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Introduction

A method of synthesis of an RO ladder network with a given transfer
voltage ratio by removal of poles will be presented. The zero shifting is done
only by resistance, applying a minimum of capacitances for the synthesis.

The high-pass and low-pass ladder network tested in the first part of
the paper is shown in Fig. 1. A short summary of the results is given here.
The transfer function of an RC Jadder network can be written in the following

form:
G(S) = K (‘5"“%1?("'7—7'2) . '(S";_Qim) = K A(S) : (1)
(s (s—=3y). . (s—F.) B(s)

where

m < n
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The parameter s, of the two-port can be expressed as:

. (5) — H (*t/gl) (S*/}z) (S-——ﬂh)

STV (S;;_:‘yI) (qﬁ:rl) L (q_'_:;,)

where

where

* This paper is abridged from a Doctor’s Thesis prezented at the Faculty of Electrica i
Engineering of the Technical University, Budapest.
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The transfer function (1) can be realized by the high-pass network in

Fig. 1a if and only if m = n and the parameter z,,. given in (2). fulfills the
following condition:

2 L G=1.2.....n). (4}

Hence. the condition for the transfer function:

2 7 p i=12.....n) ()
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Fig. 1

The transfer function (1) can be realized by the low-pass ladder network
in Fig. 1b if and only if the parameter y,, of the network. given in (2), fulfills
the following condition:

w > (P=10 ..., m). (6)

ALp > p‘l, (i = 1. 2., e m). (T)

In both cases, the method of synthesis was given for proving the above-

mentioned statements.

The synthesis of the general transfer function

If the transfer function satisfies neither condition (3) nor (7) the synthesis
can be done as follows. Let us factorize the transfer function to be realized
as product of two factors, satisfying conditions (5) and (7). respectively:
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G(s) = G'(5)G"(s) . )
where
Gs) — K T T o) e A1)
(s=B) (s-=B5) - (sB7) B/(s)

(sro) (s+23) ... (s+=)  A"(s)

(sL3) (s=p%) ... (5B B'(s)

6'(s) =

The quantities z;. 5/, «/ and ! have subscripts in increasing order. According

to what has been shown above:

2 >pr (i=1.2,...9) (9)
<l (@=1.2... k).

It is easy to see that there are always several means of factorization. Realizing
transfer functions G'(s) and G"(s), connecting the two networks in cascade so
that the impedance level of the second is chosen much higher than that of the
first, the transfer function of this network approximates the transfer function
to be realized. If, however, a great difference between the impedance levels
of the two network parts is undesirable and the transfer funetion is to be
realized accurately, then another method of svnthesis is needed.

It is easy to prove the correctness of the transfer function of the two

two-ports in cascade (Fig. 2) in the following form:

(10)

For a low-pass ladder network N with zeros at —z] and a high-pass
ladder network N” with zeros at —x/, the parameters of the two tow-ports
can be written as:

‘_:] R V(S'.‘_?l) (S—_ll) s (s——yg) — L 4 (S)<
' (500 (52 04) . (s—2%) D(s)

(11)
L= H' (sten) (s-me) - (s=&n) 0 E'(s)

(5--0)) (s 05) . . . (s--07) D'(s)

g BEA ) el g ETG)
(sLo)(s+a8) .. (s=7%) D(s)

o SR ), As)

{ %
(s£07)(s=0%) . .. (s—o D(s)
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The following conditions are to be tulfilled (subseripts of quantities d}. o/, &

!

and ¢ indicate increasing orders):

0 <oy <o) 7 eh< 0y <D (12a)
2 >0] (i=1.2... .9 (12b)
0207 Tl DA T e T T (12¢)
w0 (i-=1,2 I (124)

Denote:

H P ) ‘ ,

L = H'H” at the same time H,--H, = 1. {13b)
2

Substituting the two-port parameters given in (11) into (10) the following

expression for the transfer function arises:

HL L7 L" A(s)

G(s) == : (14)
H,D(s)--H,E(s) '

Comparing (14) with (1) vields the relationship:
H,D(s) ~ H,E(s) — B(s) (15)

(15) will be used to determine the quantities d;, 67, ¢; and &/ as well as H,
and H,., needed for the synthesis. This means (2n -+ 2) unknowns altogether,
but (13) gives only {rn 4+ 1) equations, hence (n -+ 1) unknowns may be
arbitrarily chosen, only that besides (15), conditions (12) must he fulfilled.
This problem can be solved as follows.

