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In 1946, M. A. A1zERMAN, Soviet researcher, studied the system shown
in Fig. 1—1. This system is a oneloop circuit of negative feedback containing
a linear and a non-linear element. The transfer function G(s) of the linear
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Fig. 1—1

element may only have a single pole in the origin at the most and its numerator
must be of a higher order than its denominator. The non-linearity fle) is a
sectionally continuous one-value function. A1zErRMAN reduced this non-
linearity to the sector limited by straight lines of slopes K and K, (Fig. 1—1).

f(O)Eo;K]gf(e) <K,. (1—1)

e

As a result of his investigations he established the following: If non-
linearity is substituted by a linear element of transfer factor K so that

K, <K<K, : (1—2)

and the linear system obtained in this way is stable, then this may be assumed
to constitute a sufficient condition of the global asymptotic stability of the
initial non-linear system limited to the sector [K;; K,]. This assumption of
A1zERMAN is known as the “AIZERMAN conjecture” and the system shown
in Fig. 1—1 is generally called the “AIZERMAN system.”
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Later research has proved that the AIZERMAN conjecture — even if
it gives correct results in many cases — cannot be accepted generally. The
“in the small stability” (in a Ljapunovian sense) cannot be extended to “in
the large stability” of the system. In other words the asympiotic stability in
the vicinity of the work-point does not mean the global asymptotic stability
of the system.

As an example, if

1
G(s) = 1—3
) (s+p1) (s+ps) - .. (s+pn) (1=3)

and p; (1 = 1,2,...,n) is a real negative pole, among which at most one
is in the origin, then the A1zErRMAN conjecture holds. It also holds for a third-
order system of the form

(1—4)

if the zero-point z; is on the left-hand side. With fourth-order systems of the

form
1
G(s) = 1-5
) (s+p1) (s-+py) (s+p3) (s+py) 1=

where two of the four poles are left-side real ones and two complex ones, or
if the four polesform a conjugate pair of radicals, the fulfilment of the conjecture
depends on the position of the radicals as well.

In 1957 Karyan [3] published a hypothesis stricter than the AIzZERMAN
conjecture. Also KALMAN examined the system of AIZERMAN and as a further
constraint he restricied also the slope of the non-linearity between two limits:

d .
by <— fle) = f'(e) = ks. (1-0)
de
In addition he assumed that
b <K <K <h (1—7)

The conjecture of Karman is the following: If the above conditions are
satisfied and the linearized system is stable in case of transfer factor K

=K<k (1—8)

then the initial non-linear system is a globally asymptotically stable system.,
From the above it follows that all the non-linear characteristics which satisfy
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the conditions of KaArLmAN satisfy also those of AizeErMAN. In other words,
the set of the KALMAN non-linearities is a partial set of the A1zZERMAN non-
linearities. This is naturally not valid conversely.

Further research proved that the conjecture of KarmanN does not hold
in all cases either.

In 1966 Fitrs [4] showed by the results of his analogue computer
investigations and in the same year WILLEMS [5] proved also analytically
that the above conjectures have no general validity.

About 1950, Lurie [6] utilized the direct method of Lyapuxov to further
investigate into the problem. He studied the AiZERMAN system in the sector
(0; o0), choosing the sum of a quadratic form and of the interval of a non-
linearity as Lyapunov function. He determined the quadratic form from the
parameters of the linear part. In this way he tried to find the conditions for
the global asymptotic stability of the system.

In 1961 La Sarpe and LerscrETZ [7] continued experimenting with
LjapunNov functions of the type: quadratic form - integral.

While efforts to solve the problems which arose up to that date were
carried on in the USSR and in the USA, in Roumania the mathematician
Porov [8, 9] determined a totally new, comprehensive criterion. He deter-
mined the sufficient conditions of the absolute stability of the Aizermaw
system.

The A1zZERMAN system is absolute stable in the sector [K,; K,] if it is
— with every sectionally continuous, one-value non-linear characteristic
existing between both limiting straight lines — globally asymptotically stable
in the Ljapunovian sense for any initial condition.

