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Introduction

The wave theory of coupled transmission lines is known from the tech-
nical literature {1,5]. According to this, as many modes with different pro-
pagation coefficients arise in general in the transmission line, as the number of
over-ground wires. In three-phase transmission lines huilt with tfransposition
the symmetrical components correspond to the modes [2, 3, 4]. Among the
wires the ground wire has a special rule, it is earthed at each pole. In the present
paper it is examined how the influence of the ground wire on the electro-
magunetic waves propagating in the transmission line can be taken into con-
sideration.

Theory of the coupled transmission line

Our considerations are based on the theory of the coupled transmission
line. (For a concise summary see paper [4].) According te this, for a sy
consisting of n wires arranged above the earth, parallel with the earth and
with each other, the system of differential equations

- (1)
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is valid, where z is the spot co-ordinate in the direction of the transmission
line, 7 the column vector formed of the currents in the wires, ¥ that of the
voltages between the wires and the earth surface, Y, the parallel admittance
matrix related to unit length, and Z; the series impedance matrix related to
unit length. ¥, and Z; are square matrices of the nth order. (The method of
their determination is to be found in [1] and [4].)
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The solution of the system of differential equations (1) is given by

1(z) = e T U +el= U

9
i(z) = Y [eT= U D07 (2)

where Ug':') and U§7) designate the colum vectors formed of the values assumed
at the place z = 0 by the voltages passing in directions —+—z and —z, respec-
tively, I' is the propagation coefficient matrix the square of which is

m™=2Y, (3)
and the expression of the wave admittance matrix is given as

Y, =2;'T. (4)
Matrix functions figuring in (2) can be expressed by the matrix Lagrange poly-

nomials. The Lagrange polynomials of the nth order square matrix X can be
written as follows.

n X 1E ,
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where E is the unit matrix of the nth order and 7; denotes (k= 1.2,...n)

the eigenvalues of matrix X which can be determined of the equation
det (X  AE = 0. (6)

The matrix functions of X can be expressed by the Lagrange polvaomials
as follows.

fX) = > f7) Lu(X). (7
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Accordingly the relatiouships given under (2) can be written also in the fol-
lowing form.
n

w(z) = SLTY UL e 75+ U o]

P

=1
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vi (k= 1,2...., n) denotes that square root of the characteristic values of

I which falls into the first quarter of the plane of complex numbers. These
are the propagation coefficients pertaining to the individual modes. (For the

physical interpretation of relationships (5) see [4].)
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Consideration of the influence of the ground wire

The ground wires are short circuited at the individual transmission line
poles with the earth. Consequently their potential is identical at these places
with the potential of the earth surface. In the followings the ground wires
are taken into consideration in such a way that their potential is assumed
to be identical in each cross section with that of the earth surface. This is an
approximation which is honoured exactly only at the place of the transmission
line poles.

At the place of the ground wires the current of the phase wires produces
a certain potential. The aforesaid condition on the potential of the ground
wires necessitates that the current in the ground wires should be so high that
the resultant potential at the place of the ground wires is zero.

Let us number the wires in such a way that the ground wires receive
the first order numbers, and the phase wires the further ones. Let us designate
by u; the column vector formed of the potential of the phase wires at the
examined place z, by i; the column vector formed of the current of the phase
wires, by 7, the column vector formed of the current of the ground wires.
Then the voltage and current column vectors of the system can he written
in the following form.

u(z) = {i’) and i(s) — (10} (9)

where O is a column vector of similar order as i,

Matrices Z; and Y, are partitioned in such a way that the separating
lines are drawn behind the first rows and columns representing the ground
wires. Thus e.g. the series impedance matrix of the system consisting of two
ground and three phase wires can be written as follows.

Zy Ly | Ly Zy Iy
Zoy Loy | Zag Zyy Zy
Zso = Zoy Zy | Zy Zy Zy (10)
Zy Zy Zy Zy Zys
25 Zsn Zss 2y Zss i

In the sense of the foregoing the partitioned series impedance matrix of any
transmission line system having ground wires is given by

Z yA
ZS — I ns . 11
’ [z Zs] )

In (10) Z, and Z, are square matrices of the second and third order, respectively.
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The parallel admittance matrix of the transmission line system can be
written in the form of a hypermatrix similar to Z,.

- Y, Y
1,’) - n np ) (12
#0 {Y Y ] 12)

pn tp

Let us substitate (9), (11) and (12) in Eqs (1). Thus we find that

_L[()J:[Z,_ Z”S]‘zo] (13)
8z | u; Z, Z.,

i

L w
8z | i Y, Y, llus] ’

where in consequence of reciprocity Z,s is the transposed of Z_,. and Y,,

=

that of Y,,. Of these we can write the following equations.

