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§ 1. In the well kno'wn book of RcDE'< [1]* the follO';v-ing nice character
ization of Helson sets can be found: (Thm. 5.6.3) 

(H). For any compact set P, let I(P) be thc set of all functions in £l(T) 
such that 'f(x) = 0 for all x E P and the dual space of the quotient space 
£l(T)jI(P) be c;P(P). Then the following three properties of a compact set P 
in a locally compact Abelian group G are equivalent: 

a) P is a Helson set. 

b) and 11,£11100 are equivalent norms on lVI(P). 
c) Each c;P E c;P(P) is (equal almost enrywhere to) the Fourier-Stieltjes 

transform of a fl E lVI(P). 
The purpose of this paper is to show that theorem (H) is the particular 

case for p = 2 of a theorem concerning translation-invariant operators in 
LP (G) 1 <~ P <: = and meaningful for non-commutative G too. The investiga
tions leading to the present paper were deeply motivated by EDWARDS [4]. 
His theorem 1.4 in [4] is essentially identical with the first part of our Theorem 1 
on the equivalence of I and Il. Assertion III and the cases of p q investi
gated in Theorem 2 serve to make more clear the connections between theorem 
(H), the approximation by convolutions and translation invariant operators 
in LP(G) (1 < p < =). In § 3 we shall show that to a certain extent our results 
are "valid for non-commutative G too. In § 4, hy generalizing Theorem 1.4 in 
[4] to general Banach spaces, the exact correspondence will he shown between 
Theorem 1 and the main results of EmVARDS [4] 

§ 2. A continuous linear operator T from U(G) into Lq(G) (1 P q< 
< =) is called translation invariant if TUt = UtT for Ut : Ud( T) f(t T). 
It is easy to yerify that the operator T I , defined by Tp f p* f, where W' f 
= I' f(x y)d,u(x), is a translation iuYariant operator in LP(G) (1 P < --..c) 

b 
for eyery ,u E lVI(G) and we haye for the norm of T

I
, 

'iT,.ip I. 

"The notations and terminology of [l] ,,"ill be throughout followed. 
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In the case of a commutatiyc G, the Banach space of translation iuYari

ant operators in LP (1 < P <: =) can he characterized as follows: [5] 

Let Ap he the set of all functions on G which are of the form ;;E fi, '" gl, 
1:=1 

< =. For hEAp define 

then Ap endowed with the norm defined aboye is a Banach space. 
The Figa-Talamanca's Theorem. The Banach space of translation iIlYari

ant operators in LP (1 < P < :=) is isometric and isomorphic to the dual 
space A~ of Ap- If T is a translation inyariant operator in LP, then T corresponds 

to the functional (PT defined by 

rT(ll) = ~ Th, * gIJO) , (1) 
1:=1 

for h = :Efk *gk E Ap. 
k=1 

Remark. If G is the finite dimensional Euclidian space and 1 p q <: 
-< =, then each translation inyariant operator T from LP into L q can be 
represented by a tempered distribution T as a convolution operator in the 
following sense [7]: 
For every testing function 1/', T'ljJ = T", Ip. 

SllPP T is the support of the functional fPT corresponding to T by (1). 
~ow we can state the generalization of (H) as follows: 
Theorem 1. The following three properties of a closed set P in a locally 

compact Ahclian group G are equivalent: 

1. For every F E Co(P), there exists R > 0,1:, E LP(G), g" E U'(G). i_I: 

complex numbers k = 1, 2, ... so that 1:,; ip 

and 

F(x) = (3E J.dk * g,,) (x) 
1,=1 . 

uniformly for x E P. 

R. Y i." -] . r=::1 

n. There is a number K > 0 depending only on P and P such that for 
eYery ,u E lvJ(P) 

(l : 
"I ' 

.e. and :! • • ", p are equivalent norms on JJ(P). 

Here and in the follo,,-ing. superscript marked by strokes will mean the conjugate 
Lehesgue space. 
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Ill. For· every translation invariant operator T of L'J(G) for which 
supp T c P there exists.u E Ai(P) so that T = Tu. 

