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Introduction 

Phenomena along the transmission line are a part of the domain of 
electromagnetic waves. The usual method at writing the relating equations 
is to express the relationship between voltage and current by the help of 
electrostatic capacity, of the coefficient of stationary external inductance and 
conductance, further of the quasistationary resistance and internal inductance 
[1]. Field theoretical examinations in the literature are primarily concerned 
with TEM mode ,vaves [2]. In the case of transmission lines with losses, in 
turn, the arising fundamental mode is of the TM type. For the case of some 
transmission lines of special arrangement the propagation coefficients were 
successfully determined exclusively on the basis of considerations of field 
theory [3, 4]. In the present paper the general field theoretical examination 
of the field of transmission lines is presented, in the course of which it will be 

clarified, in the case of wave phenomena, under which conditions is the calcula­
tion of line parameters by electrostatic, stationary, or quasi-stationary ways 
justified. For the general case the value of the propagation coefficient is deter­
mined on field theoretical basis, and relationships between the field and net­
work theories of transmission lines are searched for. 

The examination of the TIVl mode field 

In the followings an arrangement consisting of two parallel leads will he 
named a transmission line in the case when the direction of the tangential 
component of current density on the surface of the leads is longitudinal, i.e. 
identical with the propagation direction of the waves. (In a different case the 
arrangement is named a wave guide.) In the followings only the electromag­
netic field of transmission lines defined in this way will he examined. In the 
case of leads with losses electric field has a component also in the direction 
of the current. Among the possibly arising modes such a TM mode without 
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critical wave-length will be examined which passes over into the TEM mode in 
the extreme case. In the following the equations of such waves are ·written. 

The Maxwell equations for the space filled with material homogeneous 
and isotropic in each space section will be started of 

rotH 
aD 8E 

J + -- =O"E + c;--, 
8t 8t 

8H 
rot E .. ,u---, 

div H 

divE 

8t 

0, 

Q 

c: 

(1) 

(2) 

(3) 

(4) 

where Hand E are the magnetic and electric field, respectively, J the 
current density, (! the charge density, .u the permeability, c; the permittivity, 
0" the specific conductivity, t the time. One of the usual ways of solving the 

above system of equations is to write H on the basis of Eq. (3) as the rotation 
of vector potential A. 

H rotA. (5) 

In the case of a TlVI mode vector potential A has only a longitudinal 
component in the direction of the lead axis. Let us choose the direction of the 
z-axis identical with the longitudinal direction. Thus 

(6) 

where k is the unit vector in the longitudinal direction, {) 1 and {) 2 denote trans­
versal co-ordinates normal to each other (e.g. in the case of cylindrical co-ordi­
nates, rand cpl. Then, considering that rot k 0, Eq. (5) can be written in the 

folIo·wing way: 

H = rotA rotkA grad A >~ k. (7) 

grad A can be expressed as the sum of the gradient of A with respect to the 
8A 

transversal co-ordinates and of k -- . 
8z 

gradA d A 8A k. gra {'_ + 
8z 

(8) 

Accordingly, on the basis of (7) 

H = - k X graduA. (9) 
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For the following calculations substitute (5) into (2). 

rotE - ,U 
arotA 

a~ 

339 

(10) 

The order of forming the rotation and of derivation with respect to time 
can be interchanged, consequently on the basis of this relationship E + 

aA 
...;.. /-< can be written as the gradient of a scalar potential, namely 

at 

E 
aA 

,Lt -- - ~rad rp , 
at ~ 

(11) 

Decompose this expression into a transversal and a longitudinal component, 
then, respeetively 

Et' = (12) 

aA acr: ,a-- ----, 
at az 

(13) 

It can be stated on the basis of relationship (12) that the transversal com­
ponent of the TM mode electric field is of the potential type. 

Substitute (5) in relationship (I), 

rot rot A aE 
aE 

at 
(14) 

The left side of the equation can be rewritten on the basis of the well­
known rclation of vector analysis, while at the right side the expression (11) 
for E is written. 

grad diy A - JA = 
aA a~A 

au -- --. n8 --- .-. 
'at . at2 

grad aq; --:- E --( 
aq; ) 

. at . 
(15) 

(We made use here of the possibility of interchanging the order of forming 
the gradient and of derivation 'with respect to time.) Let us choose diy A in 
accordance with the Lorentz condition, namely 

div A 
( 

I arp ') - acp T 8--
at . 

(16) 
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Thus Eq. (15) becomes 

I. vAG<:l 

SA 
LlA - ap 

St 

On the basis of (6) we obtain 

LlA 
SA 

ap--
St 

The solution of Eq. (18) will be discussed later. 

