EVALUATING THE INVERSE LAPLACE TRANSFORMS
FROM THE POLE-ZERO CONFIGURATION BY DIGITAL
COMPUTER

By
F. Csiki and T. Kovics

Department of Automation, Technieal University Budapest

(Received November 17, 1969)

Introduction

In the analysis and design of linear control systems the inverse LAPLACE
transformation is often required because in a final account the behavior of
the systems within the time domain is of interest.

Theoretically the return into the time domain does not meet any
difficulty and even ready formulae and tables can be found for the case of
rational fractional functions.

But even then the inverse LiAPLACE transformation is often tedious
and wearysome. Neither does the following graphical method essentially reduce
the computation work. Therefore it was practical to insert a relevant program
in our program library. This program was developed only for the case of
single poles and the a priori knowledge of the pole-zero configuration was
supposed. The latter condition set up an additional claim for a reot-finding
procedure. The computer centers in general have many effective programs
for this purpose.

Many other programs are also known [e.g.: 6] which apply directly the
polynomial in the numerator rather than the zero configuration. The advantage
of the technique presented in this paper relies on its uniformity, i.e. on the
fact that both the nmumerator and denominator of the coefficients C; are
obtained by the same algorithm. The proposed method is very easy to apply
when the pole-zero configuration is known beforehand. Our ALGOL-—60
program is similar to the FORTRAN program in {3].

To support the above statements suppose for the sake of simplicity,
that the control system consists of an overall element in the forward path
with transfer function G(s) and a feedback element with transfer function
H(s). Denoting the numerators by N,(s) and Np(s), and the denominators
by Dy(s) and Ds(s), respectively, the controlled variable of the closed-loop
system can be expressed as

G(s) R(s) = Ng(s) Dy(s)

TR0 HE T D) D)+ N o) N

R(s)

174 F. CSAKI and T. KOVACS

where R(s) is the Laprace transform of the reference input. As in control
engineering the polynomials Ny(s), INp(s), Dg(s), Dn(s) are mostly given in
factorial form, and R(s) is 1/s in our case, it follows that the numerator of
C(s) is given also in factorized form, thus, the zeros are directly obtained.
On the contrary, the poles are to be determined since the denominator
s(Dg(s)Dn(s) + Ng(s)Nu(s)) is not at all in factored form because of the addition
encountered within the expression investigated. The factorization of the
denominator or the root finding of the denominator polynomial cannot be
avoided, as the poles are absolutely necessary to perform the inverse LAPLACE
transformation. Similar conclusions can be drawn for multiloop control
systems with a single forward path as well.

For the sake of generalization, in the following the transform of the
variable to be inverted and the variable desired in the time domain will be
denoted by X(s), and by x(t), respectively.

The graphical method and the algorithm of computation

As it is known, if X(s) is a rational fractional function with distinet
poles, then its inverse Laprace transform yields

: K
K0 = 3 lim [(s—5) X(s) %] = 3 Ce.
i=1 578 i=1

Supposing the pole-zero configuration to be known then the coefficients
C; of the time function can readily be got.

Instead of generalizing, let us demonstrate by an example the simplified
graphical method {1, 2}:

Let

§—z;

s(s—p;) [(s+00)*+wF]

X(s) =

Its inverse LAPLACE transform is

LIX(5)] = 2(t) = Co- By o724, d—oIod0 4G, oloeea)
where
" z
Cy= sX(8)|sm0 = 1‘ -
+wj)

i=23-4

Pa(o]

e - — P—%
Cl - (S Pl) -X(s)ls=p1 Pl[(Pl':—Go)ﬁ‘er?j]

Cd = (S+60_j0)d) X(s)ls=——cro+]'md =

I+ ~
— 0y TJ0g —%

(—0o+Jjwg) (—0og+jwg — p) 2jo, .

EVALUATING THE INVERSE LAPLACE TRANSFORMS 173

While

C, is the conjugate of C,.
In each coefficient C; of the time function every single expression is seen to
be a quotient of generally complex phasor products. The numerators of these

Jw
of Pd
iz
lpa
-0
A Z Tz 'R
5
a
1
T\ 4
S”g;(P\ e
Ty
21 44 6
7Zd

72

Fig. 1. Graphical method to evaluate the transient response

coefficients arised from phasors plotted from the pole in question toall zeros,
while the denominators are phasors constructed to all other poles. (The same
considerations lead to the algorithm of complicated cases.) Thus (see Fig. 1}

T
0, T <<gp Tp. < — 75

Co—

176 F. CSAKI and T. KOVACS

T,
T% Tpa < (p]}-)d Tzlhz < _(F}m
T¢ <¢f,
T8 <8 T5, <95, T5: < 5.

where
d d __. 97,
Tpa< ¢ = 2jmy,.