The system is stable in the Ljapunovian sense if a positive real quality
5(e) >0 can be given, for which with the initial condition of |c(0)| < 6,
the inequality ¢(t) < ¢ is satisfied. If § is infinitely great and & — 0 we speak
of a global asymptotic stability.

Instead of the sector [K;; K,] generally the sector [0; K] is taken for
a basis, as G(s) might have a pole in the origin. If G(s) is limit-stable, the
system may be examined in the sector [0; K] as well. It is easily seen that the
sectors [0; K] and [0; K] respectively may be reduced by transformation into
the sector [K,. K,].

The theorem of Porov is as follows:

The sufficient condition of the absolute stability of the Aizermaw
system in the sector under investigation is:

o

Re [1+joq] G(jo) +—— =0 (1-9)

|~

where G(jw) is the frequency function of the linear part in case of positive
frequencies and ¢ is a positive number, ¢ > 0.
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We note that A1ZERMAN and GANTMACHER proved [2] that the .Popov
criterion holds also when g <C 0.

2. The absolute stability of systems with limited slope non-linear characteristics

In 1966 DEwgyY and Jury [10] studied the AiZERMAN system for limited
slope non-linear characteristics:

Mklg% fle) <k,
- 2-1)
E,=0; k=0

In this case the sufficient condition of the absolute stability for the sectors
(0, K1 and [—Fk;; k,] is:
. . 1 o . R
Re [1+4jwq] G(jo) + f+ hw= {1“:‘(1‘2“]%) Re G(jo) — ky ky IG(JC“)]'} >0
(2—2)

éEq{Jff(x) g T — oo 2—3)

0

where ¢ is an arbitrary real number,u is a finite positive number (u 2= 0) and
G(jw) is the frequency function of the linear part for positive frequencies.
The criterion may be written in a simpler form, if the slope of the non-
linearity is limited to the sector [0; K], i.e. —k; = 0 and &k, = K.

Then, instead of condition (2—2), the following inequality is obtained:

1 1
Re |1-+jog———— G(j» |+ -—>0. 2-2)*
[ +jogq 1 (jx } % ( )

e

It is easily admitted that if p = 0, the conditions (2—2) and (2—2)*
agree with the inequality (1—9). DEWEY and JURY gave simpler inequalities
than the general conditions (2—2) also for other special cases, not to be dis-
cussed here.

We chose the above inequality (2-—2)* from among the special cases,
because on the one hand the two sectors limiting the non-linearity satisfy
the conditions of Karman’s hypothesis, on the other hand the geometrical
demonstration of inequality (2—2)* is similar to that of the original inequality
(1—9) of the Porov criterion.
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3. Conditions for the fulfilment of the conjecture of Aizerman and Kalman

From the frequency function G(jw) of the linear part a modified frequency
function G*(jw) may be constructed on the basis of the following relation-
ships:

Re G¥(jo) = Re G(jo)
Im 6% (jo) = —2 Im G(jo). (3—-1)
14 pw?

This modified frequency function GY(jw) may be utilized for the geo-
metrical illustration of the inequalities (1—9) and (2—2)*. For the geometrical
illustration of the Porov criterion:

Re GY(jo) = Re G(jo) = «

] 1 (3—2)
Im G¥(jo)l,_o= o Im G(jo) = y.

With relationships (3—2), the inequality (1—9) may be written as
x— p 1 >0 (3-3)
9y = K :

The equation of the straight line of slope 1l/q intersecting the real axis
at point —1/K is:

gy 4
x—qy - % 0. 3—4)
This is called the Porov straight line.

The Porov straight line divides the complex plane into two parts.
Inequality (3—3) represents the half-plane to the right of the straight line.
So the Porov criterion demands all of the modified frequency characteristic
curve G¥(jw) to be positioned to the right of the Porov straight line, for
the frequency varying from 0 to oc . Also the inequality (2—2)* of DEwWEY
and JurRY may be illustrated in a similar way.

Re GY(jw) = Re G(jo) = x
Im GY(jo) = —? Im G(jo) = y* (3—3)
14+ pew?

and

x-“—gy*—{—bl—lé—>0. (3--06)



118 J. LEHOCZKY

Our further discussion extends only to systems whose frequency characteristic
curve GV (jo) intersects the negative real axis of the complex numerical plane
in a single point, while it approaches the origin

lim |GY(jow)| = 0.