( 17) 

(18) 

Relationship (16) can be written, on the basis of (6), also in the follow­
ing form 

_ SA = (a + s S .l I{ . 
Sz St 

Let us further substitute (11) in Eq. (4). 

d · r SA d ] 0 ~~< IV liSt + gra. If =-;-
that is 

fl ~ div A + diy grad q; 
St 

Upon considering the expression (16), 

SI{ 
!11{<- ua-

j at 

s 

In those parts of the space where there is no space charge (g 0): 

SI{ S~ 
fla-- - ,us 

St 8t~ 
o. 

(19) 

(20) 

(21 ) 

(22) 

(23) 

In this way we ohtained a differential equation identical in form with Eq. (18). 

Line parameters 

The solution of differential equations (18) and (23) is searched for by the 
method of product separation. Further examinations will he restricted to 
signals changing sinusoidally in time. The solution of the two equations i~ 

searche d for in the forms 
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(24) 

and 

(25) 

respectivel y. 
Let us substitute Eq. (24) and (25) III (19). Thus 

(26) 

This equation is satisfied, independently of co-ordinates {)l and {)2' if 

(27) 

This means that the vector and the scalar potential are described in the 
transversal plane by identical functions. That is to say, the same function 
figures also in the expression of gradients formed with respect to the trans­
versal co-ordinates. 

(28) 

(29) 

Eo is proportional to grad g q", according to (12), while H to gradg A, according 
to (9). It follows of this that field strengths Eo and H are described in the 

transversal plane by functions of identical character. By comparing (9), (12), 
(28), (29) it can be established that Eo lies in the direction of - grad o q, i.e. 
of - grada A, and is thus perpendicular to H. 

Hereafter our calculations "will be limited to the electromagnetic field 
of transmission lines. We suppose further that in one of the two parallel lines 
current I is flowing in direction -.:;, "while in the other in direction -z. This 
assumption is satisfied in the case of lines of asymmetrical arrangement only 
approximately [3], namely in such cases the current of the two lines is not 
identical in general, hut the current of one of the lines is closed by the current 
of the other line and of its dielectric displacement current. This latter, how­
ever, can be neglected in most cases in comparison with conduction currents. 
In the examined case the value of potential 9- along the perimeter of the line 
at a fixed place z is constant. Namely, in the contrary case the current density 
has also a component perpendicular to z. This in turn would be contrary to 
the condition that the direction of the tangential component of current density 
at the surface of the line is identical with the direction of propagation of the 
"waves. 
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Let CPl designate the potential at the surface of one of the lines at a fixed 
place z, while cpz that on the other line. At the place z the integral of H with 
respect to the circumference of one of the lines, as a closed loop, is equal to 
the current in the line arising at z in accordance with Eq. (I). Since displace-

A'2 I 'P'1. Z= const. 

as 

Fig. 1 

ment current can be neglected in comparison with conduction current III the 
conductor, therefore 

~Hdl=i(z). (30) 
I, 

Let us define capacity C of the transmission line, and external inductance L" 
hoth referred to unit length, by the following relationships. 

(k X grad"cp)dI :f 8q; dl 
/, an c (31) 

s, 
.r grad,. (f ds 

SI J grad"Ads 
,Lt _8,._ .00._. __ •••• (3:2) 

Xi (k >~ gradvA) dl 
I, 

Cl 
where -~- indicates a differentiation at z in the dire ction perpendicular to the 

OIl 

surface of the conductor, directed away. In definitions (31) and (32) the curyc 
II indicates the circumference of conductor I at the fixed place z, while s is 
a curve lying in the transversal plane belonging to this same z, which conuects 
oue of the points of the circumference 11 of conductor I with the circumference 
of conductor 2 (Fig. I). We shall see that capacity, as defined in this way and 
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the external inductance are also functions of the changes of the wave phenome­
non in time, beyond geometrical data and material constants. Let Al designate 
the value of the vector potential at the surface of conductor I at place z, while 
A2 that on the surface of conductor 2. 

Substitute in (31) the expression giyt~n under (25). Thus 'we obtain, upon 
considering also (27), that 

c e 1 

ae dl 
an 

further of (32), on the basis of (24) and (27), 

.u --=----"-

_ .. ~_ae dl 
't' an 
I, 

(33) 

(34) 

where e1 and e2 designate the value of e at the fixed place z, along the circum­
ference of conductors I and 2, respectively. 

On the basis of (33) and (34) we obtain the well known relationship 

(35) 

Let us examine now the expressions given under (31) and (32). To this 

end determine the surface integral of quantity Eu = - grad a er: for a piece of 
conductor I having the length dz. This is proportional. hy force of Eq. (4), 
to the charge on the section of length dz of the conductor, q dz (q is the charge 
of the conductor of unit length). 