If the complex terms expressed in exponential form are reduced, we have

%(t) = Cy+C, P12 Cyl e cos (g t+p,)
where
T,

13T, 20,

iC

and
Yo= 9% — ¢§ — ¥5, — 72,

(Remark: T' denotes magnitudes, not time constants.)

The flow-chart

Since the Appendix contains the complete program, the simplified flow-

chart shown in Fig. 2 will not be discussed here in detail.

The program

The program was designed for a computer RAZDAN-—3 at the Com-
putation Center of the Technical University, Budapest, Hungary. The used
algorithmic language was the representation of the ALGOL—60 relative to
this digital computer.

To explain and comment the published program it must be mentioned,
that the statement output (a : i : k) has the meaning here: print the variable
a on the lineprinter for i integer and for k fractional digit.

As it can also be seen from the flow-chart, for soving a problem, the
number of the data groups. poles, and zeros must be given. The real and the
complex part of the poles and zeros are also needed.

The text statements are organized so that the computed coefficients are
substituted immediately in the right terms. Thus the calculated results of
the time functions are arranged at the successive values of j. For example,
the outputs

j=1...015

j=2..—0.13x exp (—1.0 x 1)
j=3... 011 Xexp(—3.0 X)) X cos (2.0 x1t—4.45)

EVALUATING THE INVERSE LAPLACE TRANSFORMS 177

V4 - |

d Eliminate other pole
of pair from subsequ-
ent calculations

Read the number
of the dala groups

!
L] A
itiply th !
Fead the pmber Fulily ine esuiant

of zeros of poles

¥

Punch the output

v
P=P+1

/s number of zeros
#07?

Yes

Read zeros

Read poles

i
Set P=1
N = number of polas

¥

@

Calculale distance and
angle from pole P to
other poles and zeros

7

Calculate resultani
magnitude and angle

/s pole P one of
complex pairZ

Jjw

o e 2

1

i 47

] 2
=5 -§ -3 -2 -1 7

! -1

1

Hom e o] -2

Fig. 3. The pole-zero configuration of the example

178 F. CSAKI and T. KOVACS

mean the time function:
x(t) = 0.15 — 0.13 e—t 4 0.11 e~ 3t cos(2t—4.43)

For an illustrative numerical example the program was runned with
parameters ¢, = 3, ws = 4, z; = —2 and p, = —1 (Fig. 3). With these data
the outputs were:

j=1.0u.. 0.154
J=2..... —0.125 X exp (—1.000 x 1)
j=13......0110 X exp (—3.000 X t) X cos (2.000 X t—4.446)

Appendix

The complete program for inverse LaprAcE transformation is as follows:

begin

real nu, dou, alfa, frea, fim, beta, teta, frad;
integer adat, data, ir, iz, i, j, mult, jj, jip, look, n, nf, ind;
array pol, zero [1: 20, 1: 20];

procedure pola (frea, fim, frad. beta, ind);
value frea, fim;

real frea, fim, frad, beta;

integer ind;

begin real afr, afi, eps, omeg;

integer isi;

switch s: = pl, p2, p3, p4;

ind: = 03

afr: = abs (frea);

afi: = abs (fim);

eps: = 10 1 (—18);

if (afr < eps) and (afi < eps) then

begin beta: = 0; ind: = 1; goto poll end;
if (afr < eps) and (fim > eps) then
begin beta: = 1.5707963; goto poll end;
if (afr < eps) and (fim < (— eps) then
begin beta: = 1.5707963; goto poll end;
isi: = sign (frea) — sign (fim)/2 4+ 2.5;
goto sfisi];

pl :p2: omeg: = 3.1415927; goto pol2;
p3 : p4: omeg: = 0.0;

pol2: beta: = artg (fim/frea) 4 omeg:
poll: frad: = sort (frea}2 + fim } 2);
end pola;

procedure vet (frad, beta, frea, fim);
value frad, beta;

real frad, beta, frea, fim;

begin

frea: = frad X cos (beta);

fim: = frad X sin (beta);

end vet;

integer procedure fact(n);

value n;

integer n;

begin

EVALUATING THE INVERSE LAPLACE TRANSFORMS

integer i, ik:

ik: = 13

for i: = 1 step 1 until n do
ik: = ik xi;

fact: =

ik end fact;

begin

input (adat):

for data: == 1 step 1 until adat do
begin

input (iz,ip);

if iz = O then goto pr;

for iz = 1 step 1 until iz do
forj: = 1step 1 until 2 do
input (zero[i, j1);

pr: for i: = 1 step 1 until ip do
for_) =1 step 1 until 2 do
input (pol [i, j1);

for j: = 1 step 1 until ip do
begin

if pol (j, 2] < 0 then goto prl;
mult: = alfa: = teta: = 0;

nu: = dnu: = 1;

