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Introduction

The region of free-molecule flow is characterized by the fact that collisions
between gas molecules are negligible as compared to those with the wall of
the vessel containing the gas. Accordingly the gas molecules move indepen-
dently on each other and many problems arise in conueection to the standards
and measuring treatments used for the physical-technical characterization of
gas systems at higher pressures. For sake of illustration, let us consider the
determination of the pressure and the conductance of ducts in detail.

In the presence of getter or cryo-surfaces, molecule flows of high speed
rise. In such a case the pressure considerably increases in the direction of the
flow and decreases normally to it. In the case of an anisotropy where all the
molecules move in the same direction, in the normal direction the pressure
will be zero. There is another problem with pressure determination. Namely,
the ionization gauges primordial for this pressure region. determine molecule
concentration, of course, the concentration of gases entering the gauge.
An open-end gauge placed in the unindirectional flow of molecules will indi-
cate a given pressure when the gauge orifice is normal to the flow direction,
but rotating it by 90° will show the half of that pressure and upon further
90° of rotation the gauge will show zero pressure. In otherwise identical cir-
cumstances, the pressure values will be different if the gauge is open at both
ends. Obviously, at higher pressures the collisions among the molecules
become dominant and this allows to give and determine a characteristic
pressure value at every point of the gas space. In the free-molecule flow region
one cannot give characteristic pressure values at all the points just because
of the independent motion of the molecules, but only the local concentration
can be found by a nude gauge.

Another relevant problem is that of the molecule transmission through
tubes. Here the transmission probability, i.e. the ratio of the number of mole-
cules entering to those leaving the tube, depends on the tube geometry since
the molecules may back because of the collisions against the wall. The greater
this transmission probability, the greater is the conductance, i.e. the reciprocal
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resistance of the tube. Connecting tubes of identical cross-section (Fig. 1)
it was attempted to get the resistance of the composed tube by adding the
resistances on the analogy of series-connection of electrical resistances. and

from this it followed for the transmission probability:
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This formula gives results with errors over 40 per cent which clearly
shows the wrongness the analogy. Namely in the free-molecule flow region there
is no interaction among the molecules to develop a flow in mass. OATLEY [1]
could establish a better formula starting from the real motion of independent
molecules colliding with the wall:

e I = (2)
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Consideration of Eq. (2) proves the fact too that the concepts valid in the
region of higher pressures are not valid any more in the region of the free-
molecule flow and so it is necessary to introduce new. characteristic concepts
and measuring treatments for its exact physical description.

Calculation of transmission probabilities

One quantity used generally in the calculation of freec-molecule flow is
the transmission probability. For the sake of exact definition let us consider
two large vessels with pressures p, and 0, respectively. The two vessels are
connected by a tube (Fig. 2). In the vessel of pressure p, there is a number
N of molecules in unity volume, in accordance with conditions of the free-
molecule flow and so the molecule number » at the entering orifice of the tube
of area S in unit time is:
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where 7 is the mean velocity of the molecules. The molecule number entering
the second vessel is v' = »r (provided the tube cross-sections are the same
at both vessels).

There iz no exact analvtical solution for the determination of the trans-
mission probability » known for the simplest geometries either. After the
pioneering work by Smorvcmowskr and Kxupsex [2], Cravsine [3] could

establish an integral equation by fitting probabilities written for different
regions and he solved it by expansion to obtain numerical values — exact
within 1 per cent — for x as a function of L/R (L and R being length and radius
of the tube). In the same way he could determine 2 values for narrow rectan-
gular cross-sections. This treatment is applicable, however, for these simple
geometries only, while for more complicated ones other possibilities must
be found.

For tubes verv long compared to the linear dimensions of the eross-
section, already CrausiNg supposed that the flow process might be described
as a diffusion with unchanging diffusion constant. (In this case the diffusion
constant D characterized the conductance of the tube rather than the trans-
mission probability ). Solving the diffusion equation

; 8(,‘(;17, f) B

ot

(4)

for long, straight cylinders, Cravsing has got D value adequate to «.

