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Introduction

It is rather complicated to caleulate the storage time of diodes with
non-uniform base, and even impossible without computers in case of a genera
doping profile. A widely used method is to determine the charge, created by
accumulating minority carriers in the base under statical conditions. and from
the time-dependence of this charge to caleulate the total recovering time.
No accurate result is obtained else than if the reverse current is first constant,
then drops to zero. The reverse current of real diodes has never such a shape,
the constant-current period is always followed by a phase with decreasing
current. The better the real recovery waveform approaches the supposed one.
the exacter the solution given by the method mentioned above.

The fall time of the step-recovery diodes is very short, thus Moir,
Kraxaver and SmEN [1] applied the method mentioned before.

In what follows, an exact solution of the storage time will be presented
and its result compared to those of some approximate solutions. For sake of
simplicity, in the base a constant field strength is supposed and the effect
of high-level injection is neglected. In fact, the field depends more or less on
the distance in the base and for higher currents the effect of high-level injection
cannot be neglected. Considering all these problems would make the calcula-
tion unduly complicated. In the construction of diodes other parameters must
be taken into consideration too: for example, the capacitance of the depletion
laver. the break-down voltage etc. These problems are not discussed here.
A p7n structure is supposed, thus the current consist almost entirely of holes,
penetrating the n region. In real diodes the electrons entering the p type
region cannot sometimes be ignored. In this case the calculation process is simi-
lar, but involving both types of carriers.

For sake of simplicity a one-dimensional model is discussed.

Exact solution

The behaviour of holes in the base is characterized by the continuity
equation:
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where p(x,?) is the density of holes, depending on the time and distance
(x = 0 being the edge of the depletion region); D, is the diffusion constant
of the holes; E is the field strength in the base (E = const.). 7, is the life time
of holes, k is the Boltzmann-constant and T is the absolute temperature in
Kelvin degrees. '

Denote the current density in the forward direction by I, in the reverse
direction by I,. The initial condition is determined by I, for at the beginning
of the switching-off, the hole distribution in the base is equal to that created
by Iy in the forward direction.

During the switching-off the boundary condition at x = 0 is determined
by the reverse current. I,. Supposing a wide-base diode. the other boundarv
condition 1s:

p(=e. 1) = p. (2)

pr is the hole concentration in the n side at equilibrium.

If at x = 0 the hole concentration decreases to zero. the constant-
current period is off, because the boundary conditions change. Thus the storage
time t, can be determined from the condition p(0. ;) = 0.

To ease calculations. Eq. (1) is to be transformed according to EREMIN,
Moxerev and Nosov [2]. Introducing the new variables T = /7, X = «/L,

and dp = p —p, (L, = ]D";T; the diffusion length) and applving the trans-
formation: s
UX.T) = Ip(X. T) exp {1 = E})T ~ B X} (3)
EL
{E/; = k_; __‘5_& is the narmalized field strength|the continuity equation can

be written as:

SUN.T) _ SU.T) 0
aT 8X2 ‘ ‘

The linear combination of the solutions of this linear, partial ditferential
equation also gives a solution, henece the principle of superposition can be
applied. After splitting the switching-off waveform (Fig. 1) into two parts,
solving Eq. (4) separately for hoth of them. finally subtracting one from the
other, we get the transformed hole distribution:

UX. Ty = U{X.T) — U (X, T).



w
—
v

EXACT 4ND {PPRONIMATE SOLUTIONS

Fig, 1. Disintegration of the switch-in and switch-out waveforms of the diode

The current in Fig. la i= the difference of the currents in Fig. 1b and
Fig. le. The advantage of this method is to yield simpler results for currents

{. and I; -~ I, because of the changed initial conditions:
U(X,—=T,)==0 and U'(X.0)=0. {(5)

Calculate first the hole distribution caused by the current in Fig. le.
The total current at X = 0 is the sum of the diffusion and drift currents.