First we shall show that Theorem 1 for p 2 is equivalent to (H). 
A(G) consists precisely of the convolutions f1 * f2 with f1 and f2 in U(G) 

([1], Theorem 1.6.3), hence A C A 2• On the other hand from 

hA (2) 

and hence JE fl-: * g" EA. Consequently, A and A2 consist of the same func-
1-:=1 

tlO11S. 

Similarly it follows from (2) that 

hence from the well-known theorem of Banach we conclude that the norms 
A and ... . IIA

2 
are equivalent. 

From the Figa-Talamallca Theorem it follo·ws that the Banach space 
of the translation invariant operators in L2 is isometric and isomorphic to A; 
and on the other hand from the definition of A(G) it follows that A(G)* is 
isometric and isomorphic to L"'(r). Hence A; = L"'(T) apart from a homeo
morphism. 

~ow it is also clear that the set 

{T : fiT EA;, supp T c P} 

IS identical with <P(P) in (H). 
Hereby the equivalence of Theorem 1 for p :2 and (H) is proved. 
The proof of Theorem 1 is the same as that of (H). It is also a corollary 

of the following theorem: ([1] Appendix C.ll) 
(A) Supposc X, Y are Banach spaces, B is a continuous injection (i.e. 

1-1) from X into Y and BX is dense in Y. Then each of the following three 
properties implies the other two: 

(a) BX = Y 
(b) There exists b > 0 so that I! B*y* ~! > b y* for every y* E Y *. 
(c) B*Y* = X*. 
Indeed, if 

I(P)={hEA p • h(x} =0 for xEP}. 
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and X is the quotient space Ap(G)/I(P), Y- = Co(P) in (A) then we get Theo
rem 1. 

As an other corollary of the theorem (A) we have an assertion for trans-
lation invariant operators from LP into Lq (I P < q < =) similar to Theo-
rem 1. 

It is easy to verify that the operator Th defined by Thf = h * fis a trans-

lation invariant operator from V" into Lq if Iz E LT and ~ + ~ ~ = l. 
r p q 

Moreover, we have for the norm of Th 

For commutative G, the Banach space of translation invariant opera
tors from LP into L'i can be characterized as follows [6]: 

Let Aft (~ --i- -~ > 1) be the set of all functions on G which are of tht' 
p q 

form "Yji * gk with j", gk E Cc and 2' ji,p;g"iiq' < =. For h E A~ define 
R=l k=l 

thpn A~ endowed with the norm defined above is a Banach space. 
The Theorem of Figa-Talamanca and GalldlY. The Banach space of trans

lation invariant operators from V" into VI (1 P < q <:: =) is isomorphic 
and isometric to the dual space Ab* of A~. If T is a translation invariant 
operator then T correspond,- to the functional fj'T defined by 

( 3) 

-
for h = ::E fk* g" E A~. 

k=l 

Again, 'I-e define supp T as the support of the functional CfT correspond-

ing to T by (3). 
If I(P) = {h E A~, h(x) = 0 for x E P}, X is the quotient space 

q T' (' 1 1 Ap(G)jI(P) and Y = L (P), - - , 
p q 

1 ' 
'--;: = 1 ) in the Theorem (A) then 

we obtain: 
Theorem 2. The foHo'wing thret' properties of a closed set P in a locally 

compact _-ibelian group G are equivalent: 
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I. For every F E Lr'(p) there exist R > 0: Jk, gk E Cc(G), ;'1; complex 

numbers k = 1, 2, ... so that I[Nip < R, igkq< R, "'h :::; 1 and 
k:1 

F(x) ( ,. I·d/-:* gk) (x) in Lr' -convergence for x E P. 
1;=1 

n. There is a number J( > 0 depending only on (p, q) and P such that 
for every h E LT (P) 

Ill. For every translation invariant operator T from LP into L q for which 
supp T c P there exists h E Lr(p) so that T = T". 

§ 3. The fint part of Thm 1 is valid for non eomlllutatiYe G too with the 
same proof. Considering the n -= III part, it depends on the validity of the 
Figa-Talamanca Theorem for non-commutatiYe G. 

It follm\'s from the Bipolar Theorem ([2] pp. 35-36.) that A~ is the 
weak operator closure of the operators Th defined by TI,J = h *J for any locally 
compact G hence, the non-trivial part of the Figa-Talamanca Theorem is that 
every translation-inyariant operator is approximated in such a way. 

