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§ 1. In the well known book of Rupix [1]* the following nice character-
ization of Helson sets can be found: (Thm. 5.6.3)

(H). For any compact set P, let I(P) be the set of all functions in L}(I)
such that f('\:) = 0 for all x € P and the dual space of the quotient space
LY} I(P) be @(P). Then the following three properties of a compact set P
in a locally compact Abelian group G are equivalent:

a) P is a Helson set.

b) jipll and ||i]]_ are equivalent norms on M(P).

¢) Each @ € O(P) is (equal almost everywhere to) the Fourier-Stieltjes
transform of a g € M(P).

The purpose of this paper is to show that theorem (H) is the particular
case for p = 2 of a theorem concerning translation-invariant operators in
LP(G) 1 / p < oo and meaningful for non-commutative G too. The investiga-
tions leading to the present paper were deeply motivated by Epwarps [4].
His theorem 1.4 in [4] is essentially identical with the first part of our Theorem 1
on the equivalence of I and I1. Assertion III and the cases of p == ¢ investi-
gated in Theorem 2 serve to make more clear the connections between theorem
(H), the approximation by convolutions and translation invariant operators
in L(G) (1 <~ p << =). In § 3 we shall show that to a certain extent our results
are valid for non-commutative G too. In §4, by generalizing Theorem 1.4 in
[4] to general Banach spaces, the exact correspondence will be shown between
Theorem 1 and the main results of Epwarps [4]

2. A continuous linear operator T from L”(G) into LY(G) (1 < p < q <

< o) is called translation invarient if TU, = U,T for U, : U, f(z) = ft + 7).

It is easy to verify that the operator T, defined by T, f = p=f, where u»‘f:

= \ flx — ¥)du(x), is a translation invariant operator in L?(G) (1 < p <7 ~)
G

for every u € M(G) and we have for the norm of T,

T‘uf 1 g j‘.u“l .

* The notations and terminology of [1] will be throughout followed.
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In the case of a commutative G, the Banach space of translation invari-
ant operators in L” (1 <Z p <7 =) can be characterized as follows: [5]

Let 4, be the set of all functions on G which are of the form Zﬁ w gy

k=1
with fi, € L7, g, € L, * and > || fi!

.
I

gillps < 2o. For h € A, define

"",p::lllf{ Ul gellps th= 2 fixg
Ea=1 k=1
then 4, endowed with the norm defined above is a Banach space.

The Figa-Talamanca’s Theorem. The Banach space of translation invari-
ant operators in L” (1 <C p < =) is isometric and isomorphic to the dual
space A% of 4,. If T is a translation invariant operator in L?, then T corresponds
to the functional g7 defined by

7rlh) = STf, #g.0). (1)

for h = > fixgx € 4,.
k==1

Remark. If G is the finite dimensional Euclidian space and 1 << p < ¢ <~
< o, then each translation invariant operator T from L’ into L? can be
represented by a tempered distribution T as a convolution operator in the
following sense [7]:
For every testing function y, Ty = T =y

supp T is the support of the functional ¢ corresponding to T by (1).

Now we can state the generalization of (H) as follows:

Theorem 1. The following three properties of a closed set P in a locally

compact Abelian group G are equivalent:

I. For every F ¢ C,(P), there exists R >0, f, € L*(G).
R, gk

aa
M
E
Py
on}
[
~

complex numbers £ =1, 2,... so that

~

and

F(x) = ;}; S =g ] (%) uniformly for x € P.

‘h=1

II. There is a number K > 0 depending only on p and P such that for
every u € M(P)

e

. and || .../, are equivalent norms on M(P).

* Here and in the following, superscript marked by strokes will mean the conjugate
Lebesgue space.
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III. For -every translation invariant operator T of L”(G) for which
supp T' P there exists u € M(P) so that T = T.

First we shall show that Theorem 1 for p = 2 is equivalent to (H).