Equations (3-—2) and (3—35) show the negative real axis to be intersected
at the same point by both the modified frequency function and the frequency
function G(jw). In the following let us summarize two definitions: A Hurwirz
sector is called the sector (0; Ky] in which the A1ZERMAN system is stable,
if the non-linearity is substituted by a straight line of a slope varying between
0 and Ky and which passes through the origin. A Porov sector is called the
sector (03 K], for which the sufficient condition of the absolute stability
according to the Porov criterion is satisfied. If the absolute stability of the
sector is examined by the DEweY and JURY criterion (2—2)*, the sector
obtained in this way will be denoted by (0; K;]. The A1ZERMAN conjecture
is satisfied if the HurwiTz-sector is coincident with the Porov-sector.

K, = K. (3—1)

The value of Ky may be determined from the point of intersection of the
modified frequency characteristic curve GV (jw) with the negative real axis.

—1/Ky = X

The value of Ky is determined from the modified frequency characteristic
curve G‘“(jw)gﬂ=0 . The Porov siraight line intersects the negative real axis
at point —1/K, (Fig. 4—1).

The geometrical conditions for the fulfilment of the AIZERMAN conjecture
are: A

Necessary condition: The negative real axis is intersected at the same
point both by the frequency function G(jw) of the linear section and by the
modified frequency characteristic curve G'“(jco)juzo .

Sufficient condition: The tangent to the intersection point of the modified
frequency characteristic curve G"(jw) with the negative real axis is entirely
to the left of the characteristic curve, without intersecting it. In other words
the tangent is a Poprov siraight line.

The geometrical conditions for the fulfilment of the Karman are:

Necessary condition: The negative real axis is intersected at the same
point both by the frequency function G(jw) of the linear section and by the
modified frequency function G"(jo) ., -

Sufficient condition: The tangent to the intersection point of anyone
of the modified frequency characteristics G“(jo))]“>0 with the real axis
must be entirely to the left of the characteristic curve without intersecting it.
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After all this the question arises: How does the sufficient condition for
the fulfilment of the KALMAN conjecture depend on the value of u? This
question is discussed in the following chapter in case of fourth-order sys-
tems.

4, The investigation of fourth order systems

Investigations referred to fourth-order systems with two negative real
poles and two complex conjugate poles. From among the real poles only one
may be in the origin. The transfer function of the linear part is:

1
(s+h) (s+p) (s+2+jo) (s+x —jo)

G(s) (4-1)

Fig. 4—1 shows the modified characteristic curve G"(jo)|,_, and
the Porov straight line for h =0, p =1, ¢ = 0.4 and ¢ = 10.

The Hurwirz-sector is: (0; 2500]

The Porov-sector is: (0; 179.5] Let us follow now the variation of Kj
versus p. The characteristic curves G“(jw)|,., were determined for u =0.2;
imG*
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0.4; 0.6; 0.8; 1; 25 5; 10; 15; 20; 50; 100, then form them the values of K}
different 1 values were established.

The function Kj(u) is shown in Fig. 4—2. As a result it may be established
that with increasing u the value of K7 tends to the limiting value 1050.
Examination of several similar cases showed that with positive ¢ values the
value of K’; approaches the value to be assumed for p = >, the maximum
K7 value and this for u = 50 already at the required accuracy:

K;(.u')lmax = K;(oo) s K;(SO) . (4_2)
KH | 1 i 7 Y
K i
2500 Ky=2500
2000 pl1
nlo
[0<g | o[ g4
&0
1500 !
000 | ;
L (=l
560
 K3fwo =1795=K, ‘

02 04 06 08 1 2 u
Fig. 4—2

o

Interesting resulis were obtained in case ¢ < 0. Contrarily to the
previous results, K decreased with increasing pi. Fig. 4—3 shows the modified
frequency functions for p=1; h=1; 2 = 04 and 0 = 4 (y = 0; 0.2; 0.4;
0.6; 0.8; 1; 2). Fig. 4—4 shows the functional relationship K;(.u). For this
system the condition of the AIZERMAN conjecture is satisfied, as Kj|,_, =
= K, = Ky. So the sector [0; Ky] is a Porov-sector. In other words, a non-
linearity in the sector [0; Ky] is absolutely stable. If its slope is limited
by the sector [0; K], the absolute stability range is reduced to the sector
[0; K5] where K <7 Kyy.
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Also ScEmipT and PreusceE [11] studied the system (4—1).
They determined the geometrical position of the pair of complex con-

jugate poles, satisfying the A1zERMAN conjecture for p = 1; h =0, 1, 2, 3, 4.
Such limiting curves are shown in Fig. 4—5 for p = 4.

