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Introduction

Nonreciprocal elements, particulary circulators are often used in modern
microwave circuits. They can be utilized in filter-multiplexers. before para-
metric and paramagnetic amplifiers, ete. A circulator can be made of wave-
guides (Fig. 1) or strip lines. The ideal circulator is also an important element

from the point of view of network theory [10].
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The ideal circulator is a nonreciprocal element having three or more ter-
minal pairs (ports). The total input power entering any port leaves perfectly
through the terminal pair in turn. In the case of three terminal pairs the power
entering the port 1 leaves on the terminal pair 2, in accordance with the direc-
tion of circulation, while no power will reach the terminal pair 3 (Fig. 2). Prac-
tically, the ideal circulator can only be approximated, since losses and reflec-

tions occur. Its characteristics:

insertion loss (forward attenuation): 0.2—0.5 dB
isolation (backward attenuation): 20—30 dB

The effect of circulation is mostly produced by circular or triangular based
yiI ) g
ferrite cylinders, pre-magnetized by a permanent magnetic field (Fig. 1).
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The exact calculation of waveguide Y-circulators requires the solution
of Maxwell-equations with inhomogeneous houndary conditions. The caleula-
tion encounters significant difficulties due to the complicated geometrical
arrangement. In order to simplify the problem, some authors [1—4] set out
from theories reflecting the fundamental physical properties, but they did not
strive for completeness.

In this paper the analysis of waveguide Y-circulator is done on the basis
of [5], in the following main steps:

As a first step, through the exact functional analysis of the idealized
clectrodvnamical problem, the general lumped equivalent circuit of the net-
work is determined. (Byv idealization is meant here the assumption of linearity
and exemptness of losses.)

As a second step, this non-reciprocal network of infinite dimensions is

\

approximated in an arbitrary [me. 0p] (0 < 0. @5 <7 =) frequency region
by a network of finite dimensions. The approximate network will be the more
complicated. the wider the observed frequency region and the closer the
original network is to be approximated.

As a conclusion, the general results are applied to analyse numerically
the cavity arrangement in Fig. 1. With the knowledge of the given geometrical
arrangement and the characteristics of the materials we determine the para-
meters of the equivalent circuit and compare them with results of measure-
ments.

The difference between the measured and calculated values will appear
to be below 109,

1. The general lumped equivalent of microwave networks

Determination of the general lumped equivalent circuit is suitably set
out from the general cavity arrangement in Fig. 3.

The closed cavity V7 is bounded by a continuous and sectionally smooth
surface F.

Let the permittivity tensor ¢,e and the permeability tensor 1 be see-
tionally smooth functions of place coordinates.

Be the tensors € and g linear, hermitian and positively definite ones.
{(Conditions of linearity, exemptness of losses and positive field energy.)

These conditions are closely approximated in the cases of most practically
used cavity arrangements.

Electric and magnetic fields of the cavity are described by suitably cho-
sen complete ortho-normalized function systems. Each of these function sys-
tems can he combined of two subsystems, by uniting a solenoidal and an irro-
tational one.
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The E,, H, solenoidal functions of series-expansion are defined by the
following system of differential equations:

rot H(r) = k,e(r) E (x) rel
rot E (r) = ku(r) H,(r) rel

(1)
E (x) xn(r) = 0 r¢Fp
H,(r) xn(r)= 0 rCFy .

The E,, H; irrotational functions of series-expansion are defined by the
following svstems of differential equations:

Ap.(r) Hy(r) + k3 Hy(x) = 0
n(r)u(r) Hy(r) =0 r¢Fy (2)
divp(r) Hy(r) =0 r ¢ Fy,

I

Ae(r) Eyr) - A E (r) =0 rel
dive(r)E (r) =0 veFyg (3)
n(r) e(r) Ey(r) = 0 r € By

where n(r) is the outer normal, Fg is an electric wall, and Fj; is a magnetic
wall. Both latter united give the total bounding surface F.

