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Introduction

Maxwell’s equations describing the electromagnetic phenomena have
linear character in linear media. Therefore we can write these equations con-
taining the time Fourier transforms of the field strengths. Choosing the usual
time dependence exp (jwt), the complex effective values satisfy the following
equations in a homogeneous, sourceless region of the space:

curl H = joe E ]
curl E = — jou, H (2)
divH=0 (3)
divE =0 (4)

Describing a substance of new type the equations obtain new physical
content by the physical constants contained in this set of equations [1].
Furthermore we suppose that the substance is not magnetoactive. So the per-
meability is that of the free space u = puy =4 = - 1077 Vs/4Am. At the same
time the permittivity is a complex quantity, considering the conduction and
polarization currents in isotropic substances:

= e, (¢ —je"). (5)

Here ¢ = 8.854 - 10~ 4s/Vm is the permittivity of the free space.
The imaginary part of the complex relative permittivity & — je' may
be written as

& = (6)
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which means that the function ¢"(w) is replaced by another one o(w), known
as generalized conductivity [2].

¢’ describing electromagnetic phenomena in ionized gases and plasmas
may be smaller than 1 or even a negative number. In accordance with the
linear theory the coherent induced emission may be described by ¢” << 0 and
so ¢ < 0, i.e. by negative conductivity. Theoretically there is no objection
for the permittivity to be any complex quantity. In the following we shall
investigate the behaviour of the quantities characterizing the wave propaga-
tion in the case of arbitrary complex permittivity. A particular emphasis will
be spent to cases that differ by the sign of the conductivity only.

Homogeneous plane wave

It follows from Egs. (1)—(5) that both E and H satisfy the vectorial
Helmholtz’s equation:

VF+BPF=0 (7)
where

= o? ey (e’ —je') - (8)

E=F — jk" is the wave number.
The homogeneous plane wave solution of Eq. (7) propagating toward
the direction of the positive x axis is:

E =E, exp [jlot — kx)] = E, exp (—k"x) exp [j(wr — k'x)] 9
P (ixE):L(ixE}» (10)
oYM Z

So the propagation of the homogeneous plane wave is characterized
either by the wave number

E=k =k =k | e (1)

or by the wave impedance
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is the wave number of the free space and
_ | Ho
Z,= | —==120=[2] (14)
&y

is the wave impedance of the free space.
Let us define the complex refractive index as

n=n'"—jn" = |5 . (15)

Z

n

k=knand Z = (16)—(17)

Consequently, the complex refractive index alone is sufficient to charac-
terize the propagation. But it is the permittivity that is directly determined
by microphysical phenomena. Fortunately Eqs. (10)—(11) and (14)—(16)
show that very simple conformal mappings establish the connection between
/&g, k, Z, and n. The properties of these mappings are well known and their
diagrams are available in textbooks (see e.g. [3]). Let us use them and examine
the behaviour of the quantities mentioned above.

After squaring both sides of Eq. (14) and separating the real and imagin-
ary parts we obtain

n'?—n"t = ¢ (18a)

2n'n" = ¢&", (18b)

From here it follows that

Ve e g
n = l/ d : : (19a)

n":il i e (19b)

o

Fig. 1 shows the curves ¢ = const. and &" = const. of the mapping.
The direction of the n” axis was chosen so that the arcus of n'—jn” should
be the proper one.

How may we chose the signs of n’ and n"? The phase velocity of the
wave travelling to the positive x direction is, from Eq. (8):

o o _c (20)

PV == —e
E n'k, n’
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This velocity is non-negative, therefore
n’ > 0. (21)

From Eq. (17b) it follows directly that
sign n” = sign &" . (22)

The important consequence of Eq. (22) is the fact that the sign of the attenua-
tion factor depends only on the sign of the conductivity independently of the
¢’ value.

Let us see the role of ¢’ in the value of the refractive index and the wave
number. For ¢’ = 0 we get n” = |n”|. It is approximately valid for real {(non-
ideal) metals.

The reversal of ¢’ means the mutual change of the absolute values of n’
and n”. (In Fig. 1 it means a reflection on one of the lines &' = 0.) So for
g >0 and ¢ =0, we get n” = 0 and in the theoretically imaginable case
where ¢’ < 0 and ¢” = 0. we obtain n’ = 0. It means on the basis of Eq. (20)
that the phase velocity is infinitely large. A collective oscillation arises in the
medium with exponentially varying amplitude. It is the first approximation
of a type of collective plasma oscillations.

The inverse of the mapping discussed above is & — j&" = (n" — jn")=
The curves n’ = const. and n” = const. are represented in Fig. 2. The reversal
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of n” results in the reversal of ¢”. It is clear from the diagram that &’ <1 is
the condition of the appearance of a phase velocity greater than that of light.