Gorpox and Ponomariev [4] have given the explanation of appli-
cability of the diffusion equation proving the adaptability of the Fokker—
Planck equation
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for the probabilities T(x, 1), because the independent molecular collisions
correspond to such random walks which represent discrete Markow-chain,
and in the case of a great number of collisions there is no difference between
continuous and discrete Markow-chains. (In Eq. (5) 7 is the number of the
random walks in unit time, 7x, iz the mean removing along the x axis during
a collision.) Since the directional distribution after collision with the wall
follows the cosine law, i.e. the number of the molecules rebounded at the ele-



204 L. FUSTOSN

mentary solid angle is proportional to the cosine of the angle between the given
direetion and the normal of the surface, the distribution function is symmetrical
and so “x == 0. Hence. (5) may be written in the form:
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o the calculation cf D’ can be substituted for . possible by determining (»*,
and 7 for various geometries. The authors caleulated D’ in the case of two
long coaxial cylinders besides of that of the straight evlinder.

In spite of these results, there are only a few cases, where numerical
values can be obtained. provided there is no adsorption on the walls, though
the molecules stick on the wall of the tubes at a considerable probabilitv in
most cases.

The application of the stochastic simulation, the Monte Carlo method
has given the solution of the problem. Davis [5] was the first to use this
method for transmission probability calculations of tubes of different geo-
metries without adsorption. The main point of this method is to simulate the
individual molecules trajectories by random numbers. after feeding the geo-
metry characteristics into a computer. Space and directional co-ordinates of
the starting molecule are plotted by random numbers, the computer outputs
the place of collision with the wall and draws new directional angles. Be N,
the number of molecules leaving the tube, the computer must find this number
and divide it by N, the number of the entering molecules, and so = N /N.
The exactness of the method depends on the number of the simulated trajec-
tories, in general, for an accuracy of a few per cent it is necessary to follow 10*
molecule trajectories.

A further advantage of the Monte Carlo method is that the adsorption
on the wall may be taken into account by a slight modification of the program.
To consider the sticking coefficient s only arandom number of interval (0,1) has
to be drawn for each collision with the wall — if this number is lesser than s
then the molecule trajectory is terminated at the given place.

Transmission probabilities with different values of sticking coefficient s
have been determined for several geometries by the Monte Carlo method.
In addition, it was possible to calculate the radial and axial concentration
distribution of the molecules entering or leaving the tube, the directional
distribution in different points, the beaming effect of passing through the
tube, ete.

Two kinds of problems arise in relation to the Monte Carlo method. The
first problem derives from the nature of the method, namely it can give values
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only in a restricted number of points and so it requires a reliable interpolation.
In the case of straight tubes a convenient additive formula is Eq. (2), in other
cases one is constrained to use special formulas or to graphical interpolation.
A part of the former problem is the exactness of the method. An increase of
the exactnesz by one order raises the number of the required trajectories by
two orders and this fact sets a limit to the exactness since the method needs
anyhow much computer time. This is a problem especially in the case of longer
tubes where the time to follow the individual trajectories is much protracted.
As a consequence, one may find errors greater than 10 per cent. An additive
formula of great correctness could bhe of help, because it would be enough t»
determine the transmission probability values for a few short tubes at the
required exactness and the necessary values could be calculated from these
by the additive formula.

The other problem. connected with the Monte Carlo method. is of phys-
ical character. In the free-molecule flow region. the gas molecules and the
solid surfaces. L.e. the atoms of these surfaces are only in interaction. So, for
the deseription of physical process of the interaction, further guantities would
be needed. above all the accomodation coefficient characterizing the energy
exchange. Using the Monte Carlo method incorporation of this single quantity
into the program would increase the needed computer-time out of all propor-
tions, i.e. it decreases rather than to increase in merit the correctness of the
obtained information. At present it is practically impossible to do more than
to complete the stochastic model by an empirical sticking coefficient charac-
terizing the adsorption properties on an average. Also this fact shows that
the Monte Carlo method is first suitable to answer the questions of technical
nature emerging in the free-molecule flow region and its use in scientific

research mav only he indirect for the moment.