The eigenfunctions belonging to different k, eigenvalues are orthogonal
to each other. There being a finite number of linearly independent eigenfunc-
tions having the same eigenvalue k,, they can be orthogonalized, for instance
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by the Schmidt-procedure [14]:

kﬁ g‘r E]* E(l‘) E“' dIf = aru' sz_'u - JO v 7_L— * (*l')
‘ v [1 U=

k, [ Hyw(r) H,dV =0, 5, =10 P

‘ ‘ - o 1 ]) =3 q

v,we{ap —{d}: p,q€ia} ~ {b}
k. — constant of normalization, with the dimension [ljm].

Let us arrange both the electric and the magnetic functions of series-
expansion into column-vectors of infinite dimensions in the same way':

El v Hl »
M, (5)

& =|E, 3 =

The electric and the magnetic field of the cavity can be described by the
equations (5) as follows:

E=8TU H=%xT7] (6)
U=k, gz 257 ¢E dI J=k, gb H*Tp HdV (7)

The correlation between electric and magnetic fields is described by the
Maxwell equations. Their form is, in case of harmonic time-dependence:

rot H(r) = jwe, e(r) E(r) (8)
rot E(r) == — joou, u(r) H{r).

Let us multiply the first equation of (8) by column-vector & and the second
one by column-vector X*, and integrate both equations for the volume T
After appropriate vectoranalytical transformations, and using Eq. (7), the
columnvectors formed from the coefficients of series-expansions of electric
and magnetic fields, and the column-vectors determined from the excitations
are correlated by the following algebraical svstem of equations:

Nl )
J —QA RA Ny

. I1=1 .

u| [jea oa l l >
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The meaning of the given quantities:
m = number of magnetic apertures;
e = number of electric apertures;
¥i = {Fuy H,; (8*xn) df;, E=12 ....m (10)
U] = (ry E; (*xn) df; I=1,2,....¢ (11)
QL = {0 diagonal matrix;
0. _ 0 for solenoidal functions of series-expansion;
T Rk, for irrotational functions of series-expansion;
Q = o) uge ke relative frequency;
TR impedance unit chosen
A=[Q - QPE]. {(9b)

The network, given by the system of equations (9) disintegrates to an
infinite number of mutually independent two terminal pairs, £, A being dia-
gonal. One of the two terminal pairs is shown on the framed part of Fig. 5.
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The so-called internal cavity-terminal pairs of the different cavities de-
fined by the equations (7), {10) and (11) connected by a common aperture
cannot be connected directly. For this reason by generalizing REITER’s [9]
procedure, we expand in a series the tangential electric and magnetic field of
each aperture with the aid of a real, complete, ortho-normalized surface func-
tion system:

3 Periodica Polytechnica EL NXIV/L



66 G. HAMMER

In case of electric aperture:

E,= "11?:;.' e Qg == \Fw €; E"dfl (12)
Hyxn=—ife ig = _(,‘Ff.'z e; (Hxn) df, (13)

In case of magnetic aperture:

Hx - l Vil ” i;\ SFJ, h H*l: dj: (l'l)
E, xn =uly h. Wy, = 8 Foe B (B xn) df;. {15)

The network between the internal cavity-terminal pairs and the so-called
aperture terminal pairs defined by the equations (12)-—(13) is obtained by
expanding into series the column-vectors & and 3 with respect to the function-
systems £, and e, respectively.

3(r) ¥n(r) = — Tg e/r) (10)
Ty =~ j’pme( ) (JLT(I‘ an( ) df; (17)
ig = Tg(—J) U = TéI Ugy

&(r) xn(r) = Ty Iy (x) l (18)
Top = | £y Ju(r) (87 (x) an(r)) df,, | (19)
w =Ty, U —Jr=— Tifking.

These networks can be built up with the aid of transformers of complex
transformation ratio [5]. A transformer of complex T ratio can be established
by a cascade connection of an ideal transformer of ratio [T and a nonreciprocal
phase shifter (Fig. 4).

Fig. 5 shows the general lumped equivalent circuit of the cavity.

