl 

It can be proved that the variatioll of (:20) vanishes if <;Pi' <Pi· are "oluti()ll~ of 
integral equatiolls (21) [11]. 

,) 

For a magnetic aperture we get a similar expression: 

[TF_,!! (Er' xn) "¥; clf,:] [FlU. (Et Xil) 'Pt' df,J 

,I'F)!, JFlJ' "¥;"(s) YJ?!bjl (5, 1') 'Pt' clF, dJliT 
(:23 ) 
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The variation of (23) vanishes if'F j , 'F/. are solutions of the following integral 
equations: 

(24) 
where 

Y(!J:t.+{J = Q 2: Ar(ET(r) xn(r)) 0 (ET(r) xn(r))*. (25) 
{J':t.,T 

AT is the corresponding element of diagonal matrix (9b); the mark 0 means 
the tensor multiplication. 

3. Numerical analysis of the waveguide Y -circulator 

A. Determination of the expnmding function-systems 

Now, the analysis described ahove, will be applied to a given geometrical 
arrangement. The cavity-arrangements seen in Figs 1 and 7 will he examined. 

z 

i 

b/ 
t 
~ ..... --------~--y 

d 
-I 

Fig. -

i 

al -.fL 

I 

~ 

Let one rcctangular waveguide carrying TE 10 mode join each side of the tri­
angular hased cylindrical cavity, hounded by electric ·wall. So the plancs I, II 
and III are electric aperture surfaces. Since the magnetic field of the mode 
TElo does not vary in direction of the;; axis, it is sufficient to examine only 
the so-called zero-type eigenfunctions, constant along the ;; axis. (From the 
solenoidal group only TlVI-types exist). 

The solenoidal TM oscillations of the hollow cavity resonator are [12]: 

Et: R [e=j:t.x sin x' y + e=jrix sinp' y - e=j;·x sin;v' y] 

11;}. = : j R [xe=j:t.x sinx''V·-pe:;:px sin/l'v ye=j;.xsin/y] (26) 
ka ~ J 

R 
11 a""x = [x' e =j:t.x cos x' y + p' e :;: j,;x cos [3'y - ;V' e =j;'x cos /y] . 

k(1 
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The irrotational oscillations of the hollow cavity resonator: 

H ,:;v = ~ [rx' e ±j~x sin rx' 'V + (3' e :;jf3x sin p'y + y' e ±j;'x sin y'y] 
., kp ..' 

Hff;,= ; j: [oce::':j,xcosrx'y-(3e:;jj1Xcos(3'y+ye::':hxcosy'y] (27) 
p 

The yalues of the constants III the formulae: 

oc' =:1 In 
d 

. m +2n 
X= 2:1----

3a 

'J' 11 /J =:1-
d 

2m+n p = 2:t---
3a 

m, n are positive integers labelling the modes: 

m 11 
y' = :T ---'--

d 

m-n 
/'== 21£---

3a 
(28) 

(29) 

The magnetic fields of each aperture are seen to he connectcd by the following 
relations: 

(30) 

H± (x )' - b) - e::':jZ;3 :r(n-m) H± (x 'Y mn 1I j, II I - - mn j,..' I b) 

By introducing the ferrite rod, the field-structure and the natural fre­
quency change. Various methods exist to approximate the natural fields and 
natural frequencies at a given accuracy [6, 7]. 

In case of a sufficiently small cylinder diameter, the magnetic field 
of the aperture remains constant, only the natural frequency alters. The effects 
of the ferrite dielectric constant and of the permeability tensor are considered 
separately [6]: 

(31) 

where k£ is the natural frequency of the cavity for pure dielectric influence, 
k.\! that for only magnetic perturbance. kElvl is the approximative natural 
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frequency of the jointly loaded cavity, ko is the natural frequency of the un­
loaded cavity. 

The value of kE can be determined by NIKOLSKI'S method [6]. If the di­
electric constant c = 9, the decrease of natural frequency is shown in Fig. 8 
for the modes TlVlno and TlVIilo· 

0,3 

0,2 

0,1 

2 
"9 

~-------'_I-Tt1l1o 

3 2e 
9" a 

Fig. 8 

The value of kM can be determined by perturbance calculus: 

kf02l0 - ktho 
-- kf0:no 

where ,1.1 and % are elements of permeability tensor: 

o ~l 

(32) 

(33) 

The change of natural frequency can be determined similarly for different 
ferrite shapes. 

B. Determination of the simplified equivalent circlIit of the aperture 

Let the examined frequency region approach the natural frequency of 
mode TlVIilO' Then the cavity-modes TlVIiio and P llO fall into the group t, all 
others belong to the group r. The waveguide modes are obtained by uniting 
the appropriate cavity modes [9]. The propagating TElo mode falls into group 
t, while the other TEno and TEmo modes an' ranged into group r. 
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The equations describing the field of the TE waveguide modes: 

liT 
H"n = I -;;b cos (2n 

') 

1)2~ 
2 a 

l(T 2x 
H"m = i -b sin m;r-, a a 

Z-l 
;no Y· 1[1 1~/"'· 

mO = \1 - I"o,),m : Z-l Y. 1.'1 .~/ '" no = nO = I -),0 I.;, 
(34) 

. (11r-)-1. 2a a 
1'0 = / So ,HO : I' n = ---- ; i·m = 

2n-l m 

In order to determine the topological setting up of the network, the func­
tions of series expansion are expressed by new functions at the apertures: 

H~ = ~ [HAx) HA x)] 

H,~ = ~. [H,,(x) HA -x)] 
-] 

XE[-..!!....,~], 
2 2 

(35) 

H~(x) and H~(x) being even and odd functions of x, resp. thus, for an arbitary 
index: 

o 1, k = 1,2, .. , . (36) 

