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Introduetion

Power transmission lines consist in practice mostly of once or twice
three phase systems, in which the position of the individual wires is inter-
changed after a certain length. With the usual calculation method of such
transmission lines the symmetrical components are employed [1, 2, 3]. In the
present paper the well-known theory of coupled transmission lines {4, 5] is;
connected with the usual calculation method for three-phase lines built with
transposition. Once and twice three-phase wire systems are examined whereby
the influence of the ground wires is being disregarded. The caleculation of the
effect of the ground wires will be published in a subsequent paper.

Coupled transmission line sysiem without transposition

In the followings the theory of such a transmission line system is sum-
marized briefly which consists of n wires arranged zhove the earth parallel
with each other and with the earth. The earth is supposed to be limited by
a plane, homogeneous. and lossy. The electromagnetic fields of the wire cur-
rents are coupled with each other. For a coupled transmission line svstem of
this kind the system of differcutial equations
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is valid, where z denotes the co-ordinate of the place in the direction of the
transmission line, i the column vector formed of the currents of the wires,
u that of the voltages between the wires and the earth surface, Y, the parallel
admittance matrix related to unit length, while Z, the seriez impedance
matrix related to unit length. These are square matrices of the nth order.

Qur caleulations are perfm‘med on the basis of l‘elationship
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Here ¢ and y are the permittivity and permeability of the air, respectively,
M a symmetrical square matrix depending on the geometrical data of the
arrangement, in which the kth element in the jth row is found to be

my, = In =5 (3)
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Fig. 1

7k is the distance of the jth wire from the kth wire, and o the distance of
the mirror image of the jth wire from the kth wire (Fig. 1). The symmetrical
square matrix Zp is the sum of two matrices.

Zy =1L, + Z; (4)

Z, is a diagonal matrix, the elements in the main diagonal are the skin impe-

dances of the individual wires.
L= L, L. . L - (3)

Z; is the earth impedance matrix, its elements can be determined by the help
of the rows [5].
The solution of the svstem of differential equations (1) is found to be
u(z) = e TUL) - T2 U
i(z) = Y (e DU - D U,

(6)
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where Uy, and U} are the column vectors formed of the value assumed
at the place z = 0 by voltages propagating in the directions -z and —z,

respectively, T' is the propagation coefficient matrix the square of which is

-7, (

-1
—

and the expression of the wave admittance matrix is
Y,=Z;'T . (8)

The matrix functions figuring in (6) can be expressed by the matrix Lagrange
polvnomials.

f(X) = :j(/,) L. (9)
k=1
2 (k= 1,2, ..+.n) denotes the characteristic values of X, these can be deter-
mined from the equation
det X JE =0, (10)

where E is the unit matrix of the nth order. The definition of the matrix La-

grange polvnomials is given by

LX) = ] = (1)

Y ez
- U e ]

n

i) = ¥, ¥ L (D[ 0
=1

vi 1s that square root from the eigenvalues of T which lies in the first

quarter of the plane of complex numbers.

On the basis of Egs. (12), phenomena in the transmission line system
can be interpreted as follows. The solutions both for the voltage and the
current consist of two parts: One consists of waves propagating in the direc-
tion -z, while the other of those in direction —=z, which are in general atte-
nuated. The members of the sum correspond to one mode each. A propagation
coefficient () belongs to the individual modes. The number of modes cannot
be higher than the number of wires. If the characteristic equation of I* has
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identical roots too then the number of modes is lower than the number of
wires.
The values Ug"" and L'ff’ can be determined from the conditions arising

at the termination of the transmission line svstem.

Once three phase transmission line with transposition

The compensation

A certain compenszation takes place in consequence of the phase change.
This can be taken into consideration in matrices Y, and Z, as follows. The
elements in the main diagonal of these matrices originate from the own char-
acteristics of the single lines, while the elements outside the main diagonal
from the mutual correlation between the lines. Accordingly.the compensation
is taken into consideration in such a way that the elements of the main diagonal
are substituted by the average value of the elements in the main diagonal.
while the other elements substituted by the average of elements outside the

main diagonal. This means that matrices Y, and Z_ are transformed =0 as to

have the structure

% P
X018 = 3| {13)
p) boo%

The matrix given under (13) will be named the type f. Some characteristies
of matrices of type f are discussed in the Appendix.

Consider now the conditions in the arrangement consisting of three
wires of radius a,, of circular cross sectien. parallel with the carth surface
and with each other. The elements of matrix 3 characterizing the geometrical
conditions of the arrangement can be caleulated on the basis of (3). Matrix Z,
considering the compensation as well can be obtained by forming matrices M
and Z; in the form corresponding to (13), and from these matrix Z_ is caleu-
lated on the basis of (2). By averaging the reciprocal of matrix B, similariy
a matrix of the form (13) can be obtained and of this. on the basis of (2).
matrix ¥, in which compensation is taken into consideration. can be deter-
mined.

