КВАДРУПОЛЬНАЯ ЛИНЗА С ПЛОСКИМИ ЭЛЕКТРОДАМИ

л. п. овсянникова и м. силади

Физико-Технический Институт им. А. Ф. Иоффе Академии Наук СССР Кафедра Теоретических Основ Электротехники Будапештского Политехнического Университета

(Поступило 11. VII. 1969 г.)

Квадрупольные линзы (электрические и магнитные), имеющие плоскую форму электродов (полюсов) (см. рис. 1), обладают целым рядом достоинств. К ним нужно отнести простоту изготовления, а также возможность уменьшения внешних размеров линзы по сравнению, например, с линзами, электроды (полюса) которых имеют гиперболическую или цилиндрическую форму.

Выражение для потенциала квадрупольной линзы с произвольной формой электродов (полюсов) в двумерном приближении можно записать следующим образом:

$$\Phi(x,y) = \frac{VK_2}{r^2} \left[x^2 - y^2 + \frac{K_6}{K_2} \frac{1}{r^4} (x^2 - y^2) (x^4 + y^4 - 14 x^2 y^2) + \dots \right]$$
(1)

Здесь \mathcal{K}_{4i+2} (i = 0, 1, 2...)-коэффициенты, зависящие от формы электродов (полюсов). Линза обладает двумя плоскостями симметрии и двумя плоскостями антисимметрии. Изменение величины коэффициента \mathcal{K}_2 вызывает изменение условий фокусировки первого порядка. Подбором значения потенциала $\pm V$ на электродах (полюсах) линзы при том же самом радиусе апертуры r можно скомпенсировать это изменение. Коэффициенты \mathcal{K}_{4i+2} (i = 1, 2...) характеризуют скорость изменения градиента напряженности поля по радиусу. Их обычно называют коэффициентами нелинейности поля.

Аналитические выражения для распределения потенциала линзы с плоскими электродами были получены в работах [1] в предположении бесконечно малого зазора между электродами.

Поля линз с плоскими электродами (полюсами) можно рассчитать также с помощью метода конформных отображений, используя теорему Кристоффеля—Шварца [2]. Однако интегралы, определяющие преобразования, нельзя выразить в элементарных функциях и они вычисляются численно. В работах [3, 4] были рассчитаны и измерены поля магнитных линз с плоскими электродами в случае подавленной шестой гармоники поля (K₆ = 0).

В статье [5] на примерах электростатической линзы с вогнутыми электродами и магнитной с полюсами в виде частей кругового цилиндра было

№	R_1/r	c/r	K_2	K_6	K_6/K_2	№	R_1/r	c/r	K_2	K_6	$K_{ m 6}/K_{ m 2}$
1	3,5	1,6	1,089	0,09	-0,08	4	1,59	1,45	1,092	-0,10	—0,09
		1,2	1,081	-0,08	-0,07			1,27	1,086	0,09	-0,08
		0,8	1,034	-0,01	-0,01			1,08	1,076	-0,08	-0,07
		0,4	0,890	0,14	0,16			0,91	1,045	0,00	0,00
		0	0,512	0,19	0,37			0,73	1,000	0,05	0,05
			 					0,55	0,926	0,14	0,15
2	2,34	1,87	1,093	-0,10	-0,09			0,36	0,819	0,20	0,24
-		1,60	1,092	0,10	0,09			0,18	0,663	0,21	0,32
		1,33	1,088	0,09	-0,08			0	0,350	0,13	0,37
		1,07	1,071	-0,06	-0,06						
		0,80	1,029	0,00	0,00	5	1,46	1,17	1,077	-0,08	-0,07
		0,53	0,942	0,10	0,11			0,80	1,025	0,00	0,00
		0,27	0,781	0,20	0,26			0,67	0,973	0,08	0,08
		0	0,456	0,14	0,31			0,50	0,893	0,17	0,19
2	1.07	1 -0	1 000	0.11	0.10			0,33	0,782	0,22	0,28
3	1,07	1,52	1,093	-0,11	-0,10			0,17	0,624	0,23	0,37
		1,39	1,086	-0,09	-0,08			0	0,359	0,34	0,95
		1,14	1,075	0,07	0,07						
		0,95	1,051	-0,03	-0,03	6	1,25	0,71	0,958	0,11	0,12
•		0,76	1,008	0,05	0,05			0,57	0,891	0,19	0,21
•		0,57	0,942	0,11	0,12			0,43	0,802	0,25	0,31
		0,38	0,835	0,20	0,24			0,29	0,682	0,28	0,41
		0,19	0,679	0,21	0,31			0,14	0,529	0,25	0,47
$\nabla (\cdot \cdot)$,	0	0,397	0,13	0,33			0	0 ,2 90	0,15	0,52