The (n + 1) arbitrary unknowns will be the quantities H,, ¢/ and 9;.
Quantities 07 and 4/ are to be chosen =0 as to satisfiy, besides (12b) and (12d)
the following conditions:

-k "4 .
BT 01 < paT

<7 LTy (16a)

R A e (- (16h)
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Sueh a choice is always possible because of (9). H, should be in the interval

B(0)

1 ¢ emm— s iy

0" H, " min )
Do)

(17)

where hy represents the smallest positive value of h. if any, where the equation
B(s) — hD(s) = 0 has a double root on the negative real axis.

Below it will be proved that choosing H; and the polynomial D(s) in
the way previously described. the polynomial E(s) determined by (15) satisfies
the conditions (12a) and (12¢). In the limiting case where H, = 0, E(s) = B(s)
and so (12a) and (12c) are satisfied. too, because of (16). As the zeros of the
polynomial E(s) can migrate only continously if H, is changed, it is sure that
for sufficient small values of H, the conditions (12a) and (12¢) are satisfied.
Let us determine the upper limit of H,. If B(s) and D(s) happen to have a
common zero this will be a zere of E(s), too, at any value of H,. i.e. the zero
does not migrate with increasing H,. but remains in the interval defined by
{12a) and (12¢). respectively. The other zeros of E(s), confined by two zeros
of D(s), remain in the interval defined by these two zeros as long as they do
not turn into complex values. Namely none of such zeros of E(s) can reach
a zero of D(s) for a finite value of H|, because then it would be a zero of B(s).
too, a special case dealt with separately. A root of E(s) can have a complex
value only if two of its roots have previously coincided on the real axis,
requiring the condition H, < h,. Preseribe that H, -7 B(0)/D(0) and H, < 1.
%o that no zero of E(s) should get to the positive axis through the origin and
¢o through the infinity, respectively.

Now let us determine h,. The equation B(s)-—hD(s) = 0 ecan have
a double root at a given point only if the equation dB(s)/ds — h[{dD(s)/ds] = 0
has a root there, too. Eliminating I from the two relationships we get the
following equation for the locus of the contingent double root:

Bs) AP pgy IBEL (18)

ds ds

The negative roots of this equation and the pertaining h values are to
be determined and the smallest of these values gives i, Evidently roots of (18)
are of interest only in intervals defined by two adjacent zeros of B(s) between
which D(s) has no zero, and in which intervals B(s) and D(s) have the same
sign. This simplifies the determination of h,. Notice that the factorization given
in (8) and the choice of D(s) can be always made so that D(s) has a zero hetween
any two adjacent zeros of B(s), and so one need not to be concerned with
determining h,.
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The particular steps of the synthesis are:

1. To factorize according to (8) the transfer function to be realized
into two factors, which satisfy conditions (9).

2. Choosing polinomials D’(s) and D"(s) as to satisfy conditions (12b).
(1ba) and (12d), (16h), respectively.

3. Choosing H, in the interval defined by (17).

4. In knowledge of H, and the polynomial D(s) = D'(s) D"(s) determi-
nation of the polynomial E(s) according to (15).

5. Factorizing the polynomial E(s) to the product of two polynomials
(E(s) = E’(s) E"(s)) so that E'(s) and E"(s) satisfy conditions (12a) and (12¢).
respectively.

6. Choosing any of quantities H' and H” and determining the other
according to (13b).

7. Writing parameters v,, and z;, according to (11), and realization of
hoth parts of the network by the method given in the first part of this paper.

