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The conventional method of designing closed control loops is based
upon the knowledge of the frequency-transfer properties of the blocks. The
designing procedures developed in the practice of engineering have their
specifications for the Nyquist-plot of the open control loop. E.g. they require
that the phase-margin be at least 30° to 45° or that the gain margin be
at least 6 dB. These specifications are shown by the Bode-plot in Fig. 1.
Whether the design is made for the phase-margin ¢; or the gain-margin a;
that section of the Nyquist-plot is decisive in which the amplitude ratio is
a value near the unit (middle frequency range). The low frequency range of
the Bode-plot (» <2 o) has little influence upon the stability of the closed
control loop, it onlv determines the steady-state error and — on the other
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hand — it is completely justified that the section of high-frequency range
(& > () is not taken into consideration at all.

To obtain the middle frequency range we draw the § dB axis on the log
magnitude plot of the Bode-diagram and with it we determine the angular
cut-off frequency . Its environment will be the “middle frequency range”
The stability requirements, however, determine the middle frequency range,
— whether the design is made under the consideration of the phase margin
or of the gain-margin. In both cases, that part will be the middle frequency
range (i.e. there will the amplitude ratio be about the unit) where the phase
curve intersects the value —180~. The plot of the phase curve does not depend
on the open loop gain. Thus it determines where the middle frequeney range
has to be placed, where the 0 dB axis of the amplitude plot has to be drawn,
i.e. how great the open loop gain has to be.

Let us examine some properties of the phase plot, w hl(_ h will be important
for ’Lhe further considerations.

At w — 0 the phase plot starts from the value k& (—907) where k
means the multiplicity of the poles at s = 0 in the transfer function of the
open loop F(s) (k > 0, because k <~ 0 would mean that W(s) has zeros in
s = 0, which cannot practically occur). The amplitude curve of the Bode-plot
starts from « ~ 0 with a slope of —k - 20 dB/decade.

At & - ~ the phase plot goes to the value [.(—90%) where [ is the
difference between the order of the polynomials in the denominator and
numerator resp. of W(s). The final slope {(at ¢» - ~) of the amplitude plot of
the Bode-diagram is —/ - 20 dBjdecade.

If the phase plot of a system lies above —180° in the whole frequency
range, the system is structurally stable.

4. 1f the phase plot of a system lies below —180% in the whole frequency
range, the system is structurally uastable.

5. The phase plot of a svstem at the limit of structural stability is —180-
at any place (this is the only system which has an open loop with a transfer
function W(s) = K/s%).

Between the value ¢ () belonging to .. of the phase plot and the
slope of the amplitude plot there is a relation formulated by Bope. i

u
g (w,) = —— — - _— e — Incoth — du .
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where a is the logarithm of the amplitude ratio. and u = In w/o..

From the above formula it is evident that the phase angle really depends
on the slope dajdu of the amplitude plot in the way that ¢(w,) is decisively
influenced by the da/du slope values in the environment of . (u = 0). The
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influence of those values of da/du which are farther from . is considerably
reduced by the factor In coth u/2' of the integrand.

7. A monotonously decreasing phase plot — unless the system is struc-
turally stable or unstable — intersects the —180° line once, and thus the cut-

off frequency o and also the value K_; of the open loop gain can be marked

crit
univocally. In this case the closed loop is stable if K <7 K, and unstable
if K > K

8. The intersection of a monotonously increasing phase plot with the
—180° line — if there is such an intersection at all — determines the open

loop gain (K_) as well in accordance with the previous paragraph. In this

cri

case. however, the closed loop will be stable it K = K ..
9. If the phase plot intersects the -—180° line twice, there will be two

critical open loop gains, K ., ; and K_, ,. Depending on whether the phase

plot between these two points of intersection is convex or concave, the closed

system is stable in the range of

Kcrin - Kcri12

or

K« Kuin, and K o K

respectively, in anv other case it will be unstable.