Thus the boundary condition is:

I,~I, —q| D, 8 e .,‘L_IDP 8lp g, Pl -
t ox st <5 AV EER ] (6)
_ 9Dy ( BB vt exp! (L-ENT.
L, 8X o, :

where p is replaced by U making use of Eq. (3).

The solution of Eq. (4) by the initial condition (5) and boundary condi-
tion (6) is calculated in the Appendix applving Laplace-transformation. Here
only the solution at X = 0 is of importance, as the storage time can he cal-
culated from the relevant hole concentration:

(L+I)L,

Ip"(0. T) = {1_—75‘ erf [ (1-E) T —
9D,

~E,(1-eT—E, e Terf(E, l-T)} .
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The hole distribution ecreated by I; can be calculated similarly replacing

Ip - I.by I; and T by T -+ T; in Eq. (7)

p (0. T) - I L, 1 Eierf | (12E)(TT)) -
WD, (8)
~E, (1 e " T E T Tierf (B, T+T,); -
At the end of the storage time
Ip'(0, T) = -Ip""(0. T) (9)

(neglecting p,). From Eq. (7). (8) and (9) the storage time can be determined

I, | I-Eefl (0-E)T, E(-e¢7) -Ee erf(E,|T) (10}

I=1. | T—EZerf |(1=E) (L+T) -E(1-—e7TT9)
—E e T=To exf (B, | T.~—~J o)

If the switching-in impulse is long that is T, > 1, T; - ~ taking into consid-
eration. that erf (=) = 1 and ¢7* = 0. Eq. (10) becomes simpler:

I _] 1 E,', ”f (1 En)T CEL(1 ff,:Ts) E,;C’ ‘erf (E, ; T, o (11)
[/,——1—]_, | ]_"E;? E/z -
If the base has a uniform doping. E,, = 0 and Eq. (11) leads to the well-
known equation for the storage time of homogeneous. wide-base diodes:
I, p— ,
— = erf [ T (12)
Approximations

Let us examine the case where E, <~ 0 and | E, | > 1. This is known
to be the field strength of the ideal step-recovery diode. By this diode (suppos-
ing E, < 0) the fall time is zero, thus the total recovery time is equal to the
storage time. Taking into account that | E, .= —F, and erf (—x) = —erf (x).
the time-dependent factor of Eq. (11) takes the form:

f(o TR) = AE*E (1 P‘T) ) E1 emTS' (13)
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-~ Exaci volue
.— Approximafe value

Fig. 2. The exact and approxhmate values of the storage times
The denominator of Eq. (11) beecomes 2 1E.| to simplify into:

I,

A (14)
I.-1.

Expressing T

} (15)

i

T =1In (1 2
I,

This equals the result of the charge-controlled caleulation, as it was expected.
Considering a finite T;. Eq. (10) vields in a similar wayv:

. e p i
I, _ L—e te (16)
]7,_“ [r 1 (,~(T.< -TH
Expressing T »
T~ a1~ =5 (10T | an

The storage times calculated from Eq. (11) are plotted in Fig. (2). Increasing
the value of the reverse current, the storage time decreases and becomes more
divergent from the approximate values obtained from Eq. (15). On the other
hand. by increasing E., the two values become more convergent.

From the shapes of the curves in Fig. (2) it appears that there must be
other approximation too. By increasing I,/I;. each line becomes straight.
which indicates a relationship between T, and I./I; in the form of a power

function. For E, = —~ Eq. (15), expanded into series:
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I:
r‘rx‘ = e . (18)
I, '
For E, = —~ the function erf (x) iz to be expanded into series. By applying
9
erf(x) = —and e~ - 1 — x, Eq. (11) takes the form:
; =
9
Lo m T . | (19)
F.+1. M1+E> - E,

In the numerator of Eq. (19) E.T, <€ 1 because the whole approximation app-
lies only for (1 - Ei)T < 1. Then (19) becomes more simple:

T can he expressed from Eq. (20). By solving the second order equation for T,
only the smaller root satisfies the fundamental condition of the approximate

caleulation. Applyving the new variable, B = I./I; (21)
2 4 4E, | — -
L P (|TTEE,)

. '7’E : — (22)

In the examined domain B > 1 (Fig. 2). thus the expression under the square
root can he expanded into series and considering only the first member we
get for T :

L 3T

‘7 | 1+E} - E

£ (23)

Because of its simplicity, this approximate expression is convenient to use.
Before comparing with the exaect solution. it should be pointed out that for
E. =0 we get for T.:

(24)

The same would result from Eq. (12) by expanding into series the right side.
In Fig. 2 the values caleulated from Eq. (23) are plotted with dashed
lines. leading to the following conclusions:
(a) If the T, value calculated from Eq. (23) is much smaller than that
caleulated from Eq. (17) (valid for E, = =) then Eq. (23) should be used

to determine the value of T..
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(b) In opposite case Eq. (17) should be used.
(¢} If the two T, values are of about the same order of magnitude. for
more exact caleulations Eq. (11) should be used.

Appendix

Denote the Laplace-transformed, normalized time by s. The transformed

form of Eq. (4)

SU'(XLs) - U7X, 0) = U (Ns) (A. 1)
5N2
The initial condition is: U7'(X, 0) = 0. thus
O-l—LELS) = sU"(X.s) (A.2)
6X*

For wide-base diodes U’’(~.,s) = 0. therefore the solution of Eq.(A.2) is
U(X.s) == Ce- 15X, (A.3)

The value of C can be calculated from the boundary condition (6). Applying
Laplace-transformation to bhoth sides

I;——i— T ~ f
LP( ] Ir) 1 — =] i'—." EE E” u” i . (A 4)
qD, s (1+E3) 8X iX=0

7

Substituting U"'(X, s) from Eq. (A.3) into Eq. (A.4) then expressing C finally
substituting into Eq. (A.3) one obtains:

L+1)L, 1 L ovex (4.5)
qD

Ur(X,s) = ¢

r

For determining the storage time. it is necessary to know the hole density

for X =0

U0, s) = (1)L, 1 P Il ~. (A. 6)
4D, s -(1—E}) ys-E.

The equation above can be transformed back by the convolution-formula.

Second and third member of Eq. (A. 6) take the form:
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I [[ TS_LE } ’E‘T E,exp (BXT)[1  erf(E,[T)].
'S Ly, ;T

Thus transforming back the s-dependent member of Eq. (A.6
£ I q

E,eFF[1  erf(E, yo))l dr.

(1 ENT

From the integral above. ¢ can be taken out. Considering that from

Eq. (3)
Ip"(0.T) = U0, Tyexp { (1+EHT)

the hole density hecomes:
1p"(0. Ty = //_iD e ‘ e \I=Efr E. Ve [l -erf(E,y7)]dr

By introducing a new variable. the first integral in brackets takes the foim
erf (x). The first member of the second integral is easy to integrate, the second
member can be evaluated by partial integration and then by introducing
a new variahle, After that. from Eq. (A.7) one obtains Eq. (7).

Summary

The storage time of diodes with nonuniform base doping iz examined by supposing
constant field strength in the base. Beside the exact sclution, some approximations are given
facilitating to determine the switching times. The limits of applicability of approximatiens
are presented. :
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1. Introduction

A Boolean function is said to be a threshold funetion if and only if there
exists a weight vector, the scalar product of which with every difference
vector is not smaller than zero.

The definition of difference vectors is given in a previous paper [1].

From the viewpoint of practical application, the scalar products of the
weight veetor and the difference vectors must be greater than zero. because
no threshold device can realize other than a threshold domain, a so-called gap,
instead of an exact threshold value. It is important to know about a threshold
function, whether there is a possibility to realize it by a single given threshold

device or not.
2. Terminology

Let F(x) denote an arbitrary Boolean function, where x means the
input vector with n bivalued components:

Let x} denote an input vector, for which F(x) = 1.
Let x? denote an input vector, for which F(x) = 0.
Thus

F(xj)=1 and  F(x%) =0 hold.

