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Introduction 

The region of free-molpcnle flow i" charact(~rized by the fact that eollision,; 
bet'ween gas molecule" are negligible as compared to those with the wall of 
the vessel containing the gas. Accordingly the gal" molecules move indepen
tlently on each other and many problem:3 ari:3e in connection to the standards 
and measuring treatments used for the physical-technical characterization of 
gas systems at higher pressures. For sake of illustration, let us consider the 
determination of the pressure and the conductance of ducts in detail. 

In the prescnce of getter or cryo-surfaces, molecule flows of high speed 
ri"e. In such a case the pressure considerably increases in thc direction of the 
flow and decreases normally to it. In tlw case of an anisotropy where all the 
molecules moye in the same direction, in the normal direction the pressure 
will be zero. There is another prohlem with pressure d('tnmination. Namely, 
the ionization gauges primordial for this pressure region, determine molecule 

concentration. of courSE', the concentration of gases entering the gauge. 
An open-end gauge placed in tl1(' uninclirectional flo,',- of molecule;; will incli
eate a giyen pressure when the gauge orifice is normal to the flo,,' direction, 
but rotating it by 90:: will show the half of that pressure and upon further 
90:: of rotation the gauge will ~h(jw zero pressurp. In otherwise identical cir
cumstaneps, the pressure values will he different if the gauge is open at both 
ends. ObYiollsly, at higher pressures the collisions among the molecules 
hecome dominant and this allows to givp and determine a characteristic 
presEure ..-alue at every point of the gas space. In the free-molecule flo'w region 
one cannot give characteristic pressure values at all the points just because 
of the independent motion of the molecules, but only the local concentration 
can he found hy a nude gauge. 

Another relevant problem is that of the molecule transmission through 
tubes. Here the tram:mission probability, i.e. the ratio of the number of mole
cules entering to those leaving the tube, depends on the tube geometry since 
the molecules may back because of the collisions against the wall. The greater 
this transmi:3sion prohability, the greater is the conductance, i.e. the reciprocal 
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resistance of the tube. Connecting tubes of identical cross-section (Fig. 1), 
it was attempted to get the resistance of the composed tuhe by adding the 
resistances on the analogy of series-connection of electrical resistanees. and 
from this it follo,n~cl for the transmisi'ion probability: 

(J) 
:x 

f 

J.1ig. 

This formula glyeS results with errors over 40 per cent which clearly 
shows the 'wrongness the analogy. Xamely in the free-molecule flow region there 
is no interaction among the moleculcs to develop a flow in mass. OATLEY [1] 
could establish a better formula starting from the real motion of independent 
molecule:- colliding with the wall: 

1 1 
(2) 

(Xl 

Consideration of Eq. (2) proves the fact too that the concept;,; valid in the 
region of higher pressures are not valid any more in the region of the free
molecule flow and so it is necessary to introduce new, characteristic concepti' 
and measuring tn'atments for its exact physical description. 

Calculation of transmission probabilities 

One quantity used generally in the calculation of free-molccule flow is 
the transmission probability. For the sake of exact definition let us com-ider 

two large vessels with pressures Po and 0, respectively. The two vessels are 
connected by a tube (Fig. 2). In the vessel of pressure Po there is a number 
N of molecules in unity volume, in accordance with conditions of the free
molecule flow and so the molecule number J' at the "ntering orifice of th" tube 
of area S in unit time is: 

1 
lVvS. 

.1-
(3) 
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where l' is the mean yelocity of the molecules. The molecule number entering 
the second \'essel is 1" Xi' (proyidec1 tll(' tube cr'.)ss-~eetion" arp the ;;:ame 

at both vessels). 
There is no exact analytical solution for the determination of the trans

mission probability x known for the simplest geometries either. After the 
pioneerin~ work by S~\lOLl-CHo"\YSKI and KNUDSEN P], CLAUSmG [3] could 

Fig . . , 

establish an integral equation by fitting probabilities written for different 
regions and he solyed it hy expansion to obtain numerical values - exact 
within 1 per cent for x as a function of L/R (L and R being length and radius 
of the tube). In the same way he could determine x values for narrow rectan
gular cross-sections. This treatment is applicable, however, for these simple 
geometries only, while for more complicated ones other possibilitie" must 

be found. 
For tubes very long compared to the linear dimensions of the cross

section, already CLAUSING supposed that the flow process might be described 
as a diffusion with unchanging diffusion constant. (In this case the diffusion 
constant D characterized the conductance of the tube rather than the trans
mission probability x). Soh'ing the diffusion equation 

. Sc(x, t) = D _S2~(X, t) 
St 8x2 

(4) 

for long, straight cylinders, CLAUSING has got D yalue adequate to iX. 