The corresponding aperture-terminal pairs of the cavities coupled through
a mutual aperture can be interconnected directly in case of electric aperture.
and through a transformer of ratio 1:-—1 in case of magnetic aperture.
due to the continuity of E; and H..

2. The simplified equivalent circuit of the coupled cavity-system

The general equivalent circuit of the coupled cavitv-system with respeet
to Fig. 5 is too ccmplicated for practical calculations. For this reason this
retwork will be approximated by a network of finite dimensions. For sake of
simplification the function system of series-expansion ({E;},{H,}) are divided
in the same way into two groups, t and r, respectively.



ANALYSIS OF THE WAVEGUIDE Y-CIRCULATOR

S
-1

To the group ¢ belong a finite N number of modes. The number and type
of selected modes are partly determined by the frequency-region, and partly
by the accuracy desired. The wider the frequencv-region observed. and the
less the error permitted, the more modes must be taken into aceount for the
group t. All the other modes belong to group r.

The simplified network of cavities z and §, coupled with each through
a mutual aperture, is composed by cascade connecting three partial networks
(Fig. 6). The first and the third part consist of the internal cavity-network of
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dimensions N, and A\, belonging to the zuitably chosen tunctions of series-
expansion of coupled cavities « and g, while the second part joins the N, ter-
minal pairs of the cavity «, and IV, terminal pairs of the cavity f, by a network,
given by its Y or Z matrix [3].

In case of electric aperture:

2w Wra(Heon) 8 4] ([ (H7 am) @ df] )

.\:FEZ ‘(;‘Ffz D7 (s) NN p(s. 1) @o(x) df df,

where 1, ¢ run through each of the modes N, and ..
L EN, N,

@,, D, are the solutions of the following integral cquations:

H.(x) an(r) = — (r, 08, ors) @ df... (EN,UN, (21)
where ':’)f\-_(__,_,g — the tensor kernel of the integral equations:
NNaeplt. ) = 2 3 A, (H,(r) xn(x)) o(H,(x) xn(x))*. (22)
Iz,

It can be proved that the variation of (20) vanishes if ©,, @, are solutions of
integral equations (21) [11].

For a magnetic aperture we get a similar expression:

v . [_‘,QF.;!,Z; (’E XH/\ g‘/x dfl’:] [F.w; (E; ):ﬂ) 1‘?: dﬁ]
] T N -

it



68 G. HAMMER

The variation of (23) vanishes if ¥;, ¥;. are solutions of the following integral

equations:
E;(r) xn(r) = ‘YF_,”C N p(r.8) ¥, dfi, t €N, U Ny (24)
where
Map=2 > A(E,(r) xn(r)) o (E.(r) xn(r))*. (25)
ﬂr:x,r

A, is the corresponding element of diagonal matrix (9b); the mark o means
the tensor multiplication.

3. Numerical analysis of the waveguide Y-circulator
A. Determination of the expounding function-systems

Now, the analysis described above, will be applied to a given geometrical
arrangement. The cavity-arrangements seen in Figs 1 and 7 will be examined.

Let one rectangular waveguide carrying TE,, mode join each side of the tri-
angular based cylindrical cavity, bounded by electric wall. So the planes I, 11
and III are electric aperture surfaces. Since the magnetic field of the mode
TE,, does not vary in direction of the z axis, it is sufficient to examine only
the so-called zero-type eigenfunctions, constant along the z axis. (From the
solenoidal group only TM-types exist).

The solenoidal TM oscillations of the hollow cavity resonator are [12]:

Ei=R[e*sinay + e~/ sin 'y — e~/ siny y]

. R iy . e e s
H, = 4j—[ze*sinay — pe~/™sin 'y — ye~""sin y'y] (26)

a
= R [P 5 ’ 22Nl N ar e e ’
HE = —[2'e=/* cosa’y + e cos p'y — y'e =¥ cos v'y].

e

te
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The irrotational oscillations of the hollow cavity resonator:

R biex s e o s s
Hi = —[a'e**sina'y + f'e¥% sin 'y + y’e =™ siny'y]
°p
+ —_ R 2 fzx ’ *j%\- ar | +j~,\' 1 97
H; = —;—]—A—[ocer *cosx'y — feT i cos ply + ye=I ™ cos ¢yl (27)
P

The values of the constants in the formulae:

s m or n , m-tn
& =T p::z—-—d ;/—:r-————~d .
d
m - 2n ) 2m -+~ n m—n .
r=27—"r f=27——— y=2m— (28)
3a 3a 3a
5
. 4 ., 1
kb kG = (m* + n*+mn); k,=—
9
3d? a

m, n are positive integers labelling the modes:

R— ]/ o (29)

The magnetic fields of each aperture are seen to be connected by the following

relations:
Ht%n(xlb M= b) = g=l=ualn=m) Hﬁzm(xls = b) (30)

Hyn(xms yin = b) = e=i=37n=m Hnim(xxe')‘l = b)

By introducing the ferrite rod, the field-structure and the natural fre-
quency change. Various methods exist to approximate the natural fields and
natural frequencies at a given accuracy [6, 7].

In case of a sufficiently small cylinder diameter, the magnetic field
of the aperture remains constant, only the natural frequency alters. The effects
of the ferrite dielectric constant and of the permeability tensor are considered
separately [6]:

bpa | ke Ry (31)
ko ko ko

where kg is the natural frequency of the cavity for pure dielectric influence,
kar that for only magnetic perturbance. kg is the approximative natural
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frequency of the jointly loaded cavity, k, is the natural frequency of the un-
loaded cavity.

The value of kg can be determined by Nixorski’s method [6]. If the di-
electric constant ¢ = 9, the decrease of natural frequency is shown in Fig. 8

for the modes TM,,, and TM3j,.

02}
TMuo
0t v+
2 25 32 2
9 9 9 a
Fig. 8

M210 Fsio - 1327 (i] pt— (x F 1) (32)
EZow 7 al (p+ 12—
where ¢ and i are elements of permeability tensor:
u —jx 0
w=\|jx u 0 (33)
0 0 1

The change of natural frequency can be determined similarly for different
ferrite shapes.

B. Determination of the simplified equivalent circuit of the aperture

Let the examined frequency region approach the natural frequency of
mode TM3o. Then the cavity-modes TMjiy and P, , fall into the group ¢, all
others belong to the group r. The waveguide modes are obtained by uniting
the appropriate cavity modes [9]. The propagating TE , mode falls into group
t.. while the other TE, ; and TE,, modes are ranged into group r.
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The equations describing the field of the TE waveguide modes:

2 a 2x

H, = //-—~cos(2n~l)———

’ ab 2 a
= /72 2x

o == |/ S1n mat

xm ' ab

-1 2 I 279 7] Ao Ay (34)
Zmo = Ynz() = 1" 1 — ;'6,//'}}1 : Zno = Y;’LO = l 1-— "‘5/"'71

N 9
- 7 | - za - a
fo=(fVequg) ™ 2, = — oAy =
2n—1 m

In order to determine the topological setting up of the network, the fune-
tions of series expansion are expressed by new functions at the apertures:

ot l\'){b—‘

xg[ﬁ%_‘;—] (35)
H( = ’;’“ [H\<x) - Hk(_"")] B o

H(x) and Hy(x) being even and odd functions of x, resp. thus, for an arbitary
index:

lg‘FO(H{\.xn) (Hf xn)df, =0 LEk=12,.... (36)

With these functions we introduced new terminal pairs, related to the pre-
vious terminal pairs by the equations (37) and (38):

Hi = Hy - jH
N=1+_+1" U+ = Ur —jum) (37)
Ju :](I— — ]—) U-" = UV — ]’UIIII (38)

For the mode P;, H = 0 from Eq. (27), while for the TE,, waveguide
mode H} == 0. Both H; and HY exist for the modes TMZ,. Hence the network
can be decomposed to the partial networks shown in Fig. 9. The elements of
the impedance matrices are to be determined by variational expressions again:

[ o (HE xn) DL df,] [ [ g (HL ) D11
4, [ (HE m) DL df, [, (HI' em) D110,

[

ziy

ZL = (39)
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By the numerical evaluation of (39) the networks Z! and Z" turu to be closely
approximated by a cascade connection of a shunting reactance and an ideal
transformer of ratio @ (Fig. 10).