The number of vectors and x' and x” depends on the truth table of F(x).
Let v* denote the difference vector between one of the vectors x! and
one of the vectors af.
It has been shown [1] that Boolean function F(x) is a threshold function

or l-realizable if and only if the inequalitv
N
wy® >0 (1

holds for each y* derivable from the truth table of F(x).
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In the above inequality w denotes the so-called weight veetor, with real

numbers as components:
1wv¥ denotes the scalar product of the vectors.

3. An upper bhound for the relative gap
Practically, the maintenance of inequality (1) is not sufficient for the
realization of a threshold function. If the threshold device has a threshold
domain, or gap G then for the sake of the realization the scalar products of
the weight vector with every difference vector must not be smaller than 6.

wy® T G (2)

Introdueing the notation of the weight unit-veetor (1c,)

w, v = (3)

The absolute value of the weight vector | w  is also limited for every
threshold device. Thus there exists a quotient for every threshold device.

termed the relative gap of the device. References may involve some other
meanings for the relative gap [2], [3], but all of them are characteristic of the
realizability.

Theorem 1: A threshold function is not realizable with a given weight
unit-vector w, by a single threshold device having a relative gap g, if there
exists at least one difference vector ¥, for which the inequality

“'uyk &y (4‘)
holds.

The proof of this theorem is unnecessary, because it is obvious that if
inequality (4) holds, then inequality (3) does not hold.

Let g; denote the minimum value among the scalar products w, "
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> g hold.

where m is the number of the difference vectors. For the sake of simplicity
m will be considered as the number of the difference vectors differing from
each other.
Let g; be called the minimum relative gap of the threshold funection.
Theorem 2: There exists an upper bound for the minimum relative gap
of a threshold function:

that 1=

m

A

o

is the absolute value of the sum-vector of the difference vectors.

Proof: Summarizing inequalitiex {5), it follows:

The absolute value of w, being equal to 1, the inequality
mg; holds.

where ¢ is the angle between the sum-vector and the weight unit-vector,
The maximum value of cos¢ being equal to 1. the inequality

m |

N F > e
[IPCN <. peld
(k=1

is =atistied, and the proof is completed.

) Periodica Polytechnica EL XIV/3,
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The above upper bound can be computed from the truth table of the
threshold function previous to the realization procedure and it can be decided
whether the realization byv a device with a given g, is possible or not. For

example if

then according to Theorem 1, the realization by the given device is impossible.

Besides if the value of g; computed with a given weight vector is near
to the above upper bound, it will be useless to modify this weight vector in
order to get a much greater value of g;.

4. Examples

A computerizable testing and synthesis algorithm has been written mak-
ing use of the properties of the difference vectors. A part of this procedure is
to calculate the value of g; and its upper bound. These values and the reali-
zations for some threshold functions are shown in Table 1.

Table 1
m

2. 11,1 3.2 0.839 0.378

2. 2; 1 ) 4. .'; (L'iﬁ - 11316

~2.1.1.L - 1.0 0.839 0.378 7

1.1.1 2.1 ﬂn.866 ' 0.577
Foee 3(1.9.10. 11012, 13, 11 15) - d(0. 8) 3.1, 1.1 17» u.arsrm 0.259
I -(3 Ib) m r;(]ﬁ 7.,”10. 111215 14,15 111 -2 1.1 1 | 0.756

3. Summary

In this paper an upper bound for the relative gap is given. which can be caleulated
from the truth table of a threshold function. Every threshold device may be characterized
by the minimum value of the relative gap possible by that device. Comparing the latter mini-
mum value to the upper bound. the impossibility of the realization by the given deviee can
be predicted.
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