A(G) consists precisely of the convolutions f] = f; with f and f, in L}G)
([1]. Theorem 1.6.3), hence 4 < 4,. On the other hand from

h AT f1 fz-\ = flf;l = fl‘zfz 2 = :‘flf'z f-z{;z fz)

= (=3

L N il i - N .0 . . N /

follows that if > i bllgl, < oc then ¥ fi# g; is a Cauchy sequence in 4
k=1 =t

and hence th = g €A. Consequently, 4 and 4, consist of the same func-
E=1
tions.

Similarly it follows from (2) that

‘fk *gl;jj <

gy
#
aa

e
it
L

S

=1

hence from the well-known theorem of Banach we conclude that the norms
G...laand |].. .|y, are equivalent.

From the Figa-Talamanca Theorem it follows that the Banach space
of the translation invariant operators in L? is isometric and isomorphic to Aj
and on the other hand from the definition of A4(G) it follows that A(G)* is
isometric and isomorphic to L=(I"). Hence .4} = L=(I'} apart from a homeo-
morphism.

Now it is also clear that the set
{T:gr €45 supp T C P}

is identical with @(P) in (H).

Hereby the equivalence of Theorem 1 for p = 2 and (H) is proved.

The proof of Theorem 1 is the same as that of (H). It is also a cornllary
of the following theorem: ([1] Appendix C.11)

(A) Suppose X, Y are Banach spaces, B is a continuous injection (i.e.
1—1) from X into Y and BX is dense in Y. Then each of the following three
properties implies the other two:

(a) BX =Y

{b) There exists 5 > 0 so that ||B¥y*|| > 0.'v* " for every v* € Y *.

(¢) B*Y* = X*.

Indeed, if

I(Py={h€A,. h(x) =0 for xcP}.
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and X is the qudtient space A,(G)/I(P), Y = Cy(P) in (A) then we get Theo-
rem 1.

As an other corollary of the theorem (A) we have an assertion for trans-
lation invariant operators from L’ into L? (1 < p << q < o) similar to Theo-
rem 1.

It is easy to verify that the operator T}, defined by T} f = h = fis a trans-

lation invariant operator from L’ into L? if h € L" and

Moreover, we have for the norm of T

For commutative G, the Banach space of translation invariant opera-
tors from L? into L? can be characterized as follows [6]:

1 1
Let A} (———— 4 —>1 ] be the set of all functions on G which are of the
P q

form X fi » g with fi, g € Cc and X1 fil1,)]
pay K=1

lig <7 >c. For h ¢ 4] define

then ;l‘é endowed with the norm defined above is a Banach space.
The Theorem of Figa-Talamanca and Gaudry. The Banach space of trans-
. ) . P p - .
lation invariant operators from L’ into LY (1 <l p <C ¢ < =) is isomorphic

and isometric to the dual space 43" of 4. If T is a translation invariant
operator then T corresponds to the functional ¢ defined by

grh) = N Tfys g(0) (3)

E=1

for h = jfm g, €A%,
k=1
Again, we define supp T as the support of the functional ¢r correspond-
ing to T by (3).
If I(P)={h €4}, h(x) =0 for x € P}, X is the quotient space

, 11
AYG)I(P) and Y =L (P), |-——— —
p g4

=1 |in the Theorem (A) then

we obtain:
Theorem 2. The following three properties of a closed set P in a locally
compact Abelian group G are equivalent:
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I. For every F ¢ L"(P) there exist R > 0: fi. g« € CAG), 7 complex

numbers k=1, 2,... so that {Ifyll, <R, g, <R, N7/ <1 and
=1

a

(x) in L -convergence for x¢ P.

II. There is a number K > 0 depending only on (p, ¢) and P such that

for every h € L'(P)
‘Ki.h"%r = Tyj= h re

III. For every translation invariant operator T from L into LY for which
supp T' < P there exists h ELr(P) so that T = T,.

§ 3. The first part of Thm 1 is valid for non commutative G too with the
same proof. Considering the II < III part, it depends on the validity of the
Figa-Talamanca Theorem for non-commutative G.