The AIZERMAN conjecture is satisfied if the complex pole is below the

limiting curve. The curves were determined by the method described in the
Appendix. The ¢ values belonging to each point were also evaluated. The
curve poinis ¢ = 0 are connected by dash-and-dot lines.

tinuous line.

The case of ¢ <{ 0 is drawn in a dashed line, that of 0 <{q in a con-

%0
Hi
ia
I
':. 35
N
] o
!
"
Hr 30
p o
hi01234 v l"[
)7 0 ; it 25
‘; T
g=0 i
N i
i 7t
30", geo o ,?:
// H
f\\_ﬂ_‘_\%___’/ /// ,”,’,
h=3 » 1 15
—~———
; e —————e—y - i = S0,
\\\- h:? \ ’,’ /II:
| . - = s
’ \2‘7 ot 100
5
\
| i
x<~-6 -5 ~k -3 -2 -1 o

Let us investigate now the case where the system (4—1) satisfies the
conditions of the KALMAN conjecture. Fig. 4—6 shows the curve limiting the
fulfilment of the conjecture for p == 1; h = 4. For comparison also the limiting
curve for the fulfilment of the AIZERMAN conjecture is shown indicating also
q values for some of the calculated points. For 0 < g, the limiting curve of
the KALMAN conjecture is above that of the A1ZERMAN conjecture. The imaginary
part of the complex radicals may be greater with the fulfilment of the Karman

conjecture than when the AIZERMAN conjecture is satisfied.
On the other hand, for ¢ <7 0, the limiting curve of the Kaumax conjecture
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gives a smaller imaginary part than that of the AIZERMAN conjecture. Analyzing
this fact and the behaviour shown in Fig. 4—3, it can be stated that the
theorem of Porov and the DEweEY—JURY relations are not congruent. The
resulis obtained with the restriction of the slope of the non-linearity are only

acceptable for 0 < g, but for ¢ << 0 they lead to contradictions.
As ap illustration Fig. 4—6 shows the modified frequency function

GY(joo) and the tangent to its point of intersection with the negative real

axis at six caleulated points.
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5. Appendix

The evaluation of the limiting curves of the A1zERMAN and KArmax
conjecture is demonstrated in Fig. 5—1. The modified frequency function is:
C—M(jco):ReG(jw)—}—j—l——'-C-O—O—ImG(jco):x—%-jy. (5—1)

L e?

LI
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The negative real axis is intersected by this curve at point x, of the frequency:

0y — V(h+ ) (62 +02) +20ph 5—2)
h+p-+2o
hence:
o= — : = : (5—3)

Ky of — of[ph+ot+o+2a(p-+h)|+ph(o®+a?)

The slope of the tangent at the intersection point is:

. dy 1
== (5—4)
x q
ImG"

D20 ReG
01wy
Fig. 51
Replacing the tangent by the secant, ¢* = Jy/dx, we have:
Ay = Im G¥(j 1,001 wg) — Im G¥(5 0,999 w,) (5—5)
Ax = Re G¥(j 1,001 w,) — Re G¥(5 0,999 wy). (5—6)

Each point of the limiting curve was determined with p, h, & and p values
assumed constant. The ¢ value was varied (increased) from zero with one
that internals. So the condition for evaluating o), is: for 0 </ g¢:

-

=y =q (x—x) —y =<0 ="

forq < 0:
Ny =g ([x—x) —y=0 (5—8)
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where the x and y values are to be determined in the frequency range
0.1 wy <o <4v,. Both conditions may also be written jointly:

*—x =0 (5-9)

For Ax =0, ie. g¥ = oo, the condition (5—9) may be replaced by the
inequality:

(x—x0) < 0. (5—10)

For the sake of completeness let us present the programused forthe evaluation
of Tlim-

BEGIN REAL B, H, P, M, A, 00, Xo, S, FELT, 0. X, Y, Q, X1, X2,
Y1, Y2, DX, OM, DY, V1, V2;

INTEGER I, HN, PN, MN, AN, J, K, L, II, NQ;

ARRAY HH, PP, MM, AA [1:20];

PROCEDURE XY (O,S, H, P, M, A, X, Y).