We can write that 

and thus 

\Vith this from (36) 

da = dz dl k = cl;;; n cll 

~
• aq 

c'dz !-~-dl == qdz. 
• 011 

I, 

qdz. (36) 

(37) 

(38) 

(39) 
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Accordingly 

q= 

I. vAG6 

c J, 8f{! dl 
'Y 8n 
I, 

(40) 

Let u designate the difference of f{!l and f{!2' i.e. u is the voltage hetween 
the conductors, in the case of fixed z. 

u(z) = f{!l(Z) (41) 

Thus hy using (40), relationship (31) can be written in the following form: 

(42) 

This means that definition (31) is identical with the well-known definition 
of capacity. 

i{z} -~c=====~_~============~ 

--
-i(z) 

dz 
z 

Fig. :2 

Consider that 

dI >< k = dIn ( 43) 

thus on the basis of (9), for the circumference of conductor 1, 'we obtain that 

i = ~ H dl = ~ (-k X gradt'A)dl = ~ grad"A(dl >(k) ~
' aA 

dl 
. all 

(.J4) 

Integrate vector potential A along the loop of width dz sllO'wn in Fig. 2. 
1 

Let - <P dz designate the value of the integral in accordance with Eq. (5), 
,Lt 

where <P d::: is the flux passing the 5urface surrounded by the loop. 
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rp 
-dz 

,U 
~AdS = (A[ 

s 
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(45) 

(46) 

By taking (44) and (46) into consideration, "we obtain for LI; from the 
definition (32) that 

(47) 

i.e. (32) corresponds to the usual definition of the induction coefficient. 

Differential equations for voltage and current 

Let us write relationship (13) for the surface of the individual conductors. 

EZl = 
aA] aIF] 

ft--
at az 

(48) 

Ez~ 
aA.) 

,u----
at 8:; 

(49) 

Subtract (49) from (48). 

a(A] -. A 2 ) 
- ll--··---

, at 
8(q:1 - fJ?2) 
---~------ ( 50) 

E:l and Eo:? can also be expressed by the internal field of the conductors [1]. 

(51) 

(52) 

where Ri and R2 , further Lbi and Lb2 denote the resistance and internal induct­
ance of conductors 1 and 2, respectively, ohtained by taking the skin effect 
into consideration. At writing (51) and (52) the direction of the current in 
the conductors was taken to be ~:; and -:;. respectively. 
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From (50), by considering relationships (41), (51), (52), (46), and (47) 
we obtain a differential equation for the relationship between u and i. 

(53) 

\Vrite equation (19) for the surface of the two conductors. 

(54) 

aA 2 (' a ) -- = (J --7- c - Cf2' 
az . at 

(55) 

Subtract (55) from (54). 

8z 
(56) 

From relationships (4.1), (46), and (47), further from (35), we obtain that 

ai 
(
0 -+- c~l U 

Lie at 
(57) 

az 

By introducing the notation 

G 
c 

(j --, (58) 
c 

we can write that 

ai 

az 
(59) 

The denomination of G is the conductance, thus (58) is a relationship 
expressing the analogy between electrostatic and current fields. (53) and (59) 
are the well-kno'Hl Kelvin Telegraph Equations. 

The solution of the differential equations 

Egs (18) and (23) are differential equations of the vector potential, and 
of the scalar potential, respectively. Let us examine the solution of these. 
To this end decompose the Laplace operator to the sum of the second deriva­
tive with respect to z and of the two-dimensional Laplace operator with respect 
to the transversal co-ordinates. 



O.V THEORETICAL QUESTIO.VS OF THE ELECTROMAG.'ETIC FIELD 347 

(60) 

Substitute the expression (24,) for A into (18) and divide this equation 
by A. Thus, the previously mentioned decomposition, in the case of a sinusoidal 
time change, hy considering (27), yields 

1 1 8~ Za 
L1, e ...L jWfl( (j jW8) = 0 , e·' Za 8z~ 

(61) 

The first member at the left side of this equation is exclusively a function 
of the transversal co-ordinates, the second memher only of the z co-ordinate, 
while the third member is constant. Thus Eq. (61) can he satisfied only if the 
individual members are each equal to a constant, that is 

(62) 

(63) 

The separation constants g2 and )'2 shonld satisfy the folIo'wing equations. 

(64) 
where 

(65) 

g2 and y2 are constants. 

The solution of (63) is known to he 

(66) 

where constants A z and Bz can be determined in the knowledge of the excita­
tion and termination at the end of the line, respectively. 