GORDO'.\" and Po'.\"mIARIEY [4] have given the explanation of appli
cability of the diffusion equation proying the adaptability of the Fokker
Planck equation 

8(1) 

8t 
-n/x> Sw -,- _1_li"x2/ 

8x 2 8x~ 
(5) 

for the probabilities rr-(x, t), because the independent molecular collisions 
correspond to such random walks which represent discrete Markow-chain, 
and in the case of a great number of collisions there is no difference hetween 
continuous and discrete YIarkow-chaim. (In Eq. (5) n is the number of the 
random walks in unit time, is the mean removing along the x axis during 
a collision.) Since the directional distribution after collision with the wall 
follows the cosine law, i.e. the numher of the molecules rebounded at the ele-
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mentary solid angle is proportional to the cosine of the angle between the given 
dirpction and the normal of the surface, the distribution function is symmetrical 
and ~o Ix) = O. H('llCP, (5) mel\- JJ(' written in tIlt' form: 

5W 

5t 

So the calculation of D' can be substituted for x, possihle by determining 

(4a) 

(6 ) 

and n for variou;; genmetries. The author" ealculated D' in the case of t,H) 
long coaxial cylinders besides of that of the "traight cylinder. 

In spitl' of the>,p rei'ults. tj){,rp an' nnly a few cases, where numerical 
yalues can hfC obtailH'lJ. p]'oyided th('!'e is no adsorption on the walls, though 
the molecules stick on the wall of t]]<' tuhes at a eonsiderable prohahility ill 
most cases. 

The application of the stoehastie simulation. tht' Monte Carlo method 
has given the solution of the prohlem. DAYIS [5] ,\'C15 the first to use thi,,; 
method for transmission probability ealculations of tubes of different geo
metrie;;; without adsorption. The main point of this l1lfCthod i::: to simulate the 
individual moleeuips trajectori('~ by random number;;, after feeding the geo
metry characteristics into a computer. Space and direetional co-ordinates of 
the starting molecule are plotted by random numbers, the computer outputs 
the place of collision with the wall and draws new directional angles. Be N,. 
the number of molecules leaving the tube, the computer must find thi:- number 
and divide it by 1\', the number of the entering molecules, and so = Nvj N. 
The exactness of the method depends on the number of the simulated trajec
tories, in general, for an accuracy of a few per cent it is necessary to follow 10.1 

molecule trajectories. 
A further advantage of the )Ionte Carlo method is that the adsorption 

on the wall may he taken into account by a slight modification of the program. 
To consider the sticking coefficient s only a random number of interval (0,1) has 
to be dra,l-n for each collision with the wall - if this number is lesser than s 
then the molecule trajectory is terminated at the given place. 

Transmission probabilities with different values of sticking coefficient oS 

have been determined for several geometries by the }Ionte Carlo method. 
In addition, it was possible to calculate the radial and axial concentration 
distribution of the molecules entering or leaving the tube, the directional 
distrihution in different points, the beaming effect of passing through the 
tube, etc. 

Two kinds of problems arise in relation to the Monte Carlo method. The 
first prohlem derivf's from the nature of the method, namely it can give values 
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only in a restricted number of point,,: and so it requires a reliable interpolation. 
In the case of straight tubes a convenient additive formula is Eq. (2), in otlH'r 
eases one is constrained to use special formulas or to graphical interpolation. 
A part of the former problem is the exactness of the method. An increase of 
the exactness hy one order raises the number of the required trajectories by 
two orders and this fact sets a limit to the exactness since the method needs 
anyhow much computer time. This is a problem {>specially in the case of longer 
tubes where the time to follow the individual trc,jectories is much protracted. 
As a consequence, one may find errors greater than 10 per cent. An additive 
formula of great correctness coulrl he of help, because it would he enough to 
determine th,· tran~mission probability \~alues for a few short tubes at the 
required exactness and the necessary \~alUt's could be calculated from these 
hv the additiyt' formula. 

