
EVALUATING THE INVERSE LAPLACE TRANSFORMS
FROM THE POLE.ZERO CONFIGURATION BY DIGITAL

COMPUTER

By

F. CS_.\.KI and T. Kov_.\.cs

Department of Automation, Technical lJniversity Budapest

(Received November 17, 1969)

Introduction

In the analysis and design of linear control systems the inverse LAPLACE
transformatiou is often required because in a final account the behavior of
the systems within the time domain is of interest.

Theoretically the return into the time domain does not meet any
difficulty and even ready formulae and tables can be found for the case of
rational fractional functions.

But even then the inverse LAPLACE transformation is often tedious
and wearysome. ~either does the following graphical method essentially reduce
the computation work. Therefore it was practical to insert a relevant program
in our program library. This program was developed only for the case of
single poles and the a priori knowledge of the pole-zero configuration was
supposed. The latter condition set up an additional claim for a root-finding
procedure. The computer centers in geneTaI have many effective programs
for this purpose.

J\Iany other programs are also knovm [e.g.: 6] which apply directly the
polynomial in the numerator rather than the zero configuration. The advantage
of the technique presented in this paper relies on its uniformity, i.e. on the
fact that both the numerator and denominator of the coefficients Ci are
obtained by the same algorithm. The proposed method is very easy to apply
when the pole-zero configuration is known beforehand. Our ALGOL-60
program is similar to the FORTRAN program in [3].

To support the above statements suppose for the sake of simplicity,
that the control system consists of an overall element in the forward path
with transfer function G(s) and a feedback element ,vith transfer function
H(s). Denoting the numerators by Ng(s) and l'-lIl(s), and the denominators
by Dg(s) and DIl(s), respectively, the controlled variable of the closed-loop
system can be expressed as

174 F. CSAKI and T. KOV Acs

where R(s) is the LAPLACE transform of the reference input. As in control
engineering the polynomials Ng(s) , Nh(s), Dg(s) , Dh(S) are mostly given in
factorial form, and R(s) is l/s in our case, it follows that the numerator of
C(s) is given also in factorized form, thus, the zeros are directly obtained.
On the contrary, the poles are to be determined since the denominator
s(Dg(s)Dh(S) + Ng(s)Nh(S)) is not at all in factored form because of the addition
encountered within the expression investigated. The factorization of the
denominator or the root finding of the denominator polynomial cannot be
avoided, as the poles are absolutely necessary to perform the inverse LAPLACE

transformation. Similar conclusions can be drawn for multiloop control
systems with a single forward path as well.

For the sake of generalization, in the following the transform of the
variable to be inverted and the variable desired in the time domain will be
denoted by X(s), and by x(t), respectively.

The graphical method and the algorithm of computation

As it is known, if X(s) is a rational fractional function with distinct
poles, then its inverse LAPLACE transform yields

Supposing the pole-zero configuration to be kno'wn then the coefficients
Ci of the time function can readily be got.

Instead of generalizing, let us demonstrate by an example the simplified
graphical method [1, 2]:

Let

Its inverse LAP LACE transform is

where

EVALUATING THE INVERSE LAPLACE TRANSFORMS 175

While
Cd is the conjugate of Cd'

In each coefficient Ci of the time function every single expression is seen to
he a quotient of generally complex phasor products. The numerators of thesfr

jw

p, z, Tt,

jw

Ti, z,

jw

d
Tpd

z,

li/2

Fig. 1. Graphical method to evaluate the transient response

coefficients arised from phasors plotted from the pole in question to all zeros,
while the denominators are phasors constructed to all other poles. (The same
considerations lead to the algorithm of complicated cases.) Thus (see Fig. 1)

176 F. CS,iKI and T. KovAcs

where

T d ./" d ').
Pi! '-.. CPp = ~JOJd'

If the complex terms expressed in exponential form are reduced, we have

where

and
d d /2 er: _. cr, -:n:: 'to 'r Pl .

(Remark: T denotes magnitudes, not time constants.)

The flow-chart

Since the Appendix contains the complete program, the simplified flow
chart sho'wn in Fig. 2 will not he discussed here in detail.

The program

The program 'was designed for a computer RAZDAK-3 at the Com
putation Center of the Technical University, Budapest, Hungary. The used
algorithmic language was the rqH'esentation of the ALGOL-60 relative to
this digital computer.