If p = 2 then from the Second Commutant Theorem ([8] Chap. 1. §:5 
follows that this i:;: true for any locally compact G. 

A similar argument holds for A~ p ~' q and Theorem 2. 
§ 4. Let X and Y be Banach spaces and B a continuous homomorphism 

from X into Y. It is well known that the range of B is dense in Y if and only 
if the dual operator B* is injective (i.e. 1-1). The present paragraph cleals 
'with the following stronger approximation property: 
(P) For eyery y E Y there exists K :> 0 and a sequenee {x r,}, x" E X so 
that x".' ,/ K and y = lim Bxn . 

It turns out that there is no proper subset of Y sati5fying (P) which 
mean5 that if (P) is satisfied then B is surjective (i.e. onto). 

Theorem 3. The property (h) in the theorem (A) is equivalent with (P). 
Proof (P) = (b): It fo11o'ws from (P) that the range of B is dense in Y 

hence B* is injective. So, we have only to show that the inverse mapping 
B*-l from B*Y* onto y* is continuous. I.e. if the sequence {B*y;;} is con

vergent then b'n is also convergent. 
It follows from (P) that 

<.y~ . Yh"y > I sup < y~ Yr~' BXl; > 
k 

= sup < B*(y;~ -- y~,). XI; > 
I: 

./ J\. B*\"* 
• r1 



or cv-cry y E Y and from the Banach-Steinhaus 
.Y~} converges to a certain y* E Y*. 

= {x: ,x / K x EX) 

then {S7" K > O} is a hase for X* ([2] pp. 34,-36) 
"O} is a hase for the relativ-e topology of B*Y* 
V is injectiv-e and the inverse mapping B* -1 from 
IOUS. Consequently, for every open neighhourhood 
here is a numher K > 0 such that 

B*-l (S2 n B* Y*) c CZ{ . (4) 

that B*(BSK)O c S~, hence compared it with (4) 

(5) 

CZ{ = J v* : ',/ v .,.*'! <"" I}. then CZ( is an 0l)en l. , ',,.' , _ /, ' , 

'nce (5) holds. It follows moreover that y E (BS1d oO 

. Theorem ([2] pp. 34-36) we han a sequence 

y = lim YK Q.E.D. 

no proper suhset of Y satisfying (P). 
ompact group, LP X LP' the topological (greatest) 
d £P' (G) (see e.g. [2] pp. 130-138) and 

III 3 hy the quotient space LP xLvI Nand Co(P) 
in [4]. Thus Thm 3 is an ahstract hackground of 

:D'iYARDS. Moreover, the connections hetween Thm 

'ear. 
tion also for two-norm spaces. Let (X,,, ... i" 
)ace, which is not necessarily normal, [3]. If X = 

e completion of <X, ! I ••. , I *) then we ohtain from 

'-completion and the completion of (X, il ... i *, 

l space CX-, .... '" I •.. , then the norms; ... 1' 



OS THE CO.YSECTIOS::i BETlfEES HELSOS SETS 379 

and I i ••• i: * are equivalent. Consequently, for a non-trivial two-norm space, 
the (-completion is always a proper subset of the completion of (X, ! i ••• i 

It is interesting that the following seemingly different approximation 

property is equivalent to (P). 
(P') For every)" E Y with I[)":I = 1 there is an x E X with I K 

so that 

i ;.Y - Bxlt < 1 - e 

where K and e depend only on B. 
Theorem 4. (PI) implies property (b) in (A). 
Proof. For every y* E y* we have 

Bx > I + <)"*, Bx > 

-L K B*y* 

Hence 

(1 e) " y* - I( B*y* 

and 

ejK I Y* Q.E.D. 

SUlllIllary 

(1 - c:) I y* 

A bounded linear operator from Ll'(G) into L'i(G) where 1;;;; p. q < 0;) and G is a 
locally compact group is called (p. q)-multiplier if it is commuting with translation. A (P. p). 
multiplier is called a p-multiplier. An important class of p-multipliers are the bounded mea
sures as convolution operators but the set of p-multipliers are not exhausted by them. On the 
basis of a theorem about Helson sets of the well-known book of RCDI2'< [1], conditions are 
given for the support of a p-multiplier for being hounded measure. 
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