The olh('r problem, cOl1lwcted with the :\Ionte Carlo method. i" of phy"
ical character. In the free-molecul,' flow region, the gas molecule" and th(~ 

:,olid sUI'facc~, i.e. the atoms of the;::" surfaccs are only in interaction. So, for 
the description of physical process of the interaction, further quantities would 

be neecled. above all the accomodation coefficient characterizing thc energy 
exchange. Using the Monte Carlo method incorporation of this single quantity 
into the program would increase the needed computer-time out of all propor
tions, i.e. it decreases rather than to increase in merit the correctness of thl' 
obtained information. At present it is practically impossihle to do more than 
to complete the stochastic model by an empirical sticking coefficient charac
terizing the adsorption properties on an averagc. Also this fact shows that 
the Monte Carlo method is first suitable to answer the questions of technical 
nature emerging in the free-molecule flow region and its use in scientific 
research mav only he indirect for the moment. 

Investigation of complex systems >'.-ith adsorbing walls 

From the availahle investigations it seems evident that in the case of 
complex systems in the free-molecule flow region it is hopeles8 to characterizc 
even steady states by the u5ual analytical methods on the hasis of practically 
available informations. One can expect at most to obtain experimental data 
gh~ing the gas-concentration at several points, eharacteristic5 of the inter
action between gas molecule;;: and surfaces within the system, adsorption 
isotherms, desorption rates as a function of temperature and pressure, etc. 
In most casei' tIlt' whole of the system in inaccessible to quantitative physical 
characterization because the Maxwellian ydocity di5tribution is not valid 
any more, the density is inhomogeneous and the directional distribution of 
velocities i~ anisotropic. If all these irregularities could he characterized by 



measurements, a mathematical treatment could be realized. Drastical simplify
cations of the real situation are necessary and the Monte Carlo method applied 
to this simpler model lllay yield data essential first of all for technical appli
cations (e.g. dimensioning of vacuum systcms). This needs the knowledge of 
geometrical data of the system, of the gas-sources and of the sticking coefficients. 
The emerging problems are similar to those discussed in connection with the 
transmissioll probahilities, these are, however, more complicated making the 
programming difficult unduly increasing the necessary computer-time and 
though the final reEult mf'ans only a rcstricteclnumlwr of nUl11f'rical data hard 
to interpolate. 

In 1968 PISA"I [6] suggeEted a treatment, where the starting supposi
tions were identical to the assumptions used in the case of the }Ionte Carlo 
method, but the molecule trajectorif'8 ,\-ere given by expressions of vectors 
and matrices. FUl1clamentalIy he s('t up two quadratic matricf's and two vectors 
for the experimental data: the matrix A charaeterizing the surface, the 
matrix S giving the sticking coefficif'nt, the source-vector D and the \-ector F 
combining the surface and thc volume. He derived two matrix-expressions: the 

first gave the rate of sorption of moleeulC's on the surface and the second one 
a reIatiomhip between the dcnsity mea~ured by ionization gauges - and 
the gas-load, adsorption and geometrical data of the system. The used mathC'
maticd formalism permitted a yery concise formulation and if one can pro
duce matrix A characterizing the surfacc, the matrix operations are easy hy 
a computer even in the case of different distributions of gas-sources and 
sticking coefficients. The production of the matrices and vectors is rather dif
ficult in the case of a complex geometry, and a furthcr problem is to estimate 
the size of these quantities to detC'rminC' the correctness of the method. 

Discussion 

The available mathematical means don·t lend themselyes to find an 
analytical description for the characterization of ultrahigh yaeuum systems. 
So one has to rely up on data possible hy stochastic simulation. The difficulties 
connected with the use of data on the interaction between gas atoms and solid 
surfaces will prohahly decrease along the progress of knowledge of such inter
actions of the iln-oh-ed phenomena. Incorporation of empirical parameters 
or tabulated test data into the program overburdens the anyhow complex 
:\Ionte Carlo method, and is impossible in the case of analytical methods. 

In conformity with the present knowledge, it seems most expedient to 
use tabulated data obtained by lIonte Carlo calculations, together with inter
polation formulas permitting the required correctness and easy to handle 
mathematically. Deriyation of the interpolation formulas has to start from 
physical laws of the free-molecule flow region, since the numerical yalues of 
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restricted numher. obtained by the Monte Carlo method are no basis for thi~ 
derivation. 

As an illustration for such a connection between interpolation formulas 
and the Monte Carlo method let us consider the problem of transmission pro
bability for straight tubes. Here relatively correct values are available in cases 

of different geometries and as interpolation formula there is OATLEY'sequa
tion (~). (The concept of the interpolation formula is used ill a wider sense, 
because by this formula one can derive the transmission probability of a longer 

tube connected from two tubes rather than further values het-ween two known 

values so it can be termed additive formula.) In the least favourable case 
Eq. (2) gives further x values from the known ones with a 6 per cent error 

for cylindrical tubes if the sticking coefficient is zero. OATLEY derived (2) 
;'Uppo8ing the tuhes of equal eross-section and of different length to he inde
pend(>llt (If each other and for every tube tl1(> transmission probahility to the 

connectcd tube was defined by forward and bacb\"ilrd molecule flow depending 
on the LjR ratio. He ignered, however, dUlt the ent!'ring directional distri
bution folIo-wing the cosine law was valid only for the ero~,,-section at tlw 
inflow, at tl1(' next onc the lwan:ing effect of the first tubc would act. 