Equivalent networks

To compare the equivalent networks on the basis of the constant K in
the transfer function (1). let us determine the expression for K. From (14):

K = H/L'L". (19)
As the two-port does not attenuate at zero frequency, when the output ter-

minal is open-circuited:

, N
RO N A 20

If the shunt arms of the ladder network contain only zeros at infinity. i.e. no
z{ is defined, (20) takes the following form:

Saw@ Lt (20a)
yao(0)  H' Il g

This will affect subsequent relationships, but will not be discussed here in
detail. From (20):

11 &

[ H 21
L Hllx} (21
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The two-port N” does not attenuate at infinite frequency, when the output

terminal is open-circuited, hence,

L"=H". (22)
Substituting (21) and (22) into (19) and applying (13b):

11 &;

-
1o
H

K= (1 H)

Obviously, the smaller is H. the greater the value of K. In limiting case

’

where H, = 0, &/ = 3, and so
Fels
/I./ Pi

K~ K,= +— (24)
Iil X

The value of K, depends on the decomposition according to (8), i.e. on the
grouping of z; and g, defined by (9). It can be shown by a somewhat lengthv
argument that K, will be maximum for the following way of grouping: the
elements of the same subscript get into similar groups, namely, for every value
of i if »; > p;. then both will belong to the group with one comma and if
%; *7 Py then to the groups with two commas. With increasing H,. K decreases
monotonously, partly because of the factor (1 — H)), partly because for the
above grouping the zeros of the polvnomial E(s) are shifted to the right along
the real axis, if H, is increased. But choosing H, sufficiently small, the coeffi-
cient K may assume a value as near to the maximum K, belonging to the
above grouping as desired.

Nevertheless, for a very low value of H,. according to (13b) the value
of the product H'H” is a very high one, while if H, iz near to unity. H'H" is
very small. In both cases the impedance levels of the networks N and N”
are very different, and this is in general unfavourable. The two impedance
levels will be nearly equal if H'H” =< 1, i.e. H; »~ 0.5.

Notice that if the transfer function to be realized has a zero at infinity,
the order of the denominator of v,, may be by one less than the order of its
numerator, i.e. for D(s) a pol¥nomial of order (n — 1) can be chosen. The pro-
cedure remains unchanged, only (13b) changes into:

HH =~ (25)
H

hence:
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Finally, the same synthesis is possible if N’ is a high-pass ladder network
) ) I g

and N7 is a low-pass one. Since the steps are the same as described above,
instead of details, an example will be presented.

Example 1

Let us realize the following transfer funetion:

Glsy= K WTETY
(s-=2) (s-4) (s=15)

The synthesis will be done first by the traditional method. Input impedance
of the following form will be chosen:

o s) = (s-=2) (s—1) (s—15)

To vield at once one zero at

) = T = Zy(s)

§-=2

Here a = 3.75, thus R,

1.750 and C, = 0.267 (zee Fig. 3). Further

Zis) = 122552l
B (s-=1)(s=3)
s SR e - ' -

The value of Z,(s) at both zeros to be realized is negative (Z,(—3) = —1.81
and Z,(—9) = —0.156), hence no zero shifting can be done with shifting
resistance. Realize first the zero at

g ==

= —35 hv a series RC configuration in
shunt arm and for this purpose try the following decomposition of Z,:
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a o
Zy(s) = = Zy(5).
s-=1
Since Z4{{—3) = 0. « = 7.24, but Res Z,(s) = 5.25. henes ZJ(s) is not realizable.
LR

Neither the following decomposition leads to a result:

because a = 3.02 and Res Z,(s) == 3. There are three possibilities:
3
a) Either to choose the shifting impedance in the following form:

o

. a,
Zds) = i -
S -1
by Or to trv realizing the zero at s == —5 by u parallel RC configuration
In series arm.
¢) Or to try realizing the zero at s = —9 first. According to the last

possibility Z, can be decompaosed as:

and the svnthesis can be continued without difficulties. The whole network is
seen in Fig. 3, where R; = 0.750. €, = 0.267, R, = 1.50. (, = 0.800, R, = 1.31,
€, = 0.0847. R, = 3.50. R, = 0.971. ;= 0.206. R, = ¢.409, vieiding K =
= 0.0347.

Now, performing the synthesis by the method shown in this paper. the

)

quantities z; and g; are grouped so that K, shouid be maximum:

% =75 Ay = D

Bl—2  p—t
”

72y =9

Ar=15

On the basis of (16) the polynomial D(s) can be chosen in the following form:
d=3 dy =5 A7 =9
As D(s) has a zero between any two adjacent zeros of B(s). h, need not be

determined. As B(0)/D(0) = 0.8889. according to {17) H, can be chosen in

the interval:
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0~ H, < 0.889

(23) vielded the value of the “multiplication factor” K for several values of H,:

H, 1 N 0.2 0.5

K 0.320 0.274 © 0.229 0.106
Let us present the detailed synthesis for the case H, = 0.5. Here, the impe-

dance levels of the twu parts of the network are equal. (15) vields for the
polynomial E(s):

E(s) = % -+ 258 — 109s 4 105
Factorizing the polynomial E(s) delivers the polynomials E’(s) and E"(s):
E’'(s) = (s - 1.368) (s - 3.882) E"(s) = s - 19.75

On the basis of (13b):

H'H = 1.
Let H' = 1 and H” = 1, so the parameters v,, and 3, are given by the following
expressions:
, (s—1.368) (s+-3.882) , §--19.75
Yoo = f11 7 S

(s-3) (s—3) 519

The synthesis being easy to complete the whole network is seen in Fig. 4.
The element values are:

R, = 1.775 R, = 0.9891 C, = 0.2022
R, = 1.049 = 2.462 C, = 0.08124
R, = 1.194 C, = 0.09302 R, = 1.000

1%

e

ot

For H, = 0.1 the element values are the fellowing:

R, = 0.1026 R, = 0.08177 C, = 2.446
01164 R, = 03541  C, = 0.5648
R, = 07278  C, = 01527 R, = 1.000

5 3 3

e
I

The scatter of element values is greater. but the attenuation is smaller than
before.
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Inverting the place of the input and output in the network in Fig. 4
and exchanging two resistances (see Fig. 5), the transfer function of the new
network has poles and zeros at the same points as the original one, in cor-
respondence with the reciprocity theorem. If H;, = 0.5 the multiplication
factor of the new network is K = 0.188. The same network would result from
synthesis with the initial assumption that the network N’ (see Fig. 2) is a high-

o e T S A—
; ! L_".__ i
U 2 R;Q C: '
= 1
Y I R,D vu,«-
ol ol
Fig. 4
e I PR ) T S Y

og”

pass one and N” is a low-pass one. Accordingly, using the previous expres-
sions for E'(s) and E"(s) the following choice will be made:

St , (5=3) (s +3)
Viy = ————— and ]| = ,
s-+19.75 (s--1.368) (s--3.882)
Now, N' and N” will have the zero at s = —9 and both zeros at s = —3,

respectively.

Let us examine what happens if we choose for H; the greatest possible
value, i.e. H, = 0.8889. After a short calculation the following expressions
for the polvnomials E’(s) and E”(s) result:

E'(s) = s(s + 3.78) E'(s) = s - 49.22
and

1 H,

S8 0125,

1
Now it is not possible to choose the network N’ low-pass and N” high-pass,
as R, (see Fig.4) would be equal to zero because y',,(0) = 0. On the contrary:
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, oo s=3)(sw5)
f s149.22 T s(s+3.78)

The svnthesis leads to the network in Fig. 6. The multiplication factor:

K = 0.533.
This is the highest realizable value because the network does not attenuate

at zero frequancy. Obviously, the networks in Figs 4 1o 6 ure more adva-

tageous from several aspects than that in Fig. 3.

I
.
Fig. o
fixample 2
On the basis of the deseribed procedure we have constructed a program

or the computer ODRA 1013 made in Poland. This program has been applied
or synthesis in case of a complicated transfer function. The zeros of the transfer
unection are:

I = 5, = 3

)
B

3y 0 =

The poles of the transfer function are:

p,=—005 p,=—01 p,=-—-018 p,=—03 p;=-—04
p. = —055 p,= —0.62 p,=-—-0.7T pg=—08 p,=—0.92.

The synthesis resulted in the nerwork shown in Fig. 7
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Summary

Everv transfer function with negative real poles and nonpositive real zeros was shown
to be realizable by an RC ladder network with as many capacitances as the degree of the
denominator of the transfer function. and a method of realization was presenied. The essential
step of the synthesis was to factorize the transfer function to be realized to the product of
two factors, having alow-pass and a high-pass magnitude characteristic, respectively. Accord-
ingly the network was divided into two parts connected in cascade. The low-pass one contained
capacitances only in the shunt arms and the high-pass one ounly in the series arms. The para-
meters of the two parts could be determined from the transfer function. The two parts could
be realized by the method of the removal of poles using resistances to the zero shifting only.
An additional possibility with the descrihed method is to optimize the value of the gain to
a certain extent.
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