Jor jj: = 1 step 1 until ip do
begin

jip: = i

if (j—Jj) = 0 then goto pr2;

frea: = pol[j, 1] — pol [jj, 1]

fim: = polfj, 2] — pol [jj, 2];

if frea neq 0 or fim neq 0 then goto pr 3;
mult: = mult + 1; goto pr 2;

pr3: pola (frea, fnn, frad, beta, ind);

if ind = 1 then begin text indeterminate; line end;
dnu: = frad X dnu;

teta: = teta - beta;

prl: end;

if (j—jip) = 0 then goto pr4;

if mult le 0 then goto pr4:

text multiplicity;

lines 2;

prd: if iz = 0 then goto pr 5;

Sor jj: = 1 step 1 until iz do

begin

frea: = pol [j, 1] — zero [jj, 1]s

fim: == pol [3, 2] — zero [ii, 2];

pola (frea, fim, frad, beta, ind);

tf ind = 1 then begin text indeterminate; line end;
nu: = nu X frad;

alfa: = alfa -+ beta;

end; goto pro;

pr5: nu: = 1; alfa: == 0;

pr6: if pol [], 2] > 0 then goto pr7 else if
pol [j, 2] < 0 then goto prl;

frad: = nu/dnu;

beta: = alfa — teta;

vet (frad, beta, frea, fim);

if pol [§, 1] = 0 then goto pri4;

if mult le 0 then goto pr8; look: == 1; goto pr 9;
pr 8: text j = ; output [j : 2); spaces 3;
output (frea: 5 : 3); text X exp(; output)

pol [, 1]: 5 : 3); text X t); lines 2; goio prl;
prld: if mult le 0 then goto pr 10; look: = 0;
goto pr 9;

179

180 F. CSAKI and T. KOVACS

prl0: text j = ; output (j : 2); spaces 3;

output (frea: 5 : 3); lines 2; goto prl;

pr7: frad: = 2 X nu/dpu; beta: = alfa — teta;
if mult le 0 then goto prll; look: = — 1

goto pr 9;

pril: text j = ; output (j : 2); spaces 33

output (frad : 5 : 3); text X exp (; output (pol [j, 1] :5:3);
text X t) X cos(; outpui(pol[j, 2] : 5 : 3); text X t -3 output (beta : 3 : 3);
text); lines 2; goto pr 1;

pr9: nf: = fact (mult);

if look << 0 then goto prl2 else if look = 0

then goto prl3;

text j == ; output (j : 2); spaces 3;

text t3< X : output (mult : 2); text/: output (nf: 3);
text % exp(s output (pol[j. 1}; 5 : 3); text X t);
lines 2; goto prl;

prl3: text j = ; output (j : 2): spaces 3; text t3;
output (mult: 2); text/; output (nf: 3); lines 2;
goto prl;

prl2: text j = ; ourput (j : 2); spaces 3; text 1< :
output (mult: 2); text/; output (nf: 5);

text X cos(s output (pol [j, 2] : 5 : 3); text X ;3
output (beta : 3 : 3); text); lines 2:

prl: end

end

end

end;

Summary

For the determination of the time behaviour of linear control systems with constant
lumped parameters, inverse LAPLACE transformation is often required.

To make easier the tedious computing work for complicated cases, a complete ALGOL
program is inserted for the case of known pole-zero configuration and distinct poles.

References

1. GraBre, E. M.—Raswmo, S.—WoorLpriDeE, D. E. (editors): Handbook of Automation,
Computation and Control. John Wiley et Sons, Ine. New York 1958,

. Csigr, F.: Szabdlyozasok dinamikdja (Dynamics of control systems). Akadémiai Kiads,
Budapest 1966.

. CuEN, Ca.-F.—Haas, 1. J.: Elements of Control Systems Analysis. Prentice Hall, 1968.

McCrackeN, D.: A Guide to ALGOL Programming. Wiley, 1962. N

. Gydreyr, A.—Kovics, M.—MAirgus, T.: RAZDAN—3 programozasa, 0. U. ¥, Budapest
1968.

. Rosga, T.: PZIL-program, Tanulmany, dokumentdcié, KGM—ISZSZI szaméra 1963.

[R5 S)

[

Prof. Dr. Frigyes Csikr

Tivadar Kovics } Budapest XI., Egry Jézsef u. 18. Hungary