Investigation of complex systems with adsorbing walls

From the available investigations it seems evident that in the case of
complex systems in the free-molecule flow region it is hopeless to characterize
even steady states by the usual analytical methods on the basis of practically
available informations. One can expect at most to obtain experimental data
giving the gas-concentration at several points, characteristics of the inter-
action between gas molecules and surfaces within the system, adsorption
isotherms, desorption rates as a function of temperature and pressure, ete.
In most cases the whole of the system in inaccessible to quantitative physical
characterization because the Maxwellian velocity distribution is not valid
uny more. the density is inhomogeneous and the directional distribution of
veloeities is anisotropie. If all these irregularities could be characterized by
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measurements, a mathematical treatment could be realized. Drastical simplify-
cations of the real situation are necessary and the Monte Carlo method applied
to this simpler model may yield data essential first of all for technical appli-
cations (e.g. dimensioning of vacuum svstems). This needs the knowledge of
geometrical data of the system, of the gas-sources and of the sticking coefficients.
The emerging problems are similar to those discussed in connection with the
transmission probabilities, these are, however, more complicated making the
programming difficult unduly increasing the necessary computer-time and
though the final result means enly a restricted number of numerical data hard
to interpolate.

In 1968 Prsax: [6] suggested a treatment, where the starting supposi-
tions were identical to the assumptions used in the case of the Monte Carlo
method, but the molecule trajectories were given by expressions of wvectors
and matrices. Fundamentally he set up two quadratic matrices and two vectors
for the experimental data: the matrix 4 characterizing the surface, the
matrix S giving the sticking coefficient, the source-vector D and the vector F
combining the surface and the volume. He derived twe matrix-expressions: the
first gave the rate of sorption of molecules on the surface and the second one
a relationship between the density — measured by ionization gauges — and
the gas-load, adsorption and geometrical data of the system. The used mathe-
maticel formalism permitted a very concise formulation and if one can pro-
duce matrix A characterizing the surfzce. the matrix operations are easy by
a computer even in the case of cdifferent distributions of gas-sources and
sticking coefficients. The production of the matrices and vectors is rather dif-
ficult in the case of a complex geometry, and a further problem is to estimate
the size of these quantities to determine the correctness of the method.

Diseussion

The available mathematical means don't lend themselves to find an
analytical description for the characterization of ultrahigh vacuum svstems.
So one has to rely up on data possible by stochastic simulation. The difficulties
connected with the use of data on theinteraction between gas atoms and solid
surfaces will probably decrease along the progress of knowledge of such inter-
actions of the involved phenomena. Incorporation of empirical parameters
or tabulated test data into the program overburdens the anvhow complex
Monte Carlo method, and is impossible in the case of analytical methods.

In conformity with the present knowledge, it seems most expedient to
use tabulated data obtained by Monte Carlo calculations, together with inter-
polation formulas permitting the required correctness and easy to handle
mathematically. Derivation of the interpolation formulas has to start from
physical laws of the free-molecule flow region, since the numerical values of
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restricted number, obtained by the Monte Carlo method are no basis for this
derivation.

As an illustration for such a connection between interpolation formulas
and the Monte Carlo method let us consider the problem of transmission pro-
bability for straight tubes. Here relatively correct values are available in cases
of different geometries and as interpolation formula there is OATLEY’s equa-
tion (2). (The concept of the interpolation formula is used in a wider sense,
because by this formula one can derive the transmission probability of a longer
tube connected from two tubes rather than further values between two known
values — so it can be termed additive formula.) In the least favourable case
Eq. (2) gives further z values from the known ones with a 6 per cent error
for eylindrical tubes if the sticking coefficient is zero. OATLEY derived (2)
supposing the tubes of equal cross-section and of different length to be inde-
pendent of each other and for every tube the transmission probability to the
connected tube was defined by forward and backward molecule flow depending
on the L/R ratio. He ignered. however, that the entering directional distri-
bution following the cosine law was valid only for the cross-section at the
inflow, at the next one the beaming effect of the first tube would a

