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Intl'oduction 

It i~ rather complicat(·d to calculate tilt" storage time of diode:, \\'ith 
non-uniform basp, and eyen impossiblt> without eomputers in case of a general 

doping profile. A widely llsed method is to cletermint' the charge, created by 
accumulating minority carriers in the ba~(' under statical eonditions. and from 

the time-dependence of this charge to calculate the total recovering tinw. 

No accurate result is obtained else than if the reverse current is first con;;:tant. 
then drop::: to zero. The reyer;;:e current of real diodes has 11("\0('r sueh a shape, 

the con;;:tant-cUlTent period is always followed hy a phase with decreasing 
current. The hetter the real reeoyery waveform approaehes tll(" supposf'd one, 
the exacter the solution giyen hy the method mentioned ahove. 

The fall time of the step-recovery diodes i,: yery short, thus }IoLL, 
KRAKA rER and SHE" [1) applied the method mentioned hefme. 

In what follows, an exact solution of tlw storage time will he presented 

and its result compared to those of some approximate solutions. For sak(" of 

simplicity, in the base a constant field strength is supposed and the f:"fff:"ct 
of high-leyel injection is nf:"glected. In fact, thc field depends more or 1f:"ss on 

tilt' distance in the base and for higher currents the efff:"ct of high-leyel injection 
eannot be neglected. Considering all these problems would make the calcula­

tion unduly complicated. In the construction of diodes other parameters must 
he taken into consideration too: for example, the capaeitance of the depletion 

layer. the hreak-flown voltage etc. These prohlems are not discussed hen'. 
A p -11 structure is supposed, thus the current eonsist almost entirely of holes, 

p(>netrating thf' Tl region. In real diodes thf' electrons f'Iltering the p type 

region cannot sometimes he ignored. In this case the calculation process is simi­
lar, hut involving hoth types of carrierF. 

For sake of simplicity a one-dimensional model is discussed. 

Exact solution 

The h(·hayiour of holes in the hase is characterized by tht' continuity 

equation: 
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where p(x, I) is the density of holes, depending on the time and distance 
(x 0 being the edge of the depletion region); D r is the rliffu~ioIl constant 
of the holes: E is the field strength in the base (E = const.), To is the lifc tunc 
of holes, k is the Boltzmann-constant and T is the absolute temperature in 

Kelvin degrees. 

Denote the current density in the forward direction hy If. in the revr'rse 
rlirection hy I r• Tlw initial condition is rletermined hy If, for at th,· beginning 
of the switching-off, the hole clistrihution in the ha"c is ('qual to that crpat,~d 

by I j in tIll' forward din'ction. 
During the switching-off the houndary condition at x = 0 is determined 

by the n~yersp curr('nt. L. Supposing a ,,-ide-bas(' diode. the other boundary 

condition IS: 

p(=, I) (:?) 

]1" is the hole concentration in the n side at equilibrium. 

If at x = 0 the hole concentration decreases to zero. the cunstant­
current period is off, because the boundary conditions change. Thus the storage 

time t, can be determined from the eondition p(O, ts ) =-' O. 
To ease calculations, Eq. (1) is to bc transformed according to EREMIl', 

:\IoKEIEY and :NoSOY [2]. Introducing the new variahlf's T = IfTp, X x/Lp 
and Jp p p" (Lp I, TI' the diffusion length) anrl applying the trans­
formation: 

U(X, T) Ip(X, T) f'Xp {(1 -'-- E~)T E"X} (3) 

q ELp. I 
-- --- 15 thp normalized field stn>ngth the continuity pquatioll can 
kT 2 

be written as: 

oU_(~, T) 

'OT 

8~U(X, T) 
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Tht' linear combination of the solutions of this linear, partial differential 

{'quation also giyes a solution, hence the principle of superpoE'ition can be 
applied. After splitting the ;:witching-off waveform (Fig. 1) into two parts, 
soh-ing Eq. (4) separat(>]-y for }Joth of them, finally subtracting one from the 
other, '\-1' get the transformed hole distrihution: 

U(X. T) = [i'(X. T) U"(X, T). 
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The current ill Fig. l({ i~ the difference of t11(, eurrents in Fig. Ib and 

Fig. 1 c. The adyantagt' of this method is to yield simpler result~ for currpnb 
I,. Hnd Ir -'- IT hl'cau~(> of thl' chanfu-fl initial condition,,: 

() and C"(X. 0) = O. (5) 