Let us see now the mapping given by Eq. (11):

Considering the allowable region of Jg—j¢" =

we can state that

,
R
Z 9y "o =
o n?ign"t
and
RY n’
Z, n*+tn"
Therefore
sign X = sign &’

The inverse of this mapping is shown in Fig. 4.
Finally we show the simple mapping

R X 1

ZTJ—Z:: Con - jn”

n in the denominato:

(24)

(26)
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in Fig. 5. Naturally, this set of diagrams may be applied for the inverse map-

ping n o= i too.

Let us summarize the results obtained for the quantities characterizing
the propagation of the homogeneous plane wave:

1. The real part of the refractive index and that of the wave impedance
cannot be negative. This property is independent of the value of the permit-
tivity.

2. The permittivity, the refractive index and the wave impedance change
to their conjugate at the same time.

Inhomogeneous plane wave

Till now the wave vector characterizing the propagation of the plane
wave has been the product of the wave number and the unit vector indicating
the direction of the propagation. The vectors of real and imaginary complex
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values point to the same direction. It is a very strong restriction. Let us sup-
pose that the wave vector has the form

K=K’ -jK” (27)
where

K/ KII

LT = cos 28

K K" v (28)

l.e. the pure real vector and the pure imaginary vector include an angle y.
If this vector satisfies the condition

K2 — L2 (29)
the solution satisfies Eq. (7) in the following form:
E =E, exp [j(wt — Kr)] = E, exp (—K" r) exp [j(ot — K'r)] (30)

The equi-amplitude planes (K’r = const.) and the equiphase planes (K'r =
== const.} do not coincide. The plane wave is inhomogeneous. This plane wave
solution of Eq. (7) is the most general one.

Using Eqgs. (28) and (29)

2R = (0 0" = K (31)
2K'K"cosyp = 2kin'n" = k" . (32)

Let K’ point to the direction of the propagation and let us stipulate
that 0 <y < /2. On these conditions we get

K' >0 (33)
and

i

]

o

ign == sign n’ == sign &” . (34)
The behaviour of the wave vector of the inhomogeneous plane wave is per-
fectly analogous to that of its homogeneous counterpart.

Reflection and refraction of homogeneous plane waves
on a flat surface

As we have seen from the aspect of wave propagation, auy linear, homo-
geneous and isotropic medium may be characterized by the refractive index.
Itsimaginary part reverses the sign together with the conductivity. Further we
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shall investigate how this reversal affects the reflection and the refraction on
a flat surface. Let a homogeneous plane wave travel from vacuum in the way

indicated in Fig. 6.
Eo = E00 exp [j(wot — Ko r)]- (33)
In our case K§ = k,, Kj=0.

Two other plane waves (and generally inhomogeneous ones) are necessary
to satisfy the boundary conditions. If their propagation vectors point away

Fig. 6

from the boundary surface we can chose only one set of waves: one in both

regions. The waves travelling away from the surface must not be on the same

side of the boundary surface [4]. Let these two waves be the ones represented
in Fig. 6.

E = Enr exp [jlot — K1) (36)

E, = Eqg exp [Jlo,t — K] . (37)

To satisfy the boundary conditions {1} let us assame that
E,—iE, and E, = iE, (38) (39)

at any time and for all the points of the surface. Here ¢ is the complex trans-
mission coefficient and r is the complex reflection coefficient.
The necessary conditions of the fulfilment of Eqs. (38—39) are the fol-
lowing [5]:
Wy = W = o (40)
Kou=K u=Xu (41a)

(gu=K/u=Klu {41b)
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where u is an arbitrary vector parallel to the surface.
Since the complex wave vectors are coplanar, on the basis of Eq. (41),
the reflection law is valid

B, =9, (42)

and Snell’s law remains valid as well:

n, sin @, ,
—_ = (43)
ny sin U,
or in an equivalent form
n, sin O = n,sin 9, . (44)

In our case ny = 1 and ¢ is real. Nevertheless n, is a complex number of non-
negative real part, so O, is complex too. From Eqs. (43)—(44) we can see that
n;, sin @, and therefore @, too change to their conjugate together, but the
product 7, sin @, remains unchanged by the same ¢,

An inhomogeneous plane wave may be connected with the complex
refractive angle. Let us find the connection between K, and @,. Let us choose
the coordinate system as characterized by the unit vectors u,, u, and u; in Fig. 6.

It follows from Eq. (41b) that

K/w =Ky (45)
because K§ = 0. It can be proved [5] that for the reflected wave in free space,
K7 = 0. In this case the vector K is perpendicular to the houndary surface,

i.e. the equi-amplitude planes of the refracted waves are parallel to the bound-
ary surface.