It may be supposed that the consideration of ths beaming (?ffect by
a parameter § gives a better result for . If one cousiders the resulting = not

to be the funection of values «; only ¢ it was when (2) was derived — hut that

% = g2 py)

and determines the form of function ¢ by considerations similar to the deri-
vation of (2), then f; can be calculated from tabulated o values. According to
rhe new parameter a further equation is necessary given by the symmetry
tondition, i.e. by the fact that the inversion of order of the tubes affects the
cesults. The establishment of the new parameter is of use only in that case
where values f; corresponding to the L/R ratios differ only slightly from each
other fitting them to the different « values.

Our calculations on straight tubes of differcnt geometry show that the
errors involved with (2) decrease to such a degree that by the application of
this one parameter the error of z values calculated by interpolation never
exceeds the error of the starting data. Table I compiles CLausIiNG’s » values
as the values obtained by use of (2) and by use of values § considering the
beaming effect — both with the percentage deviation from Cravsing’s data.

z values were calculated by equation

(By+Pa) 2oty — (2 F )
1 +(x1+12) (/31“’“‘33) '—7:112/'91/92 - (11 ’ 7)
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Table 1
. 4 x E | -2 E;
Lyfb L.jb Clausing Eq. (2) 1;1'/)01' with 3 i rg,fjr
0.5 ; 0.2 0.7503  0.7452 0.68 0.7503 0.00
0.5 0.5 0.6848 0.6783 0.95 = 0.6848 0.00
0.5 1.0 ©0.6024 0.5873 2,50 0.6023 J 0.02
0.5 1.5 C0.5417 0.5256 2,97 0.5415 0.04
3.0 1.0 0.3999 0.3776 5.58 0.3997 0.05
3.0 5.0 0.2789 0.2513 9.89 0.2787 0.07
3.0 7.0 0.2457 0.2212 9.97 0.2451 0.24

for narrow, rectangular cross-sections with dimensions a>b and a 3 L which
are correct within 1 percent when tubes of different L/b are connected, as well
where j; for a given L/b is obtained by use of the adequate »; and of the ]
belonging to 2L/b:

-
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Detailed derivation of these formulas is published in [7].

Interpolation formulas fitting the parameters to the calculated data
yield only a few values — e.g. of Ljb — and the further required values are
delivered by the interpolation formulas. Consequently, the correciness of
computer values can be increased for the same running time, hence a possi-
bility to increase the accuracy of all the required values.
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These considerations ave valid also for else than straight tubes since
the iransmission probability little depends on the bend of the tubes in the
free-molecule flow region. Figure 3 shows the results of Davis [5] obtained
by Monte Carlo calculation on 90° eylindrical elbows with lengths 4 and B.
together with CrLavsiNg’s values for straight tubes of length L = 4 -+ B.
Surprisingly, applying (2) for the elbow, the deviations are not higher than
in the case of straight tubes.

Among the present possibilities the use of the Monte Carlo method is
cousidered to be unavoidable in one way or another to characterizing the UHV
systems working in the free-molecule flow region. The particular problems
determine whether the Monte Carle method will be used for the eimpact
treatment suggesied by Pisani or for characterizing the part-systems connected
by interpolation formulas or otherwise. It may be supposed that these possi-
hilities are not contradictory but they complete each other and have their

optima in different fields.

Summary

For the transmission probabilities of tubes of various geometries the caleulation by
the Monte Carlo method is more effective than the analytical treatment, and ultra high vacuum
svstems only can characterized by Monte Carlo caleulations. It seems to be proper to use
reliable interpolation formulas to apply the results by Monte Carlo calealations. Even deriva-

tion and applicability problems of the interpolation formulas will be treated.
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