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Introduction 

In the analysis and design of linear control systems the inverse LAPLACE 
transformatiou is often required because in a final account the behavior of 
the systems within the time domain is of interest. 

Theoretically the return into the time domain does not meet any 
difficulty and even ready formulae and tables can be found for the case of 
rational fractional functions. 

But even then the inverse LAPLACE transformation is often tedious 
and wearysome. ~either does the following graphical method essentially reduce 
the computation work. Therefore it was practical to insert a relevant program 
in our program library. This program was developed only for the case of 
single poles and the a priori knowledge of the pole-zero configuration was 
supposed. The latter condition set up an additional claim for a root-finding 
procedure. The computer centers in geneTaI have many effective programs 
for this purpose. 

J\Iany other programs are also knovm [e.g.: 6] which apply directly the 
polynomial in the numerator rather than the zero configuration. The advantage 
of the technique presented in this paper relies on its uniformity, i.e. on the 
fact that both the numerator and denominator of the coefficients Ci are 
obtained by the same algorithm. The proposed method is very easy to apply 
when the pole-zero configuration is known beforehand. Our ALGOL-60 
program is similar to the FORTRAN program in [3]. 

To support the above statements suppose for the sake of simplicity, 
that the control system consists of an overall element in the forward path 
with transfer function G(s) and a feedback element ,vith transfer function 
H(s). Denoting the numerators by Ng(s) and l'-lIl(s), and the denominators 
by Dg(s) and DIl(s), respectively, the controlled variable of the closed-loop 
system can be expressed as 
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where R(s) is the LAPLACE transform of the reference input. As in control 
engineering the polynomials Ng(s) , Nh(s), Dg(s) , Dh(S) are mostly given in 
factorial form, and R(s) is l/s in our case, it follows that the numerator of 
C(s) is given also in factorized form, thus, the zeros are directly obtained. 
On the contrary, the poles are to be determined since the denominator 
s(Dg(s)Dh(S) + Ng(s)Nh(S)) is not at all in factored form because of the addition 
encountered within the expression investigated. The factorization of the 
denominator or the root finding of the denominator polynomial cannot be 
avoided, as the poles are absolutely necessary to perform the inverse LAPLACE 

transformation. Similar conclusions can be drawn for multiloop control 
systems with a single forward path as well. 

For the sake of generalization, in the following the transform of the 
variable to be inverted and the variable desired in the time domain will be 
denoted by X(s), and by x(t), respectively. 

The graphical method and the algorithm of computation 

As it is known, if X(s) is a rational fractional function with distinct 
poles, then its inverse LAPLACE transform yields 

Supposing the pole-zero configuration to be kno'wn then the coefficients 
Ci of the time function can readily be got. 

Instead of generalizing, let us demonstrate by an example the simplified 
graphical method [1, 2]: 

Let 

Its inverse LAP LACE transform is 

where 
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While 
Cd is the conjugate of Cd' 

In each coefficient Ci of the time function every single expression is seen to 
he a quotient of generally complex phasor products. The numerators of thesfr 
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Fig. 1. Graphical method to evaluate the transient response 

coefficients arised from phasors plotted from the pole in question to all zeros, 
while the denominators are phasors constructed to all other poles. (The same 
considerations lead to the algorithm of complicated cases.) Thus (see Fig. 1) 
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where 

T d ./" d '). 
Pi! '-.. CPp = ~JOJd' 

If the complex terms expressed in exponential form are reduced, we have 

where 

and 
d d /2 er: _. cr, -:n:: 'to 'r Pl . 

(Remark: T denotes magnitudes, not time constants.) 

The flow-chart 

Since the Appendix contains the complete program, the simplified flow
chart sho'wn in Fig. 2 will not he discussed here in detail. 

The program 

The program 'was designed for a computer RAZDAK-3 at the Com
putation Center of the Technical University, Budapest, Hungary. The used 
algorithmic language was the rqH'esentation of the ALGOL-60 relative to 
this digital computer. 

To explain and comment the published prog1'am it must he mentioned, 
that the statement output (a : i : k) has the meaning he1'e: print the va1'iahle 
Cl on the linep1'inter for i integer and fox k f1'actional digit. 

As it can also he seen from the flow-chart, for soving a prohlem, the 
numher of the data groups, poles, and zel'OS must he given. The real and the 
complex part of the poles and zeros are also needed. 

The text statements are organized so that the computed coefficients are 
suhstituted immediately ill the right terms. Thus the calculated results of 
the time functions are arranged at the successive values of j. For example, 
the outputs 

j = 1 ... 0.15 
j = 2 ... -0.13 >< exp (-1.0 >< t) 
j = 3. .. 0.11 >< exp (-3.0 X t) X cos (2.0 X t - 4.45) 
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Fig. 3. The pole-zero configuration of the example 
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mean the time function: 

x(t) = 0.15 - 0.13 e-t + 0.11 e-3t cos(2t-4.45) 

For an illustrative numerical example the program was Iunned 'with 
parameters ao = 3, w~ = 4, ZI = -2 and PI = -1 (Fig. 3). With these data 
the outputs were: 

j = 1 ...... 0.154 
j = 2 ..... -0.125 X exp (-1.000 X t) 
j = 3 ...... 0.110 X exp (-3.000 X t) X cos (2.000 X t-4.446) 