It may be supposed that the cOll~idcration of ths beaming pffept by 
a parametC'r (3 give3 Cl hctter result for x. If one considers the resulting x not 
to he tllf' funetiol1 of yalues Xi only as it \\-as \\"lwl1 (2) was derived hut that 

and determines the form of funetion (r by considerations similar to the deri

vation of (2), then Pi can be calculated from tabulated x values. According to 

rhe new parameter a further equation is necessary given by the symmetry 
tondition, i.e. by the fact that the inversion of order of the tubes affects the 
cesults. The establishment of the new parameter is of use only in that case 

where values Pi corresponding to the L/R ratios differ only slightly from each 
other fitting them to the different ex valucs. 

Our calculations on straight tubes of differcnt geometry show that the 

errors involved with (2) decrease to such a degree that by the application of 
this one parameter the error of x values calculated by interpolation never 

exceeds the error of the starting data. Table I compiles CLAUSI::-iG'S x values 

as the values obtained by use of (2) and by use of ,-alues P considering the 
beaming effect - both with the percentage deviation from CLA1JSI::-iG'S data. 

x values were calculated by equation 
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Table 1 

" " Error Error 
L,jb L-;.!h Cia rising Eq. (~) with;] 

0.5 0.2 0.7503 0.7452 0.68 0.7503 0.00 

0.5 0.5 0.68,18 0.6783 0.95 0.6848 0.00 

0.5 1.0 0.6024 0 .. 5873 2.50 0.6023 0.02 

0.5 1.5 0.5417 0.5256 2.97 0.5415 0.04 

3.0 1.0 0.3999 0.3716 5.58 0.3991 0.05 

3.0 .'i.0 0.2,89 0.2513 9.89 0.2787 0.07 

3.0 ,.0 0.2457 0.2212 9.97 0.2,151 0.24 

for narrow, rectangular cro~s-section5 with dimensions a?> b and a ?> L which 
are correct within 1 percent when tubes of different Llb are connected, as well 
where Pi for a given Llb is obtained by use of the adequate 'Xi and of the =< 
belonging to 2L/b: 

.) 

I}i , 
'Xi 'Xi 

--8 ----. 

~- j :::= .~ 

Fig. 3 

" 

Detailed derivation of these formulas is published in [7J. 
Interpolation formulas fitting the parameters to the calculated data 

yield only a few values e.g. of Llb and the further required values are 
delivered by the interpolation formulas. Consequently, the correctness of 
computer values can be increased for the same running time, hence a possi
bility to increase the accuracy of all the required values. 
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These con5iderations are valid also for else than straight tubes "incC' 

the transmission prohability little depends on the bend of the tubes in the 
frce-moleC'ule flow region. Figure 3 shows the results of DAVIS [5] obtained 

by ~Iont'~ Carlo calculation on 90° cylindrical elbows with lengths A and B, 
together with CLAUSI="G'~ values for straight tuhes of length LAB. 
Surprisingly, applying (2) for thf' clhow, thf' (leviations are not higher than 

in the case of straight tubes. 
Among the present possibilities the use of the ~Ionte Carlo method is 

cOllsidered to be unavoidablt: in one way or another to characterizing the UHY 
systems working in the free-molecule flo·w region. The particular problems 
determine ·whether thE' ;\"lonto Carlo method will he used for the c)mpact 

treatment suggei'ted lJY Pi",mi or for characterizing the part-systems connected 

hy interpobtion formulas or otherwise. It may be supposed that these possi
bilities are not contradiC'tory hut they complete each other and haye their 
optima in (lifi'en'nt field~. 

Summary 

For the transmISSlO1l probabilitie,. of tube" of yarious geometrie" the calculatioll by 
the :\clonte Carlo method is more effective than the analytical treatment, and ultra high yacuum 
systems only can characterized by .'1Ionte Carlo calc~llatioIls. It seems to be proper to use 
reliable inte~polation formulas to ~pply the results by ·Monte Carlo calc::t1ations. Even deriva
tion and applicahility prohlem!' of tllP interpolation formulas will be treated. 
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