Matrix I” characterizing the transmission line svstem is found to be
on the basis of (7) and (2)

A A A
= jrnd, MOV E = 7 1T TR, (14)
rz ri Iz

where

k: = jossjou. (15)
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On the basis of the characteristic of type f matrices named under 1 in the
Appendix, I'? as a product and sum of type f matrices is similarly of type f.
Similarly. by force of what is deseribed under 1.2 and 5 in the Appendix.
Tand Y, = ZS_II" is also of type f, since T'is the matrix function of I

It can be concluded from the foregoing that matrices I, I' and Y, char-
acterizing the once three-phase transmission line built with transposition.
are of the type f.

Decomposition of currents and voltages according

to the eigenvectors of the characteristic matrices

The characteristic values of matrix I'¥ given under (14) can be written
on the basis of (10) and correlation (Al) in the Appendix.

» R,
vo = 1i+217 (16)
s 0 g
712 = Ts T k-
L . .
where 3,3 is a double characteristic value.
Let us examine the wave bundle passing in the direction --z. Let U‘f".,
UL, U denote the voltages between the individual wires and the earth
at the place = = 0. and form of these the column vector
7o
U3
o= ueo | (17)
g
The dependence of voltages passing in the direction -z on the place can be

written by force of (12) in the following form.

ut )(:) woo v Ly B et Ly, SIS

1 (18)

In this equation the first term at the right side deseribes the spot dependence
of the zero phasc-sequence component of the voltage passing in direction -z,
while the second term that of the sum of the pesitive and negative phase-

sequence component. For our following caleulations it is advisable to separate
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the positive and negative phase-sequence components in the second term.
To this end let us write the voltage figuring in (18), by the help of eigenvectors
Sy, 8,. S, as defined by correlations (A6) in the Appendix, i.e. by the unit
vectors of the symmetrical components. So we can write that [0]

W) = e S (85 U)o Sy(87 Uh ) e SyRE Uf) =

.. 1
_° 3'?‘ (U =US—UCY |1 |+
' 1
c 17 .
eI ) o ‘ (19)
- W3 - (U ’—}—ab.(—,’)—.—albf(;‘)) a | —
a

+ fi,g‘;'; (U +a2 U —aUS) | a

a

This equation can be written by the Lagrange polynomials as well. To this
end matrix L, is to be written in accordance with Eqgs. (A4) and (A5) in the
Appendix as a sum of two matrices, of L, and L,.

W(z) = e w0 Ly U)ot L, U§) e 7 L, UG ) (20)

Current can also be decomposed to symmetrical components in a similar way.
To this the zero, the positive, and the negative phase-sequence wave admittance
should also be taken into consideration. The characteristic values of wave
admittance matrix Y, can be written on the basis of (Al).

i/‘é!U) == }‘m_;z 1'“;: (21)
gives the zero phase-sequence and
S12) Y -
}0 ) = §rUS y()l.‘ (22)

the positive and negative phase-sequence wave admittances, respectively

Thus the spot dependence of the current passing in direction -z c¢:n be

described by the relationship
e

i(5) = (U Uy )+ U

1
- 1
3y

1
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r 1
= 8 (U —aUS a2 UL Y| a2 |-
3y ’
0 |« |
17 (23)
LA g UL 7 =
T v (Ui —=a2 UL’ —alU$ )| a
3Y(e M

It has been taken into consideration that varivus phase-sequence voltage
components are generating only currents of the same phase-sequence.

Twice three-phase transmission line with transposition

Matrices characterizing the transmission line section

In the case of twice three-phase transmission lines transposition is
usually employed within the individual three-phase systems. Accordingly
equalization that takes place can be taken into consideration in such a way
that in place of matrices M, Zs, Z.. Y, which are valid for the system built
without transposition, the matrix of the form

AR A
gz B v v v
P B A ar s
; [ :
X = ) A (24
6 o0 0 & - (24)
(\) !) 0 - & :
L0 I N e

is taken where %, 5, ..., 7 are the arithmetic means of the corresponding
elements in the original matrix. Matrices having the structure (24) will be
called the type g. In the Appendix some characteristics of tvpe g matrices
are enumerated.

The square matrix of the sixth order given under (24) can be partitioned in
the following way.

X — Xll Xl‘l (25)

X Xy

where X,;, X,,, X,,, X,, are square matrices of the third order. Upon comparing
with (24) it can be seen that X, and X,, are of type f, further that all the ele-
ments of X, and X,, are equal. Such matrices which are built up of identical
elements will be called type &.
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In the examined system (Fig.2) the radius of one of the three-phase

w
7

ystems is a,, that of the other is a,. Matrices of the arrangement are written
in such a wayv that the first three elements in the columns and rows correspond
to the individual wires of one of the three-phase svstems, while elements 1.5

and 6 to those of the other svstem.