0=12Z,4,+2,.14 (15)
Tal u; = Zs‘n io;ZS if (16)

oz
3 ., ; 7
. ~ O:Yn'nl(j (17)
- ._‘f—if = Y.ﬂ llj' (18)

oz

From (15) we obtain that

i() = --—ZELZ,ISZ‘_;‘- (19)

Upon substituting this into (16) we find that

_5 u, = (Z;,— 7

Z;l ZIZS) if (20)

511

(18) and (20) represent a system of differential equations, similar to (1), in
which only the currents and the voltages of the phase wires are figuring,
further

Y, =%, (21)

corresponds to the parallel admittance matrix and
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2, =2, 2,22, - L.=AZ,. (22)

sn ns

The meaning of these results is that at the approximate calculation of the
transmission line system having ground wires these are not to be taken into
consideration at determining the parallel admittance matrix, while in the series
impedance matrix the correction member

- /—/}Zs = "—an Z;] Zr:s (23)

is added to the series impedance matrix Z; of the system without ground wires.
This can be interpreted in that manmner that the current in the wires is not
influenced by the potential of the ground wire, since it is zero, the potential
of the wires, however, is influenced by the current of the ground wires.

It follows from the aforesaid that the number of modes arising in the
system is not influenced by the ground wires, I? and Y, however are modified
with respect to the system without ground wires, in consequence of the cor-
rection member added to Z_.

It can be seen from the foregoing that the caleulation of transmission
line systems containing ground wires too can be reduced to that of the system
without ground wires. '

It should be noted that Eq. (17) has not been discussed. This equation
is in general in contradiction with Eqs (15), (16) and (18). These are namely
satisfied jointly if

Z,,Y,+72,Y,,=0. (24)

np
what is generally not valid. This contradiction originates from the fact that
we calculated with an approximation. We have namely assumed that the
ground wire is at zero potential and this makes the problem redundant. In fact
the potential of the ground wires is zero only at the earthing places, i.e. at
the transmission line poles. Since however the distance between two poles is
very small in comparison with the wave length, the potential of the ground
wire can actually be regarded as zero.

For a more exact description of conditions in the system we should take
into consideration that the number of wires is increased by the number of
ground wires and thus also the number of modes is generally increasing. If the
potential of the ground wires at a place with co-ordinate z is zero, then by
force of (8) the potentialvof the ground wires at a distance of Jz from the
former place is in general different from zero. Accordingly such a reflection
comes into existence at the further earthing places that the potential of the
ground wires will be zero there. This means that at more exact calculations
sections between two neighbouring transmission line poles should be handled
separately.
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Three-phase transmission line with ground wires built
with transposition

By employing the theory of the coupled transmission line, conditions
of transmission lines built with transposition can be discussed [4]. In the
followings the influence of the ground wires in a transmission line with trans-
position will be examined by employing the same theory.

In the case of transposition the individual blocks of hypermatrices (11)
and (12) have a certain symmetry. In the case of an once three-phase system
Z,.Y, I T and Y, are of the form

% i;J) /9
X, = pox p (25)
goB ol

while in the case of twice three-phase matrices the build-up of the ahove men-
tioned matrices is the following.

@« 3 p oy vy

B x By v v
X,—| 7 F = v v (26)
o 6 b6 e & f

S o0 0 I e =

56 0 L L e

An eigenvector and eigenvalue system of matrices X; and X, is described
in the Appendix.

The columns of matrices Z,; and Y,, are equal with each other, similarly
the rows in matrices Zg, and Y,, are equal. In consequence of reciprocity Z,;
is the transpose of Zg,. and Y., that of Y. i.c.

Zys=[Zy Z - + - Zy] = Zg, (27)
Y’?P:[Y'k VYF: ot Y~k] ———erp (28)

{The asterisk * designates the transpose.) These matrices take the interaction
of ground wires and phase wires into consideration. The elements of Z; and
Y are supplied by the arithmetic means of the corresponding rows in matrices
Z,, and Y ,p, respectively, calculated for the case without transposition.

It should be noted that in the case of a single ground wire Z; and ¥
consist of a single element.

In the case of transposition the correction member of the series impe-
dance as written in (23) can be calculated relatively simply. In this case
namely AZ, is a square matrix, all the elements of which are equal to each
other and the order of which is identical with the number of phase wires.
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This can be understood as follows. Let Y7, ¥3,...,Y7 denote the
individual rows of Z;l, where 7 is the number of ground wires.

y:
zii= | ¥ (29)
g
On the basis of (23) and (27
2 [(YiZ, ... YTZ,
—AZ = — ZA I';f'z,z. Y72, o

Z: 1 viz,.. vz,

Thus the elements of AZ; are equal to each other and the value of such an
element is

i Y*i Zk

iz, -z | V22 (31)
Y} Z,

The expression of the propagation coefficient matrix on the basis of (3),
(21) and (22) is found to be

e Z;Yp = (Ly—A2)Y, =L, Y, ALY, = T? - AT, (32)
where
=7Z,Y, and A4I"= 1Z,Y,. (33)

T is the propagation coefficient matrix of the system without ground wire.
It was seen that all the elements of 4Z_ were equal to each other. In the case
of an once three-phase system Y, has the form (25), in that of a twice three-
phase system the form (26), and is symmetrical. It follows of this that the
sum of the elements in a column of Y, is the same for all columns, An element
of AT? as written in (33) is equal to the product of JZ; and of the sum of
the elements in a column of Y. Thus the elements of /I are equal to each
other. Let us designate these by AI™.