It follows from the Bipolar Theorem ([2] pp. 35—36.) that A} is the
weak operator closure of the operators T, defined by T}f = £ «f for any locally
compact G hence, the non-trivial part of the Figa-Talamanca Theorem is that
every translation-invariant operator is approximated in such a way.

If p = 2 then from the Second Commutant Theorem ([8] Chap. 1. §5
follows that this is true for any locally compact G.

A similar argument holds for 4] p = ¢ and Theorem 2.

§4. Let X and ¥ be Banach spaces and B a continuous homomorphism
from X into Y. It is well known that the range of B is dense in Y if and only
if the dual operator B* is injective (i.e. 1-—1). The present paragraph deals
with the following stronger approximation property:

(P) For everv v €Y there exists K >>0 and a sequence {x,}. x, € X so
that iz, <7 K and y = lim Bx,,.
n-—ee

It turns out that there is no proper subset of Y satisfving (P) which
means that if (P) is satisfied then B is surjective (i.e. onto).

Theorem 3. The property (b) in the theorem (A) is equivalent with (P).

Proof. (P) = (b): It follows from (P) that the range of B is dense in ¥
hence B* is injective. So, we have only to show that the inverse mapping
B*~1 from B*Y* onto Y* is continuous. Le. if the sequence { B*y}} is con-
vergent then {v%} is also convergent.

It follows from (P) that

<Yh o Yhey >lZsup <yh vnBy> =
k
i d 3K - [ Ry R FoaE
=sup < B*(}n 77 )’ri;l)* Xp > o K B:r};!; B Nﬁlt
k

Yo ym€Y ™,
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or every v € Y and from the Banach—Steinhaus
¥} converges to a certain y¥ € Y*,

= {x: x ZK xeX]

then {S?\f., K > 0} is a base for X* ([2] pp. 34—36)
-0} is a base for the relative topology of B*Y*
3* is injective and the inverse mapping B*~! from
ous. Consequently, for every open neighbourhood
‘here iz a number K > 0 such that

B*=1(S4 N B*Y*)c U. (4)

that B*(BSk)® < S%. hence compared it with (4)

(BSg) @ ()

U = {v* y,¥*) <1}, then ¥/ iz an open
nee (3) holds. It follows moreover that v ¢ (BSk)%°
> Theorem ([2] pp. 34—36) we have a sequence
v = lim vx Q.E.D.

=

no proper subset of Y satisfying (P).

compact group, LY x L’ the topological (greatest)

d L¥(G) (see e.g. [2] pp. 130—138) and

v g { S‘ f,;*g,{) (x) =0 for x¢€ P} .

m 3 by the quotient space L? w Lp'/_N and C,(P)
in [4]. Thus Thm 3 is an abstract background of
:DWARDS. Moreover, the connections between Thm
iear.

tion also for two-norm spaces. Let 7X, ...,
sace, whiech is not necessarily normal, [3]. If X =

3

e completion of /X, {] .. .]!*, then we obtain from

~completion and the completion of /X, | .. .|

vspace <X, ..., 1 ...]* then the norms |
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'

and || .../|* are equivalent. Consequently, for a non-trivial two-norm space,
the y-completion is always a proper subset of the completion of (X, [ .. .[I*).
It is interesting that the following seemingly different approximation
property is equivalent to (P).
(P") For every v €Y with {jy; = 1 there is an x € X with |lx}| L K
go that

where K and ¢ depend only on B.
Theorem 4. (P') implies property (b) in (A).

Proof. For every yv* € Y* we have

[ oy =1 <y%y—Bx > + <y Bx> |

Hence

and

Summary

A bounded linear operator from L7(G) into LYG) where 1 < p.q< o and G is a
locally compact group is called (p. g)-multiplier if it is commuting with translation. A (p, p)-
multiplier is called a p-multiplier. An important class of p-multipliers are the bounded mea-
sures as convolution operators but the set of p-multipliers are not exhausted by them. On the
basis of a theorem about Helson sets of the well-known book of Rupix [1]. conditions are
given for the support of a p-maultiplier for being bounded measure.
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