Таблица 1

показано, что меняя геометрические характеристики линзы, а следовательно, величину коэффициентов нелинейности поля, можно уменьшить сферическую аберрацию линзы.

В связи с вышесказанным, в данной работе исследуются поля двумерных электростатических квадрупольных линз с плоскими электродами, у которых коэффициенты нелинейности поля K_6 меняются в довольно широких пределах. Определяются геометрические характеристики линз с уменьшенной сферической аберрацией.

Измерения проводились на двумерной сетке сопротивлений Кафедры Теоретических Основ Электротехники Будапештского Политехнического Университета. Описание сетки имеется в работах [6, 7]. Моделировалась половина системы, расположенная над осью *x*, поэтому сопротивления границы сетки, совмещённой с осью *x*, удваивались. Значения потенциала измерялись по осям *x* и *y*. На электроды были поданы потенциалы 1 и 0, при этом потенциал в центре равнялся 0,5 единицы. Для проверки симметрии системы измерялся потенциал вдоль прямой, расположенной под углом 45° к осям *x* и *y*. Он был равен с большой степенью точности потенциалу в центре линзы.

На поле внутри линзы влияют граничные условия за электродами. Это влияние становится существенным в случае больших расстояний между электродами. Практически, граничные условия определяются камерой, в которой находится линза. Поэтому граница моделировалась на сетке ступенчатой линией, близкой к окружности. На граничную окружность радиуса R_1 подавался потенциал, равный его значению в центре линзы.

Таблица 2

$\frac{L}{r}$	$\frac{K_{\mathfrak{s}}}{K_2}$	$\frac{c}{r}$	$\frac{C_p}{L}$	$\frac{C_s}{L}$	$\frac{C_{p_1}}{L}$	$\frac{C_{p_2}}{L}$
4 5 6 8	0,152 0,062 0,030 0,010	0,52 0,72 0,80 0,86	0,5	0,5	—0,375	0,375
5	-0,001	0,88	0,5	0,5	0,375	0,008
4	0,000	0,88	0,5	0,5	-0,375	0,000

Картина поля снималась для линз с различными величинами R_1/r . При этом отношение ширины полюса к радиусу апертуры c/r менялось от нуля до максимально возможного значения. Для всех линз $b/c = \frac{1}{4}$.

Экспериментальные результаты обрабатывались с помощью метода наименьших квадратов на машине БЭСМ-4М. При этом для вычисления К₂ выбирались значения потенциала в области от 0,2 г до 0,7 г, а для вычисления K_6 -в области от 0,3 r до 0,8 r. Полученные значения K_2 , K_6 и K_6/K_2 приведены в таблице 1. Из таблицы видно, что K2 при любых значениях R1/r положительны для всех c/r. Когда $c/r \ge 0.5$, значения K_2 мало меняются с изменением R_1/r . С уменьшением c/r это изменение становится более значительным. Оно максимально при c/r = 0. Величины K₆/K₂ начинают отличаться уже при $c/r \approx 0,9$. Когда $c/r \approx 0,80-0,90,~K_{\rm g}/K_2$ меняет знак и при малых зазорах между электродами отношение К_в/К₂ становится отрицательным. Если с/г равно максимально возможному значению, то зазор между электродами можно считать малым и значения К2 и К6 (см. таблицу 1) получаются близкими к значениям $K_2 = 1,094$ и $K_6 = -0,108$, вычисленным по формулам работы [2]. Исключение составляют случаи, когда $R_1/r = 1,46$ и 1,25, и максимально возможное значение c/r таково, что зазор между электродами нельзя считать малым.