In the followings we shall first examine the once three-phase system.
Then I?is an X -type matrix of the form (25). Thus

Ir:—Ar> I}{—AI*  Tj—Ar*
I =T2—AT2= |} A T2 AI* I3 AI® (34)
Ig—Ar?  Ii—Are I?—Ar:
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are also of type X,. The eigenvalues on the basis of relationship (A3) in the
Appendix are found to he

Wt =T2 AT 2(I% A2y = [2420% 3 AT (35)
v3=T2 A (It AI®)=T2 T}. (36)

Upon comparing these results with the eigenvalues of matrix I? valid
for the system without ground wire (see [4]) it is seen that the ground wire
modifies only the propagation coefficient helonging to the zero phase-sequence
component, those belonging to the positive and negative phase-sequence com-
ponents are not influenced by it.

In the case of a twice three-phase system the build-up of matrix I? is
identical with that of matrix X, given under (26). Then

TR ¥ A s RO VA RS AL U U A T F A ¥ A
BdAl? g — I f A2y AT y— AT o A

T2 AT = | B—AL2 - A[? g dl? y— AT* y—AI? y—AI* (37)
O—Al? 6 Al §— A2 e T2 (- AT? [~ AI?
O Al 6-- A2 6 AT? {— AT2 e— AT? {—AT™?

L0 Al? AT 6 A2 L AT L AT? e — A2 5

is similarly of type X, what means that the ground wires are not influencing
the system of . eigenvectors. The eigenvalues belonging to the two
zero phase-sequence components are, according to (A7) in the Appendix,

A28,

1 .- =
@y = ——— = —— [ (A — 7))+ 4729, 2%, (38)

1RV

where
M =2 5341
347"

e

9, = et 20

2, = 3y—-31* (39)
29, =306 —34T™.
The eigenvalue belonging to A, and /1, (see Appendix) is
T =Fn =x—p (40}

and the eigenvalue belonging to A, and /L, is

P = P =& — 1. (41)
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This means that the eigenvalue belonging to the positive and negative phase-
sequence component is not influenced by the ground wire (cf. [4]).

We can accordingly establish that the ground wire is influencing only
the propagation coefficient of the zero phase-sequence component in the case
of both once and twice three-phase transmission lines built with transposition.
The values of wave admittances of various phase-sequence however are not
independent of the presence of ground wires.

In the foregoing the calculation of three-phasc transmission lines built
with ground wire was reduced to the theory of systems without ground wires.

Appendix

A possible system of eigenvectors for matrix X, given under (25) is the
following.

1 1
. 1 . ] , 1
Sy = =—=|a; 8= sl at. (A1)
a a®
where
R
a=c¢? (A2)
The eigenvalues appertaining to this eigenvector are
Jo=oa+28: ii=a—f ly=xfl (A3)

For writing one of the eigenvector systems of matrix X, given under (26) let
us partition X, as follows.

4 ¥
X, = [211 ;12 . (Ad)
21 22

where the matrix blocks are square matrices of the third order. Among these
X,, and X, are of identical build-up with X, given under (25). Thus the eigen-
vectors of these are as given under (A1) and the eigenvalues can be determin-
ed on the basis of (A3). Be the signs of these eigenvalues A7), A{}, 2} and
192 289, 28, respectively. X, and X,; are matrices each element of which is
equal to that in the other. This can be regarded as a special case of matrix
X, given under (25). Among the eigenvalues of these only the one apper-
taining to eigenvector S, is different from zero. Let us designate this with

735 and 23, respectively.
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One of the eigenvector systems of matrix X, given under (26) is given by

A, S S O
A= {7170 A= 1 A=
A, S, O S,
S, (9
A= " sy = : A5
21 s A2 a0
S, (AS5)
where
A, — /llj_l A% V(A =78, +4 A, /:(1)1, , (A6)
A, 279
Since A,/ 4, may assume two values, /I, designates two eigenvectors.
The eigenvalues appertaining to the eigenvectors (A3) are
g PP g g
20,478, , 1 50 50 V2 1 430 50
To= — + 5 (28) —28,)*+443, 25,
s
T = A} -
( (A7)

T2 = A

o = 23
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Summary

The wave theory of coupled transmission lines is known from the technical literature,
as well as the application of this theory for the examination of once and twice three-phase
systems built with transposition. The present paper gives a method for the consideration
of the influence of ground wires. similarly on the basis of the wave theory. Ground wires are
influencing the propagation coefficients of waves arising in the transmission line system and
the wave impedances, but not the number of arising modes. In three-phase lines built with
transposition the ground wire affects only the condition of the zero phase-sequence symmet-
rical component.
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