10. In such type O control svstems where there are many equal or almost
equal time constants, but none of them are much larger, the K is relatively
small. On the other hand, if the time constants considerably differ from each
other, the K

—180° line steeply, in the latter case less steeply. Generally the phase plot

¢ will be large. In the first case the phase plot usually cuts the
changes steeply where the second derivate of the log magnitude plot is large.

11. The cut-off frequency gives approximate information of the settling
time £, (i.e. the time in which, on the influence of the step function. the con-
trolled system approaches the steady state value to the required extent).
The settling time can be computed from the inequality

As wc is in the region of the intersection of the phase plot and the —180~
line, the frequency o, belonging to this point of intersection determines appro-
ximate value of the settling time.

In many cases the step response of the controlled process is the starting
point to the design of the control loop. In such cases the transfer function
must be produced with some identification method so as to obtain the Bode-
plot for the work of designing. The identification methods known nowadays
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require a considerable work of computation which, in addition, gives results of
limited accuracy. At the registration of the transient function errors, measure-
ment inaccuracies and noises — normally usual and tolerated in the practice
of engineering — appear which, associated to the errors made at the numerical
computation (mainly the repeated differentiations and integration), distort
the transfer function resulting from identification, since false poles and zeros
are obtained which can be screened out with great difficulties only. A further
basic problem is given bv the fact that the time range and the frequency
range are connected by infinite limit integral formulas. The numerical compu-
tation, however, is unable by its character to reveal properly those relations
between zero and infinite value for which the mathematical analysis gives
exact formulas and which are used as important theorems at the work of
designing on the basis of mathematical analysis and function transformation
(Laplace—Fourier). Also the fact cannot be disregarded that the frequency
method of designing control svstems assumes such quality characteristies
secondary from the viewpoint of the behavior in time (phase margin, gain
margin, cut-off frequency. etc.) which are in close, but not univocal relation
with the quality characteristics of the time range (overshoot, sctting time, ete.).

Thus it is justified to ask whether it is worth carrying out the function
transformation from the time domain to the frequency domain, which requires
much of computation and includes considerable sources of error, and then
making the design on the basis of the secondary quality characteristics of the
frequency domain which is no fully univocal with the primaryv characteristics
of the time domain.

Also such a designing procedure can be applied which uses quality char-
acteristics given in the time domain and heing in direct connection with the
step response of the open control loop. even if they are secondary, supposed
that they are not in less certain connection with the time and overshoot of
the closed control loop than the characteristics of the frequency method are.
The simplest tasks are to set the open loop gain, then to compensate by intro-
ducing the effect PI, PD.

Let us consider first the task of determining the open loop gain:

The step response v(t) of the open control loop, except for a constant
multiplying factor in it, is given. This means that neither the scale of ¢(z) nor
the position of the amplitude plot in the Bode diagram is given. Here the
setting of the open loop gain is done by displacing the amplitude curve in the
way that the cut-off frequency. i.c. the unit value of the amplitude ratio is
at the frequency determined by the phase plot.

At designing directly in the time domain, the corresponding procedure
would mark out such a time 1. to which some definitively given value of the
step response helongs. In other words, the diagram is scaled e.g. in the way
to get v(t:) == 1. The problem is whether there is any function in the time
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domain which plays a role at marking out . similar to the role of the phase
curve of the Bode-diagram at choosing .. There are such functions, e.g.

where

vt) == \f v(t) dt.
o

Further examinations are needed to ascertain which of the above — and
possibly other — functions is the most suitable to mark out the “middle-

frequency’” part of ¢{t) in the time demain, i.e. that part which, similarly o
the middle frequency range of the Bede-diagram. has a decisive influence upon
the stability conditions and the choice of the open loop gain, and which deter-
mines the method of compensation and the parameters of the compensation
block.