VALUE O,S, H,P, M, A;

REAL O,S, H. P, M, A, X, Y;

BEGIN REAL S1, 82, 83, S4;

S1: = 0**4*0**2%(1)*1‘1 + Sax2 - Awsl2 - Z&A*(P—i—H)) -+
= P«H’-(S**z - Awx2);

52t = —0ss22(H 4+ P + 2=A) -+ (H-LP) # (Sax24-Axs2) -+

2:AsP=H;
S3: = S2/S1,
S4: = —O#22/(14+M=0x22);

X = 1/(S1--0#+252=53);

Y: = X=53=54;

END XY;

PROCEDURE XNUL (01, S, H, P, A, Xo);
VALUE 01, S, P, H, A;

REAL 01,8, H, P, A, Xo;

BEGIN Xo: = 1/{014s4—01s:2% (PH-Ssx2+

END XNUL;

PROCEDURE ONUL (S, H, P, A, 00);

VALUE S, H, P, A;

REAL 00, S, H, P, A;

BEGIN O0: = SQRT ((H-+P) » (Sws—+Ass2)+
25 AxP+H)[(H+-P+22A));

END ONUL;

BEGIN INPUT (HN, PN, MN, AN);

FOR I: — 1 STEP 1 UNTIL HN DO
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INPUT (HH[I]);
FOR I: =1 STEP 1 UNTIL PN DO
INPUT (PP[I]);

FOR I: =1 STEP 1 UNTIL MN DO
INPUT (MM[I]);

FOR I: =1 STEP 1 UNTIL AN DO
INPUT (AA[I));

FOR I: = STEP 1 UNTIL HN DO
FOR J: — 1 STEP 1 UNTIL PN DO
FOR K: = 1 STEP 1 UNTIL MN DO
FOR L: = 1 STEP 1 UNTIL AN DO

BEGIN

H: = HH[I};

P: = PP[J]:

M: = MM[K];
A: = AAJL];

FOR B: — o, B--1 WHILE FELT > o AND S < 43,
S—1, BLo.l WHILE FELT > 0 AND S < 45

DO
BEGIN
S: =B

ONUL (S, H, P, A, 00);

XNUL (00,8, H, P, A, Xo);

V1: = 00+4-00= 10-3;

V2: = 00—00+10-3;

XY (UL, S, H,P, M, A, X1, Y1);

XY (V2,S,H,P, M, A, X2,Y2);

DX: = (X1-—X2) = 10%;

DY: = (Y1—Y2) = 105;

IF DX = o THEN BEGIN NQ: = 1 GOTO

El1 END ELSE IF (LN (ABS (DY)) — LN(ABS (DX)) >

42 THEN BEGIN

Q: = DY/DX;

NQ: = o;

El; FOR OM: = 0.07 OM+-0.05 WHILE OM < 10

Do

BEGIN

0: = 00::0M;

XY (0,S, H,P,M, A X,Y);

IF NQ == 1 THEN FELT: = SIGN (Q) = (Q= (X—Xo) —
Y) ELSE ,

FELT: = X—Xo;
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IF FELT < o THEN GOTO E2;
END;

E2: END

Q: = 1/Q;

OUTPUT (S/4, H, P, M, A, Q);
LINE;

END;

END;

END;

Summary

A comprehensive picture is given of the conception and criteria of absolute stability.

Results by Porov and DEwWEY — JURY are applied to demonstrate the conditions of the fulfilment
of the Karyman hypothesis besides those of the A1ZERMAN conjecture. The study of fourth
order systems is involved to demonstrate the contradiction arising from the application of
the known criteria.

w M= W N

-1
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