Calculate first the hO\f> distrihution caused by the currpnt in Fig. le. 
The total current at X = 0 is thp sum of tl1l" diffusion and drift CUlT('nts. 
Thus the boundary condition is: 
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",here p is replaced by U making llSC of Eq. (3). 
The solution of Eq. (4) by the initial condition (5) and houndary condi­

tion (6) is calculated in the Appendix applying Laplace-transformation. Here 
only the solution at X 0 is of importance, as the storage time can Iw cal· 
culated from the rele,-ant hole concf>ntration: 

Ip"(O, T) =c (Ij+lr)Lp {; 
qDp 

---E,,(1 e-T
) En e-- T erf(E"lT)}' 

(7) 
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The hole distribution created by If can lw calculated similarly replacing 
If '- I .. hy I, and T hy T Tr in Eq. (7) 

Ip'(O, T) 

(8) 

At the end of thf' ~toragt· time 

Jp'(O. T,) =lp"(O. T,) (9) 

(neglecting pr) From Eq. (7). (8) and (9) the ~torage time can Iw determined 

(IO) 

If the ~witching-in impul5e is long that is TI L Tj • -= taking into consid-
eration. that erf (xo)= 1 and e-" O. Eq. (10) becomes simpler: 

erE! (I-!-E~)T, .. . .. -.. ... 'C'...=c='==-
P Ts) EIlP- T.! erf 

Er, 
(11) 

If the base has a uniform doping. E" o and Eq. (H) leads to the well-
known equation for tll(' storage til11P of homogenf'ous. wide-hasp diodes: 

(12) 

Approximations 

Lpt us examine the case where Ell <. 0 and En [ I. This is known 
to be the field strength of the ideal step-recoyery diode. By this diode (suppos­
ing E" -cC; 0) the fall time is zero, thus the total recoyery time is equal to tl1(' 
storage time. Taking into account that I En : = -Ell and erf (-x) = -f~rf (x). 
the time-dependent factor of Eq. (11) takes the form: 

(13) 
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- ExacI Vo! Ue 
.- Approximate value 

Fi,f!. 2. The "X act and approximate \'alne" of the :,tura:.!e timp" 

The denominator of Elf. (11) hpconlt'~ :2E. to ~implify into: 

1 (U) 

(1.5 ) 

Thi~ '>CJuals the result of the charge-controlled calculation, as it was expected. 
Con"idering a fillitp Tf • Eq. (10) yields in a similar way: 

1 e'T 

1 1'-11'.,· Td 
(16) 

(17) 

The storage timps calculated from Eq. (11) cuI' plotted in Fig. (:2). Increasing 
the .,-alne of the re';(~rse current, the storage time clt'creases and becomes more 

diYt"rgent from the approximate "alnes obtained from Eq. (1.5). On tIlt' other 

hand. by inert"asing E." the two \'alnes become more convergent. 
From the shapps of the C'lu\'es in Fig. (:2) it appears that there must he 

other approximation too. BT increasing Iri If' each line becomes straight, 
which indicates a relationship between T, amI Ir! If in the form of a power 
fundion. For En = -"'C Eq. (1.5), pxpanded into senp,,: 
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For En 7:" -= the function ('rf (x) is to be expanded into series. By applying 
') 

prf(x) ,,"-,,' ,- and e-:: 1 - x, Eq. (11) takps the forIll: 
!:-r 

L __ J_ 

Ir"-Ir 

(19) 

In the numerator nf Eq. (19) E;,T,{ 1 because the whole approximation app-
lit's only for (1 E;,)T, ,:; 1. T1H'n (19) ht>conw,: more ~imp1p: 

(20) 

T, ean be expre:;sed from Eq. (20). By soh'ing the ~t>cond order equation for T,. 
only the smaller root ;;atisfies t 1w fundamental condition of the approximate 
calculation. Applying the ne"\\' yariahl(~. B = IeU! (21) 

l/~ ::r 
(22) 

In the ('xamined domain B ?> 1 (Fig. 2), thus the expression under the ~quan' 
root can be expanded into ;;eries and considering only t1w first member Kt' 

get for T,: 

:t , s 1-'- B 
(23) 

Because of its ::,implicity. this approximate expres,;iull IS convenient to use. 
Before comparing with thp exact solution. it should lw pointed out that for 

Ell = 0 we get for T,: 

If'F 
r ' 

1 
l--'-B 

(24) 

The same would remit from Eq. (12) by expanding into ~eries the right side. 
In Fig. 2 the values calculated from Eq. (23) are plotted with dasherl 

lines, leading to the following conclusions: 
(a) If the T, valut> calculated from Eq. (23) i" much smaller than that 

calculated from Eq. (17) (valid for Er; = -'X) then Eq. (23) should be used 
to determine the yalue of T,. 