For the solution of Eq. (62) a denominate system of co-ordinates is to 
he chosen [5, 6]. 

The value of g can he determined of the houndary conditions of the 
electromagnetic field prescribed for the surface of the conductor, making use 
of (65). 

Inside the conductors, the displacement current can he neglected, thus 
from (65) we have 

(67) 
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where the subscript indicates that the symbol refers to the inside of the con­
ductor. 

The value of )' is identical both inside and in the space outside the con­
ductor, since the same wave is propagating in the direction z in both space 
parts. Since a large part of the energy is flowing in the dielectric, }' is of the 
same order of magnitude than }'O which is valid for the dielectric [7]. The 
value of }'ov '\\Thich is valid for the conductor is in turn higher by several orders 
of magnitude than Yo or I', in the case of a values met in practice. Thus on 
the basis of (64), 

? ? • 

g~ ""'" Y(iv = JW aV,u t · (68) 

This means that inside the conductor the functions describing the dis­
tribution of the transversal components of the electromagnetic field and the 
arguments of these are independent of wave phenomena in direction z. The 
amplitudes of field inside the conductor, howeyer, depend on z, in contrast 
to the quasi-stationary case, that is to say these yalues are different in gener­
al at different z places. The internal impedance of the conductor, howeyer, is 
independent of the amplitude of the field and consequently the electromag­
netic field formed inside the conductor can be regarded as quasi-station­
ary from the aspect of the calculation of internal impedance. It follows that 

the resistance and inductance coefficient values RI' R2 , L bl , L02 in (53) are 
identical 'with the yalues obtained from the equations of the quasi-stationary 
field. 

The TEM mode solution 

In a transmission line the TE}lmode arises if the conductors are without 

losses (RI = R2 = 0, L o] = Lb2 = 0) and the dielectric is homogeneom in the 
individual transyersal planes. Then, by force of Eqs (51) and (52), Eo = 0 in­
side the conductors and thus also on thcir surface. Consequently, on the basis 
of (4·8) and (49) 

8:; 
,U 

ot 
( i 1,2) . (69) 

(54) and (55) can he written in the following form: 

(70) 
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From these last two equations 'we obtain for Ai and Vi the differential 
equations 

8
2 

f{J,. (' 8 J --= a-s-", 
8z2 I 8t 8t 

(71) 

and 

(72) 

By using (25) and (65) we have 

"Z = Yii , (73) 

and on the basis of (24) 

(74) 

By comparing these last two relationships with (63) we find that 

o ., 
Y- = f'ii (75) 

and thus, according to (64) 

g'!. = o. (76) 

From the preceding equations, functions Za(z) and Z,(z) can be deter­

mined. These are naturally describing not only the functions ifl' if2' and AI' A 2, 

respectively, but also the dependence of (r and A on z, in the case of arbitrary 

co-ordinates ai' a2• That is to say E: is zero everywhere on the basis of (69) 
and (13). 

According to (76), Eq. (62) will have the following form: 

0, (77) 

a t,m-dimensional Laplace equation. Thus, we found that in the case of a 
fixed z value the same kinds of differential equations refer to q. and potential 
A as to the electrostatic potential. 

Prcviously it was shown that the boundary conditions for q: were also 
of similar charactcr (if is constant at the circumference of the conductor), thus 
the solution in the case of a given z value was identical with the electrostatic 

solution. It follows of this that in the case of no losses also the capacity for 
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unit length as defined in (31) is identical with the capacity calculated on the 
electrostatic way. 

A similar consideration IS valid for the vector potential. This leads to 
the relationship 

.:It' A o (78) 

under the conditions valid for the TEM mode. In the case of fields stationary 
8 

in the dielectric medium c::.IA = 0 and - = O. Thus (78) is valid also in this 
8z 

case. Accordingly, in the case of no losses, the inductance coefficient defined 
by the relationship (32) is equal to the value calculated on the basis of the 
equations for the stationary field. 

The TM: mode solution 

In the case of transmission lines with losses the z-direction component 
of the electric field arising in the conductor is for the surface of the conductors 
as given in (51) and (52). In this case not the TElVI, but the TM mode arises. 

The further calculations will be limited to changes sinusoidal in time. 
N O'w (51) and (52) can be written by employing the usual complex 'way in the 
following form. 

Eo! i(R! -T jwLbl ) 

Eo~ = i(Rz + jWLbZ) 

(79) 

(80) 

EZ]. and E02 can be expressed also in terms of the field arising in the dielectric 
medium. For this we obtain from (13), by using (19), that 

I 
jwpA :- ----

(j + jcos 

82 A 

8z:! 