При c/r = 0 получаем значения K_2 , которые хорошо совпадают с результатами работы [8] при 2 $\varepsilon = 90^{\circ}$. А именно: когда $R_1/r = 3,5$, мы имеем $K_2 = 0,512$ (см. таблицу 1) и $K_2 = 0,517$ (см. [8]); для $R_1/r = 1,25$ имеем соответственно значения K_2 , равные 0,290 и 0,286. Совпадения значений K_6/K_2 оказывается несколько хуже: для $R_1/r = 3,5$ имеем K_6/K_2 , равные 0,37 (таблица 1) и 0,29 [8]; для $R_1/r = 1,25$ они, соответственно, равны 0,52 и 0,49.

Возможность компенсации каких-либо из коэффициентов сферической аберрации пятого порядка рассмотрим на примере линзы с $R_1/r = 1,67$. На рис. 2 представлены зависимости K_2 (точки) и K_6/K_2 (кружки) от ширины электрода c/r для этого случая.

$\frac{C_{p_1}+C_{p_2}}{L}$	$\frac{C_{s_1}}{L}$	$\frac{C_{s_2}}{L}$	$\frac{C_{s_1}+C_{s_2}}{L}$	$\frac{C_{t_1}}{L}$	$\frac{C_{t_2}}{L}$	$\frac{C_{t_1}+C_{t_2}}{L}$
0	-0,75		—36,9	—0,375	824,7	824
-0,383	0,75	0,750	0	-0,375	17,13	17,51
-0,375	-0,75	-0,016	-0,766	-0,375	0,375	0

Из рис. 2 видно, что $K_6/K_2 = 0$ для c/r = 0,9, при этом $K_2 = 1,05$.

Определим, при каких геометрических характеристиках этой линзы можно получить уменьшение сферической аберрации. Для этого воспользуемся результатами работы [5]. Выпишем значения K_6/K_2 , при которых корректируется какой-либо из коэффициентов сферической аберрации пятого порядка, и используя данные рис. 2, получим необходимые значения геометрических характеристик. Результаты вычислений приведены в таблице 2. В таблице 2 через C_{p1}/L , C_{s1}/L и C_{t1}/L обозначены коэффициенты сферической аберрации пятого порядка линзы со строго линейным полем, через C_{p2}/L , C_{s2}/L , C_{t2}/L -коэффициенты, связанные с нелинейностью поля. В этой же таблице для сравнения приведены коэффициенты сферической аберрации третьего порядка C_p/L и C_s/L . Параметр L равен расстоянию от предмета до изображения, которые находятся внутри линзы. Выражение для отклонения от параксиальной траектории траектории, вычисленной с точностью до членов пятого порядка малости, в месте расположения гауссова изображения ($z = z_i$) запишется тогда в следующем виде

$$\Delta x(z_i) = C_p \, x_0^{\prime 3} + C_s \, x_0^{\prime} \, y_0^{\prime 2} + (C_{p_1} + C_{p_2}) \, x_0^{\prime 5} + (C_{s_1} + C_{s_2}) \, x_0^{\prime 3} \, y_0^{\prime 2} + (C_{t_1} + C_{t_2}) \, x_0^{\prime} \, y_0^{\prime 4}. \tag{2}$$

Из таблицы 2 следует, что ни при каких значениях K_6/K_2 одновременно обратить в нуль коэффициенты сферической аберрации невозможно. Причём, чем больше отношение L/r, тем при меньших значениях K_6/K_2 происходит коррекция какого-либо коэффициента. Если $C_{p1} + C_{p2} = 0$, то величины остальных коэффициентов возрастают по сравнению с их величинами для строго линейного поля. Если $C_{s1} + C_{s2} = 0$, то возрастает значение коэффициента $C_{t1} + C_{t2}$, а аберрация в средней плоскости остается, практически, неизменной. При $C_{t1} + C_{t2} = 0$ остальные аберрационные коэффициенты почти не изменяются по сравнению с их значениями для строго линейного поля. Это объясняется тем, что $C_{t1} + C_{t2} = 0$ при значении K_6/K_2 , близком к нулю.