Among the above functions e.g. it is %(t) that has properties more or
less similar to those mentioned in connection with the phase curve of the
Bode-diagram. Such properties of x(f) are as follows (to facilitate comparison,
these properties of %() are marked with the same figures as the corresponding

properties of the phase curve):

1. If t -~ ~o the value of «(t) goes to k. where k is that highest exponent
of the polynom ¢, £ ey i hat SRR ¢, to which the step response goes

it ¢ - oc. (Thus L is the multiplicity of poles at « = 0 in the corresponding

transfer function.)
2. At t = 0, the value (1) starts from [, which is the lowest exponent
of the Tayvlor serics of the step response at ¢ = 0, L.e. the lowest derivative
of the step response at t = 0 differing from 0. (In other words [ is the difference
between the order of polyneminals in the denominator and numerator of the
transfer function).

3. If in the whele time domain (0 <Z 7 <7 ~) the value of z(f) is smaller
than 2, the closed control loop is structurally stable (Fig. 2).

4. If «(z) is larger than 2, in the whole time domain the closed system
is structurally unstable (Fig. 3).

5. In a system that is structurally at the limit of stability (the step
response of the open control loop is v(f) = ¢%. z(t) = 2 in the whole time
domain (Fig. 3).

0. The value of «(f) depends on the slope of #(¢), and is propoertional

t
to it. In addition it is proportional to tb(t) =t/ ﬂ v(e)de, 1.e. it depends also
0

3 Periodica Polytechnica El XIV/3.



274 i, FRIGYES

Lia v(t) wys) = 71«
s

1'b a,(e)
2/a vy(t) wy(s) = {'fl—s?f
2/b au(t)
Ba o) wys) -
l PO
T (ST sTy)

3/b ay(t)

l/a v (1)
Iib ey ' 7F
2/a w.(t)
2/b o) ¢
3a vt
3/b a;Ez; 1=

Fig. 3

on the previous values of the derivate of the step response function (weight

functions).
7. The monotonously decreasing «(t) — unless the system is structurally
stable or unstable — intersects the line z = 2 once.

If the step response of the open loop is such, that «(z) is decreasing in the
whole time domain and the open loop gain (the scale of v(f)) is set in the way
that the system is at the limit of stability (K = K, ). the inequality

hold for that ¢, with which v(i) = 1. In such a case the system is stable if
K < K, and unstable if K > K_,, (Fig. 4).




ENAMINATION OF CLOSED CONTROL LOOPS 275

. Lia v(t) 1w (s) = —37;1_\& :
; Ub o) II (1sT;
o ! =1
2/a vy(t) wys) = J.-_‘.[}JEE., —
2/b a(t) I (14-sTp)
z : i=1
. K,
3/a vy(t) wy(s) = ——3—H———
S 3/b og(t) S _H1 (15T
3 - e =1
Fig. 4
8. The monotonously increasing «(t) — unless the system is structurally

stable or unstable — intersects the line » = 2. In this case there is such a K _,,
with which the system is stable if K > K, and unstable if K <7 K .. The
value of «(z) belonging to the 1. determined according to paragraph 7 is
smaller than 2 and changes within broader limits.

9. If x(t) intersects the line z == 2 twice, the closed system is stable in

the ranges of the open loop gains of

-K:x:ri’n 1 T K < Kcrltg

or

K < Iicritl alld IX. / I\—Lnt.’.

and it is unstable in any other case, depending on whether (¢} is convex or
concave between the intersection points.

10. The value of x(f) changes more steeply at the time points ¢, deter-
mined according to paragraph 7 in the case, when the time constants in the
system are near to each other, than in the case if they differ considerably.
Generally, at fixed values of v(t) and v'(t), the value of x(f) changes more
rapidly, if the second derivate of v(t) is larger.

11. The value of 1. determined according to paragraph 8 gives approxi-
mate information on the settling time ¢,
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Summary

The conventional methods of closed control loop design are based upon the knowledge
of the frequency-transfer characteristics of the systems.

The main disadvantage of these methods is the necessity to perform the required trans-
formation from the time domain into the frequency domain which includes a number of
error sources.

The direct time domain synthesis methods would be valuable tools in control syvstem
design for the engineers.

The first problem is to find some function in the time domain which points out the
critical open loop gain like the phase curve of the Bode plot.

The paper presents some functions which show characteristics mentioned ubove,
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