It follows from Eq. (4la), that
Kgsin §, = K/ sin 9, = K{sin 9, . (46)
Using Eq. (42) we directly get the equality of K{ and K;. For K, is valid, that
K1 = (K7 sin &))u; + (K cos ¥, — jK ), . (47)

On the other hand we can write the following formula in analogy with

the homogeneous plane wave

K, = k, ny[(sin O)u; 4 (cos O)u,] . (48)
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Comparing Eqgs. (47) and (48) we get

kon, sin @ = K7 sin ¥, (49)
ko, cos @, = K] cos 9§, — jK7 (50)
and it is true for complex angles too that

sin2 @ + cos?t @, = 1. (51)

From Egs. (44) and (49)—(51) we can obtain with some algebra

K;cosd, — jKi =k, n2 — n® — sin*¥, - 2n'n" . (52)
From this and Eq. (30) we can get the values of K{, Ki and cos @, as the
functions of nj, n] and ¥, respectively. But these lengthy formulae are not
necessary to realize the truth of the following statement:

The complex permittivity and the wave vector of the inhomogeneous
plane wave produced by the refraction of a homogeneous one change to their
conjugate together. In the case of this reversal the refractive angle charac-
terizing the equiphase planes remains unchanged.

We have seen that n, and, on the basis of Eq. (43), @1 too change to
their conjugate but Eq. (44) shows that n,sin 0_1 is unchanged. It follows
from Eq. (50) that K cos #; remains unchanged too but K7 reverses the sign.
So the statement js theoretically proved — in a total accordance with Egs.
(33)—(34).

Naturally Eqs. (31) and (32) are valid also for the refracted wave. From
them

- (Kll' - i—-J-— R (53)
kO } k() J

RS S O . (54)
ke Kk, 2

These are the so-called Ketteler's equations. The deduction given here
is far simpler than the usual one [6, 7]. The optical invariants I, and
I, are in direct connection with the complex permittivity. This recog-
nition is absent from the optical literature of Ketteler's equations.
For the refraction angle §; of the equiphase planes we get
sin 9, K] -
et = ==y () (55)
sin ¥, kg
where we used Eqgs. (44), (49) and n, = 1. The refractive index thus defined
depending on ¥, satisfies a law which is very similar to Snell’s law.
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Reflection and transmission coefficients

Till now we have investigated the change of the amplitude and phase
of the reflected and refracted wave independently from each other. Let us
see now the relations between the amplitudes and phases of the three partial
waves mentioned above. We want particularly to determine the complex
quantities ¢ and 7 in Eqs. (38)—(39). These are the so-called Fresnel coeffi-
cients.

<N @/@\

S . N

q«
m

Fig. 7

For perpendicular polarization (Fig. 7a) we get [5]

~ 1— = - 2 — 7, cos O _
F,=———Lty i, =-——: where %, = 2 "1(56a,b.c).
145 1-+%) n, cos %,
For parallel polarization (Fig. 7b) similarly
_ - 2 cos U, ~ n1 cos ¥,
T, = t = —=—: where x —_
il n — "
1 +% eos0, 1, cos O,

(a7a,b,c

Let the conductivity and together with it nj reverse the sign. Then o,
and therefore ¥ change to their conjugate. On the basis of Eqgs. (56)—(57)
all the Fresnel coefficients change to their conjugate too.

This is very advantageous from a practical standpoint. All the tables
and diagrams calculated for positive conductivity (see e.g. [8]) lend themselves
to determine the Fresnel coefficients. The absolute value is not changed, only
the phase angle reverses the sign.

At the same time this result seems to be incorrect. The power density
carried by the reflected wave is proportional with the square of the absolute
value of the reflection coefficient. But it has proved independent from the sign
of the conductivity. The physically unrealistic result is that the power reflec-
tion is the same for the active and passive half-spaces.
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The problem is in close connection with the physical realizability of the
active half-space. Consequently let us find a configuration where the limit of
the geometry is the half-space and its reflection coefficient tends to the Fresnel
reflection coefficient in the case of positive conductivity. Let us examine the
limit of the reflection coefficient measurable on the surface in the case of
negative conductivity and consider it as the real reflection coefficient of the
half-space with negative conductivity.

The proper model is the plan-parallel layer. The total change of the com-
plex amplitude of the wave travelling across the layer of thickness [ is

a = exp (—jKiu,) (58)

where u, is the unit vector perpendicular to the flat surface.