Из всего сказанного следует, что выбор К_в/К, необходимо связать с формой пучка. Если $x_0' = y_0'$, то лучше выбирать те значения K_6/K_2 , при которых корректируются коэффициенты C_{s_1} и C_{t_1} , так как ($C_{s_1} + C_{s_2}$) и ($C_{t_1} +$ $+ C_{i_2}$) по величине превосходят ($C_{p_1} + C_{p_2}$). Однако, в этом случае необходимо иметь в виду, что значения x'_0 и y'_0 будут малы (траектории в рассеивающей плоскости линзы сильно отклоняются от оси и, следовательно, в образовании изображения принимают участие траектории с малыми у₀'). Поэтому аберрации пятого порядка будут вносить небольшой вклад в общую сумму искажений по сравнению с аберрациями третьего порядка.

Если используется пучок с одинаковыми максимальными отклонениями от оси в плоскостях *хог* и *уог*, то $x_0' = y_0'$ sh $1/\pi$, то есть $y_0' \ll x_0'$. В таком случае лучше выбирать те значения K₆/K₂, при которых корректируется коэффициент C_{p_1} . Тот же вывод, очевидно, можно сделать и для плоского пучка с $y_0' = 0$. В работе [5] было показано также, что при некоторых отрицательных значениях К_в/К₂ можно уменьшить суммарную величину сферической аберрации третьего и пятого порядков и в плоскости гауссова изображения по сравнению с аберрациями линзы со строго линейным полем ($K_6 = 0$), и для определенных углов на входе в линзу обратить её в нуль. Так, например, в случае пучка заряженных частиц с $x_0' = y_0'$ при $K_6/K_2 = -0,070$ суммарная величина сферической аберрации третьего и пятого порядков в плоскости гауссова изображения меньше, чем еёзначение для линзы со сторого линейным полем при c/r = 1,14 и L/r = 4. Для $x^2 = 3^\circ$ величина суммарной аберрации обращается в нуль.

Авторы считают своим приятным долгом поблагодарить С. Я. Явор за постоянное внимание к работе и Я. Г. Любчика за помощь в расчётах.

Резюме

В работе исследуются поля двумерных электростатических квадрупольных линз с плоскими электродами, у которых коэффициенты нелинейности поля К_с меняются в довольно широких пределах. Определяются геометрические характеристики линз с уменьшенной сферической аберрацией.

Литература

- 1. Bernard, M. Y.: Annales de Physique, 9, 633 (1954) Лебедев, Н. Н., Скальская, И. П., Уфлянд, Я. С.: Сборник задач по математической физике. М., Гостехиздат, 1955 2. Лаврентьев, М. А., Шабаш, Б. В.: Методы теории функций комплексного переменного.
- М. Физматиздат, 1958

- М. Физматиядат, 1958
 3. Плотников, В. К.: Приборы и техника эксперимента, 2, 29 (1962); 1, 32 (1966)
 4. Данильцев, Е. Н., Плотников, В. К.: Приборы и техника эксперимента, 3, 20 (1963)
 5. Овезиникова, Л. П., Чечулин, В. Н., Явор, С. Я.: Изв. АН СССР сер. физ., 32, 6 (1968)
 6. Фишкова, Т. Я., Силади, М., Явор, С. Я.: Радиотехника и Электроника, 12, 1311 (1967)
 7. FISHKOVA, Т. Ya., SHPAK, E. V., SZILÁGYI, М., YAVOR, S. Ya.: Periodica Polytechnica, Electrical Engineering 12, 301 (1968)
 8. Силади, М., Шпак, Е. В., Явор, С. Я.: Радиотехника и Электроника, 13, 1, 185 (1968)

Л. П. Овсянникова, Ленинград К-21, Политехническая ул. 26., СССР. Dr. Miklós SZILÁGYI, Budapest XI., Egry József u. 18-20, Hungary