(b) In oppositf' case Eq. (17) should lw ns(·d. 

(c) If th.· t,,-o Ts values are of about the same ord"r of magnituck. for 
more exact calculations Eq. (11) should he used. 

Appendix 

Denote the Laplace-transfonned. normalized tillw by s. The transformed 

form of Eq. (4) 

"C"(X,5) U"(X, O) 3~U"(X, 5) 
8\2 

Th.- initial cOIl.litioIl I~: C"(X.O) 

a~UfI(X, s) 

aX2 

O. thu~ 

SU fI (X,8) 

(A. 1) 

(A.2) 

For \\-idc-base diode,,: U"("'-,.5) = 0, therefore the "olutioll of Elj. (A.2) i" 

L~"(X, .5) Cl' ·]5x. (A.3) 

The value of C can he calculated from the boundary condition (6). Applying 
Laplace-transformation to hoth sides 

Lp(IJ+1r) 1 
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Suhstituting U"(X, s) from Eq. (A.3) into Eq. (AA) then expressing C finally 
mhstituting into Eq. (A.3) one obtains: 

U"(X, s) (1J+ 1r)Lp 

qDp 
(A.5) 

s 

For determining tIll" storage tim(-, it is necessary to knOll" the hole density 

for X = 0 

['''(0, s) (£[+Ir)I:p 
qDp 

1 1 
---.-

s(l-+-E~,) ys-'-E" 
(A. 6) 

The equation ahoY,- can be transformed hack by the convolution-formula. 
Second and third member of Eq. (A. 6) take thE" form: 
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Thus transforming: back thl' s-(lqwndf'llt Illf:'mlwr of Eq. (A.6) 
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From the intf'graJ ahoy,'. ell E;~iT C"l1 he takpH out. Considering that from 

Eq. (3) 
lp"(O, T) C"(O. T) f'Xp { (l-E/,)T} 

T 

Ip"(O, T) = 
J
' ., [ " ;- ] I 1 E", (' 1-td(E"lT) (T

J
, (A7) 

By introducing a new yariable. the first integl'alm hrackets takt's th,> fOlm 

erf (x). The fir5t member of the second integral is easy to integrate, the second 
member can be eyaluated by partial integration and then hy introducing 
a new variable. After that. from Eq. (A.i) one obtain" Eq. (7). 

Sunnnary 

The storage time of diodes with nonnniform base doping i.s examined by ,,"pposiug 
constant field strength in the base. Beside the exact solution. some approximations are gi\'en 
facilitating to determine the ",,'itching times. The limits of applicahility of approximations 
arc presen t cd. 
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1. Introduction 

A Boolean function is said to bc a threshold function if and only if there 

exists a weight vector, the scalar product of which with every difference 
vector is not smaller than zero. 

The definition of difference vectors is given in a pre\-ious paper [1]. 
From the viewpoint of practical application, the scalar products of the 

weight yt'ctor and the difference vectors must he greater than zero. because 

no threshold device can realize otllPr than a threshold domain, a so-called gap, 

instead of an exact threshold ,-aIue. It is important to know about a threshold 
function. wlwtlH'r tl1<'re is a possihility to realize it hy a single given threshold 
device or 110t. 

2. Terminology 

Let F(x) denote an arbitrarv Boolean function. where x mean::: the 

input vector with 11 hivalued component;;: 

x = (x,. x2_ •••• x,). 

Let x; denote an input vector. for which F(x) l. 
Let 0 

Xj denote an input vector. for which F(x) O. 
Thus 

F(x)) 1 and F(x1) = 0 hold. 

The numher of vectors and Xl and xi) depemb on the truth table of F(x). 
Let vI< denote the difference vector bct'l"('en one of the ,-ectors Xl and 

0111' of the vectors xo. 

It has heen shown [1] that Booleall function F(x) is a threshold function 
or I-realizahle if and only if the inequality 

o (1 ) 

holds for each /' derivable from the truth table of F(x). 



In the above inequality lr dl'nntf'i' th .. ~o-calle(l \n'ight vector, ,,-ith real 

numbers as components: 
HY" dl'llot('s thf> scalar product of the \-('('tor5. 