Considering Eqs. (48) and (50) we get
a = exp (—jk, nl cos @) = exp (—K"l) exp (—jK' 1 cos 9. (59)

With the help of this quantity the proportion of the amplitudes of the reflected
and the incident waves is [6, 9]:

E:_;ﬁ_‘

60
1-1+a (60)

and this proportion for the transmitted and the incident waves is
T —_ a(l _I”le?, (1 T rl3) (61)

where ?12 and 1:_33 are the Fresnel reflection coefficients in the front and the back
sides of the layer.
The examination of Eq. (60) gives an interesting result in the case of

fay = —1. It is the case of the reflection from an ideal metal plane. For posi-
tive conductivity
= i — (@a™)?
R-." — —l‘:'____——,( _.) T (62)
1 —ri(a™)?

Let us reverse the sign of the conductivity. As it follows from Eq. (59)
the phase of a remains unchanged, but its absolute value changes to its recip-
rocal. At the same time 7y, changes to its conjugate. We obtain that

T {“(‘i)} _ ! (63)

L-rp(@) (Ffz)*{

1 J‘-’ (R™)*

Periodica Polyvtechnica El 14/4
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where the asterisk denotes the complex conjugate.

Eq. (63) means that the absolute value of the reflectivity changes to its
reciprocal and its phase remains unchanged in the case of a plan-parallel layer
that reflects totally on the back side, if the conductivity reverses the sign.
This configuration exists in a group of lasers of the Fabry—DPerot type. If we
want te examine their mechanism we can use the formulae or diagrams for
positive conductivity (see e.g. [10]).

To realize our original intention let / tend to the infinity. In the case
of positive conductivity K” -0 and consequently |a/ — 0. It follows from
Egs. (60)—(61) that

R —rn: T —0. (64a, b)

as it has been expected. At the same time, for negative conductivity K" <Z 0.
i.e. @, — ~o. In this case

R~— Tl T-—0. (65a,b)

s

The ahove limits of R~ and R~ are the measurable real reflection coef-
ficients. For positive conductivity this limit coincides with the Fresnel coef-
ficient

R- =7+ (66)
for negative conductivity it is the reciprocal of the same coefficient. But we

have seen that

ro=()” (67)
and so

Ri=—— = (68)

We can state the following:

If the complex permittivity changes to its conjugate the absolute value
of the reflection coefficient changes to its reciprocal and its phase angle remains
unchanged. Consequently the absolute value of the reflection coefficient of
the half-space of negative conductivity cannot be smaller than 1. This fact
coincides with the picture created about the active materials.

Now it is also obvious why the Fresnel reflection coefficients fail to
describe correctly the power reflection. In the course of its deduction the back-
ward travelling wave was neglected. It is permissible in the case of positive
conductivity but it is a very bad approximation for negative conductivity.
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Here the backward travelling wave is dominant in the medium. It can easily
be proved for perpendicular incidence that the surface impedance is —7-, ie.
the wave impedance of the backward travelling wave. But according to
Eq. (24) Re(—Z~) < 0 and this is just what we can accept for the case of
negative conedutivity.

The statement of Eq. (65b) is very surprising. The fact that the ampli-
tude of a wave transmitted by an active medium of very large extension tends
to zero emphasizes the strong interference character of the phenomenon.

Conclusions

1. The basic parameter of the electromagnetic wave phenomena taking
place in arbitrary linear substances is the properly chosen refractive index.

2. In the case of a single frequency sinusoidal wave the real part of the
refractive index is non-negative and the sign of its imaginary part coincides
with that of the conductivity. The same is true for the wave impedance as
well as the wave vector.

3. The permittivity, the refractive index, the wave vector, the wave
impedance and the Fresnel coefficients change to their conjugate together.

4. The absolute value of the surface reflection coefficient of a medium
of great extension with negative conductivity is the reciprocal of that in the
case of positive conductivity. The phases are equal in the two cases.

5. The amplitude of a wave transmitted by a medium of very large
extension tends to zero independently of the sign of the conductivity.

The author is grateful to Prof. K. Simonyi, S. Takdces and dr. G. Veszely for their help
in the preparation of this paper.

Summary

The propagation of plane waves of sinusoidal time dependence in linear isotropie
media of arbitrary complex permittivity is investigated. Relations are stated between the real
and imaginary parts of the complex permittivity, the refractive index, the wave vector and
the wave impedance, emphasizing the effect of the reversal of the conductivity. Use is made of
these data in the examination of the reflection on the plane surface of a medium with ar-
bitrary complex refractive index. The behaviour of the Fresnel coefficients in the case of
negative conductivity is examined demonstrating that the reflection coefficient on the surface
of media of large extension with negative conductivity does not coincide with the Fresnel
coefficient; finally, a connection is established between both quantities.
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