\Vith thcse functions 'we introduced new terminal pairs, related to the pre­

"iou!' terminal pairs by the equations (37) and (38): 

Hx~ HI.!... 'HII x __ ] x 

II = J+ -+ I­
III = j(I"'" - I-) 

U+' = UI' JUII'\ 

u-' = Ul' -, JUII'f 

(37) 

(38) 

For the mode P 110 H~ 0 from Eq, (27), while for the TElo waveguide 
mode H~ 0, Both H; and H~ exist for the modes TlVIiio. Hence the net,vork 
can he decomposed to the partial networks shown in Fig. 9. The elements of 
the impedance matrices are to be determined by variational expressions again: 

~ A r (HI,II "n) (r)I,II ar-r \' (HI, IIvn) /l'd,II ar-r 
~~~..1rJFO r A "1\ JO.FV r .\- \Pi J() 

(39) 

r xiT.,.'" 
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J 11 
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.11 
JX'2 

uF~ II 
jX22 

~ 
'Xi 

J 12 
uf~ x/ J 22 

cfJl = 0 on the aperture I (I = 7) 

if'l "-J t on the aperture 1I (I = 2) 
ifl = j'f on the aperture III If = 3} 

Fig. 9 

Fig. 10 

X' 

3 

2 

2,82 
9 

u=~ o ~ ____ ~ ____ ~ ____ ~ ______ ~~a_ 
1,2 1,6 l8 

Fig. 11 
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By the numerical evaluation of (39) the networks ZI and ZII turn to be closely 
approximated by a cascade connection of a shunting reactance and an ideal 
transformer of ratio ii (Fig. 10). 

For network I ii = 1.07 

For network II ii = -2.32 

The values of shunting reactances for networks I and II are shown 1Il 

Figs. 11 and 12, respectively. 

1,2 

1,0 

0,8 

G,6 

0/1 

0,2 

o 
1,2 1,4 1,6 1,8 

Fig. 1~ 

C. The analysis of the resultant network 

The indiyidual elements of the simplified aperture network determined 
the detailed study of the complete network can be begun with. According to 
the conclusions of chapter 2, the terminal pairs of the aperture network are 
joined to the corresponding terminal pairs of the internal cavity net"'\wrk. So a 
three terminal pair is obtained, with waveguide terminal pairs as appropriate 
terminal pairs. 

According to Eq. (9), the internal cavity network belonging to cavity 
modes TMiio and P 110 is described by the following equations: 

(40) 

J p = _1_ (V·p' -L TTP'-L V·pI) 
110 .0 1 I G ~ I :l . 

J •• 
(41) 
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1,6 
u= ).0 ,measured . a 1,1t __ -_ 

L-~--~-'-----~==~==~;==~~~cra~k:u:~~led 
1,2 

0,8 

0,6 

0,2 

Q 
9 

2,75 
9 

Fig. 13 

2c 
a 

By comparing the equations (30), (38), (4.0) and (41) the admittance matrix 
of the three terminal pair between the terminal pairs I is as follows: 

-<p* ] [U{] 
<P U2 
'c u' J.,. 3 

(42) 

where 

3X"r 1 

+ [(.Q2012 .Q 3X"r1 

(43) 

-.Q 3X"fl + jej:;:C r (.Q~of_.Q -- 3X"f1 

From a study of Eq:3 (4,2), (4,3) it is seen that if [}2io = Q;;io, the three terminal 
pair is not symmetrical, thus the condition of reciprocity is not satisfied_ It is 
known from the literature that a three terminal pair likely to have a matched 
termination defines a circulator [3]. To determine the matching admittance. 
let us set out of the scatter matrix of the three terminal pair: 

s (44) 

The relation between admittance and scatter matrices is defined by Eq. (45): 

(45) 
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0 
1d. 2,75 3 2e 
9 9 g- o 

Fig. 14 

Here ~ = 1)-1 is the terminal admittance, E is the unity matrix. In order to 

get a counter-clockwise circulation it is necessary, that 

o s~ = 0 (46) 

be satisfied. From these conditions the matching admittance can unambigu­

ously he determined: 

i)= 
(Q;'of + (Q~o)~ 

Q 
2Q 6xrr] + 

By equalizing the imaginary and real parts the frequency and magnetic field 
~trength of matching can be determined. (Figs 13 and 14) From a comparison 

with records in [13] the error of calculation is seen to be belo·w 7%. 
There is no exact matching but at one frequency. Deviating from the 

frequency (wave length) of matching, reflection ·will occur. From the admissible 
value of reflection the circulator band width can he determined. By consider­

ing the frequency-dependence of reactive elements, expansion into series holds 

th(' reflection coefficient: 

r. 1 

Records III (13) lead tn the following expression for r: 

r ~-c 1 + 22~i .. 
i.o 

(48) 

(49) 
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Thus, the error is 10%. The measured and calculated values are seen to be in a 

good agreement. The approximation can be further refined by adding many 
more cavity modes to the group t. The case of triangular based ferrite is to be 
calculated in the same way. Then only the reactance X' and the frequencies 
Q;Ao alter. 

Summary 

The article contains the analysis of a waveguide Y-circulator. By generalizing G. Reiter's 
procedure, the lumped equivalent circuit is established for arbitrary shaped coupled ca,,-i.ty­
system filled by linear lossless noureciprocal media of tensor permeability and permitthity. 
This nonreciprocal network of infinite dimensions, composed of inductances, capacitances and 
transformers of complex transformation ratio is approximated in an arbitray frequency region 
by a network of finite dimensions. 

In the second part of the paper the general results are applied to the analysis of a 
waveguide Y-circulator. The parameters of equivalent circuit are established and composed 
to the results of measurements. 

The difference between measured and calculated values has probed to he less then 10%_ 
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