Appendix 

The complete program for inverse LAPLACE transformation is as follows: 

begin 
real nn, dnn, alfa, frea, fim, beta, teta, frad; 
integer adat, data, ir, iz, i, j, mult, jj, jip. look, n, uf, ind; 
array pol, zero [1: 20, 1 : 20]; 
procedure pola (frea, fim, frad. beta, ind); 
value frea, fim; 
real frea, fim, frad, beta; 
integer ind; 
begin real afr, af;, eps, omeg; 
integer isi; 
switch s: = pI, p2, p3, p4; 
ind: = 0; 
afr: = abs (frea); 
afi: = abs (fim); 
eps: = 10 t (-18); 
if (afr < eps) and (afi < eps) then 
begin beta: = 0; ind: = 1; goto poll end; 
if (afr < eps) and (fim > eps) then 
begin beta: = 1.5707963: goto poll end; 
if (afr < eps) and (fim < (- eps) then 
begin beta: = 1.5707963; goto poll end; 
isi: = sign (frea) sign (fim)/2 + 2.5; 
gata sfisi]; 
pI : p2: omeg: = 3.1415927; goro pol2; 
p3 : p4: omeg: = 0.0; 
po12: beta: = artg (fim/frea) + omeg: 
poll: frad: = sort (freaj2 + fim t 2); 
end pola; 
procedure vet (frad, beta, frea, fim); 
value frad, beta: 
real frad, beta, frea, fim; 
begin 
frea: = frad X cos (beta); 
fim: = frad X sin (beta); 
end vet; 
integer procedure fact(n); 
value n; 
integer n; 
begin 
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integer i, ik; 
ik' - l' 
fo; ; =' 1 step 1 until n do 
ik: = ikxi; 
fact: = 
ik end fact; 
begin 
input (adat): 
for data: = l step 1 until adat do 
begin 
input (iz,ip); 
ifiz = 0 then goto pr; 
for i: = 1 step 1 until iz do 
for j: = 1 step 1 until 2 do 
input (zero[i, j]); 
pr: for i: = 1 step 1 until ip do 
for j: = 1 step 1 until 2 do 
input (pol ri, j]); 
for j: = 1 step 1 until ip do 
begin 
ifpol (j, 2] < 0 then go to pr!; 
mult: = alfa: = teta: = 0; 
nu: = dnu: = 1; 
for jj: = 1 step 1 until ip do 
begin 
jip: = jj; 
if (j - jj) = 0 then goto pr2; 
frea: = pol[j, 1] - pol [jj, 1]; 
fim: = pol(j, 2] - pol [jj, 2]; 
iffrea neq 0 or fim neq 0 then goto pr 3; 
mult: = mult + 1; goto pr 2; 
pr3: pola (frea, fim, frad, beta, ind); 
ifind = 1 then begin text indeterminate; line end; 
dnu: = frad X dnu; 
teta: = teta + beta; 
pr2: end; 
if (j - jip) = 0 then go to pr4; 
if mult le 0 then goto pr4; 
text multiplicity; 
lines 2; 
pr4: ifiz = 0 then go to pr 5; 
for jj: = 1 step 1 until iz do 
begin 
frea: = pol [j, 1] - zero [jj, 1]; 
fim: = pol [j, 2] - zero [jj, 2]; 
pola (frea, fim, frad, beta, ind); 
ifind = 1 then begin text indeterminate; line end; 
nu: = nu X frad; 
alfa: = alfa + beta; 
end; go to pr6; 
pr5: nu: = 1; alfa: = 0; 
pr6: ifpol [j, 2] > 0 then goto pr7 else if 
pol [j, 2] < 0 then goto pr!; 
frad: = nu/dnu; 
beta: = alfa - teta; 
vet (frad, beta, frea, fim); 
ifpol [j, 1] = 0 then go to pr!4; 
ifmult le 0 then go to pr3; look: = 1; goto pr 9; 
pr 3: text j = ; output [j : 2); spaces 3; 
output (frea: 5 : 3); text X exp(; output) 
pol [j, 1]: 5: 3); textXt); lines 2; goto pr!; 
prl4: if mult le 0 then go to pr 10; look: = 0; 
go to pr 9; 
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pr!O: text j = ; Olltpllt (j : 2); spaces 3; 
OlLtput (frea: 5 : 3); lines 2; go to pr!; 
pr7: frad: = 2 X nu/dnu; beta: = alfa - teta; 
ifmult le 0 then got 0 prll; look: = - 1; 
got 0 pr 9; 
prll: text j = ; outpllt (j : 2); spaces 3; 
outpllt (frad : 5 : 3); text )< exp (; outpllt (pol (j, 1] : 5 : 3); 
text X t) X cos(; olltpllt(pol[j, 2] : 5: 3); text X t +; Olltpllt (beta: 3 : 3); 
text); lines 2; goto pr 1; 
pr9: nf: = fact (mult); 
iflook < 0 then go to prl2 else iflook = 0 
then goto prl3; 
text j = ; output (j : 2); spaces 3; 
text t X X: olltpllt (mult : 2); text/; Olltpllt (nf: 5); 
text >: exp(; output (pol[j, 1]; 5 : 3); text X t); 
lines 2; goto pr 1; 
pr13: text j = ; output (j : 2); spaces 3; text tx; 
output (mult: 2); text/; output (nf: 5); lines 2; 
goto pr1; 
pr12: text j = ; Olltput (j : 2); spaces 3; text tx; 
OWput (mult: 2); text/; output (nf: 5); 
text X cos(; outpllt (pol [j, 2] : 5 : 3); text )< tx; 
outpllt (beta: 3 : 3): text); lines 2: 
pr1: end 
end 
end 
end; 

Summary 

F or the determination of the time behaviour of linear control systems with constant 
lumped parameters, inverse LAPLACE transformation is often required. 

To make easier the tedious computing work for complicated cases, a complete ALGOL 
program is inserted for the case of known pole-zero configuration and distinct poles. 
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