Ry R
AL, e

Fig. 2

Matrix M’ characterizing the geometry of the system can be written
on the basis of (3), and from this the reciprocal value M'~' can be formed.
Matrices M,. M~%, and Z, of type g are formed of matrices M',M'-L Z; by
averaging the corresponding elements. Matrix I? characterizing the system
can be calculated in the knowledge of M~! and Z; on the basis of (7) and (2).
According to characteristic 1 of type g mairices enumerated in the Appendix
matrix I? is also of tvpe g. Similarly of tvpe g is I' which can be determined
of T2, further Z, which can be caleulated on the basis of (2). and the wave

impedance matrix Y, given under (8).

Decomposttion of wveltages and currents

Let us examine the voltages passing the svstem in direction —z. Decom-
pose these according to the eigenvectors of matrix I'. In this case

”(ﬂ(‘:) = piwl ol 7)=‘)_;,(,——;'.,;: L”: l‘r(()vf)_.f_
Lol ()l p—iet HCI (D
e Ly U e Ly, U+ (=0)

e Ly, UG

Here 000 Y400 Vi1 Vios Y10 Ty are the characteristic values of matrix T taken

on the basis of relationship (A9) in the Appendix, further
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o At L, Ay AL -
Ly = Ay, /G, = ‘4 114] (L ‘114 1: ’ (27)
AA1a Ay g “yai" g
>4 -4 9 VE:L, A _N.)q 14
L(n == /Ing A()_w = [ 4—1 ~ ' -1"1 .1“: o (28)
L-day Ay Ly A P Ly
Ly = A, A =[] (29)
' 0 0]
~ 0 0 ,
L, = A, 1, = 30
1 12 <2 0 L] (30)
L., = Ay, A1 L, 0 (31)
) 10 0
~ {
L, = A, A% = 00 (32)
i 0 L,

L, L; and L, are the Lagrange polynomials pertaining to the unit vectors
Sy. 8, and S, of the three-phase symmetrical components, respectively,

The eigenvector attached to v, is
iy e J (33)

This means that in (20) the third term at the right side describes a voltage
which corresponds to the positive phase-sequence component of the first
three-phase syvstem and in the second three-phase svstem the voltages belong-
ing to this are equal to zero. Similarly the fourth term describes that the
voltage belonging to the eigenvector 1, is the pozitive phase-sequence compo-
nent of the second three-phase svstem. The fifth term is the negative phase-
sequence component of the first svstem, the sixth term that of the second
svstem. It follows from all this that the positive and negative phase-sequence
symmetrical components of the two three-phase systems can be caleulated
independently of each other.

The first two terms at the right side of equation (26) represent the zero
phase-sequence components of the voltage, To this. two modes are seen to

pertain,

Symmetrical arrangement

Let us examine the practically often occurring case when the two three-
phase svstems are svimmetrical with respect to each other (Fig. 3). In this case
Iy

AT (34)
T o
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where I} and T are symmetrical matrices of the third order. We were able
to see that the two systems are not acting on each other in the aspect of the
positive and negative phase-sequence symmetrical components of the voltages.
accordingly these are not influenced by the conditions of symmetry, in the
case of a matrix of form (34) however 2], = 7, and 7}, = 23, and thus on

the basis of (A10)

uint S S | and ‘421 = 1. (35)
) 4,

S S S

Fig. 3

In addition. on the basis of (A9)

Gy = 49, 1 2Y,
Far 1 e (36)

S 0
For = 411/

Also in this case two modes belong to the zera order component. The eigen-
be: o

l\v [N
-’quj - [ SO ] 13.11(1 ;/1”;, = 1. §“ J . (37)
‘\vn . S(,

vector of these is

The two modes are propagating with different propagation coefficients (y,,
and 7,,). The appertaining Lagrange pelynomials can be obtained from (27)
and (28) upon considering (33).

lrLu LI - Ll -~ L E
Ly = (l; LOET' ( 0:" (38)

If at z = 0 the two systems are connected in parallel then
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T(+)
U = E”] . (39)
where
Lr(]—iv)
r-=| vy | (40)
v

In this case, from Eq. (26), the two members corresponding to the zero phase-
sequence component of voltage u(z) are found to he

) 9 Ty
e 7o Loy U == e=vo® Lo Ly L_ }———: e Tl 2L, L' ] =
L, L, jU® 2L, U4
17 (41)
1
— 2= (UL U U | L
N - 1
1
1
and
) . 7
¢ Vel L(m (75;-) = g T L“ LO U = 0 | (‘12)
: L, L] Lo

l.e. in the case of a symmetrical build-up the zero phase-sequence voltages
corresponding to one of the modes are all equal to zero.