3. An upper bound for the relative gap 

Practically, the maintenance of inequality (1) is not :mfficiellt for the 
realiz;ation of a threshold function. If the threshold d{,yice has a threEhold 

domain, or gap G then for the sake of the realization the scalar product,,; of 
the weight ,-ector with eYen- difference ,-ector must not }w smaller than C. 

(2) 

fntrodllcing th(> notation of tilt' wf'ight unit-y('('ior (H'/I) 

iUf'qllality (2) ean hp l'Pwrittf'1l <I:' follow:, 

It' 11 ~,J: ~~: 
G 

(3) 

The absolute value of the weight vector IC I::' also limitf'd for n-{'n-

threshold device. Thus there ('xi"ts a quotient for every threshold deyiee. 

G 

:U~!max 

termed the relative gap of' the device. References may involve some other 

meanings for the relative gap [2], [3]. but all of them are characteristic of'the 
realizability. 

Theorem 1: A threshold function is not realizable with a given 'weigh t 

unit-vector U'" by a single threshold device having a relative gap gd if there 

exists at least one difference vector y", for which the inequality 

(4) 
holds. 

The proof of this theorem i5 unnecessary, because it is obvious that if 

inequality (4) holds, then inequality (3) doe" not hold. 
Let gf denote the minimum yalue amollg the scalar products wu/:. 
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th us, for all difference vectors the inequalitie~ 

(5) 

le" y"':?:: f!; hold. 

where m is the numher of the difference vectors. For the sake of simplicity 

m will be considered as the numher of the difference vectors differing from 
each other. 

Let gf be called the minimum relative gap of the threshold function. 
Theorem 2: There exists an upper bound for the minimum relative gap 

of a threshold function: 

that I~ 

'" ~),k 
..,;;;,. 
1:=1 

111 

m 

IS the ab50lute value of the sum-vector of the difference "('ctor", 

Proof" Summarizing inequalitie" (5), it follow;;: 

m 

lC u >'yl: mg" 
t:::l 

Th .. absolute value of l("" l)(:ing: equal to 1, t h(' illf'(plality 

mg i hold,.. 

where 9 i" the angle between the :;um-n:ctor and the weight ullit-ve<'tor. 
The maximum value of em: «( h('ing equal to 1. the ineqnality 

T11 I 

",' \,k ' mf!.r 
~ ~ 

1:=1 

to' :-,atisfietl. and the proof is completed. 
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The aboye upper bOUJld can be computed from the truth tahl(· of tlw 

threshold function preyious to thf' realization procedure and it can be decided 
whether the realization by a deyic(' \\'ith a gn'en gd is possible or not. For 
('sample if 

>' vk 

,~I,:~'--;;:,_l~~_~ ~ g:: ~ 
m 

then according to Theorem 1, the realization by the given dcyice is irnp055ibl(~. 
Besides if the yalue of gj computed with a giyen weight Yector is near 

to the above upper bound, it will he uselpss to modify this weight, ector ill 

order to get a much greater .-alue of gf. 

-1:. Examples 

A computerizablt' testing and synthesis algorithm has bet'll written mak­
ing use of the properties of the difference yectors. A part of this procedure is 

to calculate the yalue of gj and its upper bound. These ndlH'S ana the reali-
7ations for ;:ome thrt'shold functiolls art' :-;hown in Table 1. 

Table I 

ITI 

\'X-('ight Yector Thrt':-hold ,. yl: 
("ornponent:- domaiu 

Bookan ftltwtillll 

m 

x, .,. x,) '0 1. l.l ,). 
.) 0.8:39 

F 2. 2. 1. 1 ,L :i 0.731 

F i'(!' 2. :1.1. ;;. 6. 7. 1:;) ~.~ 2. 1. 1. 1 1. n 0.819 

F '~ ,2'(3. :;. 6. I) 1. 1. 1 2. 1 0.866 1l •. )77 

F ilL 9. 10, lL 12. 13. I!. 1.:;) d(lI. H) 3. ~l. 1. 1 1. 0 O.H;:)7 1.l.2K9 

F ':::(~.·L 8) -- dO. 6. 7.10.1112. U. H.!.'i) 1.1.1. :2 1. 

5. Summary 

In this paper an upper hound for the relatiye gap is given. ,,'hich call be calculated 
from the truth table of a threshold function. E'"en' threshold device mav be characterized 
by the minimum value of the relative gap possible h;' that device. Compari'ng the latter mini­
mum value to the upper hound. the irnpo,;'ihilitv of the realization hy the given d,'vie,> r.an 
be predicted. 
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