To explain and comment the published prog1'am it must he mentioned,
that the statement output (a : i : k) has the meaning he1'e: print the va1'iahle
Cl on the linep1'inter for i integer and fox k f1'actional digit.

As it can also he seen from the flow-chart, for soving a prohlem, the
numher of the data groups, poles, and zel'OS must he given. The real and the
complex part of the poles and zeros are also needed.

The text statements are organized so that the computed coefficients are
suhstituted immediately ill the right terms. Thus the calculated results of
the time functions are arranged at the successive values of j. For example,
the outputs

j = 1 ... 0.15
j = 2 ... -0.13 >< exp (-1.0 >< t)
j = 3. .. 0.11 >< exp (-3.0 X t) X cos (2.0 X t - 4.45)

EVALUATL C THE D;VERSE LAPLACE TRAXSFORJIS

Read pales

Yes l
£iiminale olher pole

of pair from subsequ
enl colcu/alions

Fig. 2. The flow-chart

jw

:r-------- 2

6
~5 -I; -~ -2 -1 1

: -1
I

:0-------- -2

Fig. 3. The pole-zero configuration of the example

177

178 F. CS.lKI and T. KovAcs

mean the time function:

x(t) = 0.15 - 0.13 e-t + 0.11 e-3t cos(2t-4.45)

For an illustrative numerical example the program was Iunned 'with
parameters ao = 3, w~ = 4, ZI = -2 and PI = -1 (Fig. 3). With these data
the outputs were:

j = 1 0.154
j = 2 -0.125 X exp (-1.000 X t)
j = 3 0.110 X exp (-3.000 X t) X cos (2.000 X t-4.446)

Appendix

The complete program for inverse LAPLACE transformation is as follows:

begin
real nn, dnn, alfa, frea, fim, beta, teta, frad;
integer adat, data, ir, iz, i, j, mult, jj, jip. look, n, uf, ind;
array pol, zero [1: 20, 1 : 20];
procedure pola (frea, fim, frad. beta, ind);
value frea, fim;
real frea, fim, frad, beta;
integer ind;
begin real afr, af;, eps, omeg;
integer isi;
switch s: = pI, p2, p3, p4;
ind: = 0;
afr: = abs (frea);
afi: = abs (fim);
eps: = 10 t (-18);
if (afr < eps) and (afi < eps) then
begin beta: = 0; ind: = 1; goto poll end;
if (afr < eps) and (fim > eps) then
begin beta: = 1.5707963: goto poll end;
if (afr < eps) and (fim < (- eps) then
begin beta: = 1.5707963; goto poll end;
isi: = sign (frea) sign (fim)/2 + 2.5;
gata sfisi];
pI : p2: omeg: = 3.1415927; goro pol2;
p3 : p4: omeg: = 0.0;
po12: beta: = artg (fim/frea) + omeg:
poll: frad: = sort (freaj2 + fim t 2);
end pola;
procedure vet (frad, beta, frea, fim);
value frad, beta:
real frad, beta, frea, fim;
begin
frea: = frad X cos (beta);
fim: = frad X sin (beta);
end vet;
integer procedure fact(n);
value n;
integer n;
begin