On the basis of the foregoing it can be stated that in the case of a twice
three-phase system built with transposition the positive and negative phase-
sequence components of the two three-phase systems are independent of each
other, and two modes belong to the zero phase-sequence component. If the
two three-phase systems are of symmetrical arrangement with respect to each
other and are connected at least at one of the terminals in parallel, then only
one of the two modes of the zero phase-sequence components comes into
existence. In this case the corresponding voltages and currents in the two
systems show a complete symmetry.

Network consisting of three-phaase transmission lines

The topological theory of transmission line networks is well known [7].
By the help of this theory, in the knowledge of the length, wave impedance,
and propagation coefficient of the transmission lines. further of the impedance
and source voltage of impedances and generators connected to the connection
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places, vertices, the voltages arising at the vertices can be determined by
a single matrix equation. Bevond this currents to be measured at the ends of
the transmission line can also be calculated.

The impedances of network parts being at the vertices can be decomposed
to components corresponding to the symmetrical components [3]. The voltage
of the generators can also be decomposed to symmetrical components. Such
a decomposition was seen to be possible both in the case of once three phase
and of symmetrical twice three phase systems. Accordingly for the calculation
of three-phase transmission line networks an one-phase connection can he
given which is valid for the individual svmmetrical components. Here the
network parts connected to the vertices should be taken into consideration
with their impedances and voltages of the respective phase-sequence. Twice
three-phase sections can be calculated as two systems connected in parallel.
At the calculation of positive and negative phase-sequence components.
however. we should take inte consideration that propagation coefficients
and wave admittances helonging to the zero phase-sequence components are
influenced by the coupling of the two three-phase systems.

Appendix

In the following some characteristies of matrices of type [ having the

orm (13). and of type g having the form (24) are summarized.

a) Tvpe f matrices

1. The sum, difference. and product of two matrices of type fis similarly
of type f.

2. If X is a matrix of tvpe fthen its reciprocal X~ is similarly of type f.

3. The eigenvalues of type f matrix (13) are

),, = Y - 2/"}
(A1)
/11—7.: 7. — I’l
where 7, is a double eigenvalue. The corresponding Lagrange polynomials
are
1 1 1
. 1 5
Lu = %_ 1 1 1 (5 —)
i ] 1

and
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TR
L“:? -1 2 -1 (A3)
-1 -1 2]

L,, can be written as the sum ef

1
Li=—la 1 a (Ad)
3 R
la a1 ]
and of
1 1 a a’]
L, = Rk 1 &, (A5)
“la a 1
where
RS
a = ¢ "

denotes the eigenvectors of X belonging to the Lagrange polynomials L, L,
and L,, respectively.

1 1 1
1 1 )
Sy = —=|11: & =—|a}: al- (A6)
L3 I3
1 a a-

The decomposition of type f matrices with respect to these eigenvectors cor-
responds to the decomposition to syvmmetrical components employved at the
calculation of three-phase networks.

4. The Lagrange polynomial of a matrix of type f is similarly of type f.

5. A function of a type [ matrix which is defined by the relationship

B(X) = N () Lo(X) (A7)

iz similarly of type f.

b) Characteristics of type g matrices written under (24 )

o

1. The sum, difference, and product of type

Pl

g matrices is similarly
a matrix of tyvpe g.

2. The reciprocal of a type g matrix is similarly of type g.

3. For the determination of eigenvectors and characteristic values the
partitioned form written in (23) for type g matrix written under {(24) is
used. The eigenvectors are



v
&1
<
fand
8

The type g matrix can be partitioned according to (25). The eigenvectors of
matrices X,,, X5, X, Xy, involved are S, 8,8, The eigenvalues of the
type g matrix can be expressed by the eigenvalues of the third order type f
matrices X, X,,. X,;, X,,. Let the eigenvalues of these pertaining to S; be
denoted by 29, 2%, 29, 73, those pertaining to S, by 270, A7), A0, 2850,
and those pertaining to S, by A7) A5, 27, 25 (Itis easy to see that
WP = i) =0 and A7) = 377 = 0.) The six characteristic values of the

matrix given under (24) are the following.

Joou 1. I
[ ¥ SN 5 20 \2 50 50
To = o DmT P29, - 28,)2 428, 78,

()
¥ = /1

Tra = M) (A9)
Gar = 47
Gy = 257,

Two eigenvalues appertain to the eigenvector /I,. For the ratio of 4, to 4,
figuring in /1, the relationship

(A10)

is valid.
4. A function of a type g matrix which is defined by the relationship

o

[}
£(X) = D fle) LX) (A11)
=1
is similarly of type g.
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Summary
Power transmission lines consist in practice mostly of once or twice three-phase systems
in which the position of the individual wires is interchanged after a certain length. The topo-
logical theory of coupled transmission lines and of transmission networks iz well known

from the literature. In the present paper these two theories are employed for the above men-
tioned transmission networks.
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