Considering relationships (63), (24), (65), and (M) we find that 

(j -:-- jWE 
-=--A. 
(j -;- jcos 

(81) 

(82) 

We write this for the surface of the individual conductors and by comparing 
with (79) and (80) we have 

._--"'--. - Al = iZ b 1 

(j + ]WE 

--=--- A2 = iZb2 • 

(j + jcos 

Any of these last two equations can be used for determining g2. 

(83) 

(84) 
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If the geometricaol data or the material of the two conductors of the 
transmission line are not identical then we obtain two different gZ values. This 
means that t·wo different modes arise. (This phenomenon is known in the case 
of the Lecher Conductor [3].) For conductors of asymmetrical arrangement, 
gZ can be calculated approximately in such a 'way that not each of Eqs (83) 
and (84) is satisfied, but only their difference. (In the case of a symmetrical 
arrangement this method is naturally exact.) 

EZ2 + EZI = --=---(A z -. AI) 
jWE 

(85 ) 
(j 

Replace Az-A I by the inductance coefficient as defined by (32). 

L,o' -' . J grad~ A dl i(ZM + Zoz) • 
,U (j + JWE 

(86) 

I, 

By multiplying and dividing the left side of the equation by jw, we may 
write upon considering (44) that 

---"--'-'-- 1;- ZOJ + Z02 , 
jw,u( (j -+- jWE) c.. 

i.e. 

y­
e 

On the basis of (35) and (58) 

jU),u( (j - j~~) 

jwL, 

Thus we obtain that 

jmG -+- G. 

(87) 

(88) 

(89) 

(90) 

Substitute this relationship into (64) and take into consideration (65) 

and (89), 

y:! = Y5 g'2 ==j(op(a ~ jO)p) -t- (Z01 ~ Z(2) (jOJC + G) == 

(jwL" -'- Znj ZbZ) (jel)G G) . (91) 

The result obtained corresponds to the known expression for the propagation 
coefficient. The values C, L,i' and G in this expression, ho"wever, correspond 
only approximately to the respective quantities calculated in static or station-

2 Periodica Polytechnica El. 14/-1 
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ary way. The scalar and vector potentials in the transversal plane are namely 
only approximately of the same distribution as in the static and stationary 
case. The closeness of approximation can he judged from a comparison between 
values calculated on the basis of (33) and (34,) for the static and stationary 
cases, respectively, and values determined on the basis of ,,-a-,'e theory. The 
numerator of (33) and the denominator of (34) are proportional to the current 
in the conductors, by force of (44). Thus, from the examination of el-e? 
conclusions can he drawn on the closeness of approximation. For e({)1'{)2)' 
as we have seen, differential equation (62) is valid. The solution of this, as 
written in the form of product separation, is found to he 

(92) 

In this form one of the factors depends only on {}1 while thc other only on ,9 2 , 

gl Dj and g2 D2 occur in thf' argument of el' and of e2, rf'spectively, where 

(93) 

Let us suppose, in accordance with practice, that there is a Dj constant 
co-ordinate line connecting the two conductorE. Let d designate the length 
of the section of this line hetween the t·wo conductors. Thus the argument 
of 8 1-82 includes the value gl d. The order of magnitude of gl corresponds 
to that of igi or is smaller. Accordingly, if igd ~ 1, the function 8 can he 
approximated by the value arising in the case of g ~ 0 and thus. in the place 

of (62), the relationship 

(94) 

can be written for the space hetween the conductors. This corresponch exactly 
to the static and the stationary case. 

On the basis of the foregoing it can he stated that definition (31) and 
(32) are valid also in the case of waye phenomena. By the help of C and Lk as 
defined in this way, the propagation coefficient can he calculated on the basis 

of (91) exactly for symmetrical arrangements, and approximately for asym­
metrical ones. In the static and stationary cases, the definitions go oyer into 
the known expressions. (31) and (32) correspond to C and Lk calculatf'd in 
the usual way for ,gdi ~ 1. If this neglection is not taken into consideration 
then A1-A2 and 'fl-fJ'J. depend on the yalue of g. The yalue of g in turn is 
a function, heyond the geometrical dimensions and the material constants, 
also of the angular frequency. Accordingly, in the general case L i; and C also 
depend on (I). 
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Summary 

The paper contains the field-theoretical examination of transmission lines. Correlations 
between the field and network theory are described. For the case of wave phenomena the 
conditions of the justification of the calculation of network parameters in a static, stationary, 
or quasi-stationary way are examined. The value of the propagation coefficient of the trans­
mission line is determined on the basis of the field theory. 
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