For network I ii = 1.07

For network II ii = —2.32

The values of shunting reactances for networks I and II are shown in
Figs. 11 and 12, respectively.

X”
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1wl
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08}
a6}
av}

02t

0 . : .

C. The analysis of the resultant network

The individual elements of the simplified aperture network determined
the detailed study of the complete network can be begun with. According te
the conclusions of chapter 2, the terminal pairs of the aperture network are
joined to the corresponding terminal pairs of the internal cavity network. So a
three terminal pair is obtained, with waveguide terminal pairs as appropriate
terminal pairs.

According to Eq. (9), the internal cavity network belonging to cavity
modes TM#, and P, is described by the following equations:

Jz ]-Q Uz LyzLpyz! (40

210 (-(-)gim 2__(_)"( o Us U )
LT

Jho = —— (U}"+ UE'+- UY") (41)
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By comparing the equations (30), (38), (40) and (41) the admittance matrix
of the three terminal pair between the terminal pairs I is as follows:

] o[jE @ —or [
Ih| = |—o* j& @ U; (42)
I; 7 — @ & U;

where

’ 0

E :[ (inﬂwf* . Q o 3X”]~—1 i [_@22 . Q . 3Y”\’_1

PR - — 2 -1
b — je~jﬁ3[ (:‘"'.110) 0O 3X(I:’ l+ ]'ejg‘z{ (~Q210) 0 3‘X”} .
0 Q

From a study of Eqs (42), (43) it is seen that if 25, == £;},, the three terminal
pair is not symmetrical, thus the condition of reciprocity is not satisfied. It is
known from the literature that a three terminal pair likely to have a matched
termination defines a circulator [3]. To determine the matching admittance,
let us set out of the scatter matrix of the three terminal pair:

S. S, S,
S = S._, Sl Sa (_1_1)
Sy S5

The relation between admittance and scatter matrices is defined by Eq. (45):

§= -[Y — (E][Y + (E]. (45)
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Here { = 7~! is the terminal admittance, E is the unity matrix. In order to
get a counter-clockwise circulation it is necessary, that

Sl = { S._, =0 ‘53, =1 (4:6)

be satisfied. From these conditions the matching admittance can unambigu-
ously be determined:

By equalizing the imaginary and real parts the frequency and magnetic field
strength of matching can be determined. (Figs 13 and 14) From a comparison
with records in [13] the error of calculation is seen to be below 7%,

There is no exact matching but at one frequency. Deviating from the
frequeney (wave length) of matching, reflection will occur. From the admissible
value of reflection the circulator band width can be determined. By consider-
ing the frequency-dependence of reactive elements, expausion into series holds
the reflection coefficient:

Peel 424 _" . (48)
/'()

Recerds in (13) lead to the following expression for r:



6 G. HAMMER

Thus, the error is 10%,. The measured and calculated values are seen to be in a
good agreement. The approximation can be further refined by adding many
more cavity modes to the group t. The case of triangular based ferrite is to be
calculated in the same way. Then only the reactance X’ and the frequencies
QF, alter.

Summary

The article contains the analysis of a waveguide Y-circulator. By generalizing G. Reiter’s
procedure, the lumped equivalent circuit is established for arbitrary shaped coupled cavity-
system filled by linear lossless nonreciprocal media of tensor permeability and permittivity.
This nonreciprocal network of infinite dimensions. composed of inductances, capacitances and
transformers of complex transformation ratio is approximated in an arbitray frequency region
by a metwork of finite dimensions.

In the second part of the paper the general results are applied to the analysis of a
waveguide Y-circulator. The parameters of equivalent circuit are established and composed
to the results of measurements.

The difference between measured and calculated values has probed to be less then 109,
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