EVALUATISG THE INVERSE LAPLACE TRANSFORJJS

integer i, ik;
ik' - l'
fo; ; =' 1 step 1 until n do
ik: = ikxi;
fact: =
ik end fact;
begin
input (adat):
for data: = l step 1 until adat do
begin
input (iz,ip);
ifiz = 0 then goto pr;
for i: = 1 step 1 until iz do
for j: = 1 step 1 until 2 do
input (zero[i, j]);
pr: for i: = 1 step 1 until ip do
for j: = 1 step 1 until 2 do
input (pol ri, j]);
for j: = 1 step 1 until ip do
begin
ifpol (j, 2] < 0 then go to pr!;
mult: = alfa: = teta: = 0;
nu: = dnu: = 1;
for jj: = 1 step 1 until ip do
begin
jip: = jj;
if (j - jj) = 0 then goto pr2;
frea: = pol[j, 1] - pol [jj, 1];
fim: = pol(j, 2] - pol [jj, 2];
iffrea neq 0 or fim neq 0 then goto pr 3;
mult: = mult + 1; goto pr 2;
pr3: pola (frea, fim, frad, beta, ind);
ifind = 1 then begin text indeterminate; line end;
dnu: = frad X dnu;
teta: = teta + beta;
pr2: end;
if (j - jip) = 0 then go to pr4;
if mult le 0 then goto pr4;
text multiplicity;
lines 2;
pr4: ifiz = 0 then go to pr 5;
for jj: = 1 step 1 until iz do
begin
frea: = pol [j, 1] - zero [jj, 1];
fim: = pol [j, 2] - zero [jj, 2];
pola (frea, fim, frad, beta, ind);
ifind = 1 then begin text indeterminate; line end;
nu: = nu X frad;
alfa: = alfa + beta;
end; go to pr6;
pr5: nu: = 1; alfa: = 0;
pr6: ifpol [j, 2] > 0 then goto pr7 else if
pol [j, 2] < 0 then goto pr!;
frad: = nu/dnu;
beta: = alfa - teta;
vet (frad, beta, frea, fim);
ifpol [j, 1] = 0 then go to pr!4;
ifmult le 0 then go to pr3; look: = 1; goto pr 9;
pr 3: text j = ; output [j : 2); spaces 3;
output (frea: 5 : 3); text X exp(; output)
pol [j, 1]: 5: 3); textXt); lines 2; goto pr!;
prl4: if mult le 0 then go to pr 10; look: = 0;
go to pr 9;

179

180 F. CS.4.KI and T. KOV.4CS

pr!O: text j = ; Olltpllt (j : 2); spaces 3;
OlLtput (frea: 5 : 3); lines 2; go to pr!;
pr7: frad: = 2 X nu/dnu; beta: = alfa - teta;
ifmult le 0 then got 0 prll; look: = - 1;
got 0 pr 9;
prll: text j = ; outpllt (j : 2); spaces 3;
outpllt (frad : 5 : 3); text)< exp (; outpllt (pol (j, 1] : 5 : 3);
text X t) X cos(; olltpllt(pol[j, 2] : 5: 3); text X t +; Olltpllt (beta: 3 : 3);
text); lines 2; goto pr 1;
pr9: nf: = fact (mult);
iflook < 0 then go to prl2 else iflook = 0
then goto prl3;
text j = ; output (j : 2); spaces 3;
text t X X: olltpllt (mult : 2); text/; Olltpllt (nf: 5);
text >: exp(; output (pol[j, 1]; 5 : 3); text X t);
lines 2; goto pr 1;
pr13: text j = ; output (j : 2); spaces 3; text tx;
output (mult: 2); text/; output (nf: 5); lines 2;
goto pr1;
pr12: text j = ; Olltput (j : 2); spaces 3; text tx;
OWput (mult: 2); text/; output (nf: 5);
text X cos(; outpllt (pol [j, 2] : 5 : 3); text)< tx;
outpllt (beta: 3 : 3): text); lines 2:
pr1: end
end
end
end;

Summary

F or the determination of the time behaviour of linear control systems with constant
lumped parameters, inverse LAPLACE transformation is often required.

To make easier the tedious computing work for complicated cases, a complete ALGOL
program is inserted for the case of known pole-zero configuration and distinct poles.

References

1. GlL~BBE, E. M.-Ruro, S.-WOOLDRIDGE, D. E. (editors): Handbook of Automation,
Computation and Control. John Wiley et Sons, Inc. New York 1958.

" CSAKI, F.: Szabalyozasok dinamikaja (Dynamics of control systems). Akademiai Kiad6,
Budapest 1966.

3. CaEN, Ca.-F.-H .. \As, 1. J.: Elements of Control Systems Analysis. Prelltice Hall, 1968.
-!. :MCCRACKEN, D.: A Guide to ALGOL Programming. Wiley, 1962. ..
;). GYORGYI, A.-Kov.~cs, AI.-AHRKL'S, T.: RAZDAN-3 programozasa, O. L. F. Budapest

1968.
6. ROSKA, T.: PZIL-program, Tanulmany, dokumelltaci6, KGAI-ISZSZI szamara 1968.

Prof. Dr. Frigyes CS £KI}
Tivadar Kov_£cs . Budapest XL, Egry J6zsef u. 18. Hungary

