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Introduction 

lVIaxwell's equations describing the electromagnetic phenomena have 
linear character in linear media. Therefore we can ·write these equations con­
taining the time Fourier transforms of the field strengths. Choosing the usual 
time dependence exp (jwt), the complex effective values satisfy the following 
equations in a homogeneous, sourceless region of the space: 

curl H jWeE 

curiE =- jW,Llo H 

div H = 0 

div E = 0 

(2) 

(3 ) 

(4) 

Describing a substance of new type the equations obtain new physical 
content by the physical constants contained in this set of equations [1]. 
Furthermore we supposc that the substance is not magnetoactivc. So the per­
meability is that of the free space ,1.1 = ,uo = 47C . 10-7 Vs/Am. At the same 
time the permittivity is a complex quantity, considering the conduction and 
polarization currents in isotropic substances: 

e = eo (e' - je") . (5) 

Here Co = 8.854 . 10-1~ AsjVm is the permittivity of the free space. 
The imaginary part of the complex relative permittivity e' - je" may 

be ·written as 

E" 
(j 

(6) 
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which means that the function e"(co) is replaced by another onc 0-«(1)), knowIl 
as generalized conductivity [2]. 

e f describing electromagnetic phenomena in ionized gases and plasma~ 
may be smaller than 1 or even a negative number. In accordance with the 
linear theory the coherent induced emission may he described hy e" < 0 and 
so 0- < 0, i.e. by negative conductivity. Theoretically there is no objection 
for the permittivity to be any complex quantity. In the following we shall 
investigate the behaviour of the quantities characterizing the wave propaga­

tion in the case of arbitrary complex permittivity. A particular emphasis will 
be spent to cases that differ hI' the sIgn of the conductivity only. 

Homogeneous plane wave 

It follo·ws from Eqs. (1)-(5) that both E and H satisfy the yt'ctorial 

Helmholtz's equation: 

(7) 

where 

(8) 

k = k' - jk" is the wave number. 
The homogeneous plane waye solution of Eq. (7) propagating toward 

the direction of the positiYe x axis is: 

E = Eo exp U(V)t - kx)] = Eo exp (-k"x) exp [j(<Jt 

- 1 -
(i X E) = .=- (i X E) 

Z 

k'x)] (9) 

(10) 

So the propagation of the homogeneous plane waye IS characterized 
either by the wave numher 

k = k' - jk" = ko \ s' --.is" (11) 

or by the leave impedance 

(12) 

Here 

w 2;z: [ -1] -=-- m 
c I. 

(13) 
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is the wave numher of the free space and 

[/ ~ 120n [Q] 
EO 

(14) 

is thc 'wave impedance of the free space. 
Let us define the complex refractive index as 

- , • 11 

n = n - In 1·-,--·-" '8 - JS • (15) 

Thus 

- - Z 
k = ko nand Z = _0 . (16)-(17) 

n 

Consequently, the complex refractive index alone is sufficient to charac­
terize the propagation. But it is the permittivity that is directly determined 
hy microphysical phenomena. Fortunately Eqs. (10)-(11) and (14.)-(16) 
show that very simple conformal mappings estahlish the connection hetween 
s/ so' k, Z, and n. The properties of these mappings are well known and their 
diagrams are availahle in texthooks (see e.g. [3]). Let us use them and examine 
the hehaviour of the quantities mentioned ahove. 

After squaring hoth sides of Eq. (14.) and separating the real and imagin­
ary parts we ohtain 

From here it follows that 

n' 

n" 

n'2 - n"2 == c' 

2 n'n" == c", 

2 

(18a) 

(18h) 

(19a) 

(19h) 

Fig. 1 shows the curves s' = const. and S" = const. of the mapping. 
The direction of the nil axis was chosen so that the arcus of n'-jn" should 
he the proper one. 

How may 'we chose the signs of n' and nil? The phase velocity of the 
wave travelling to the positive x direction is, from Eq. (8): 

co 
v= 

k' 

c 

n ' 
(20 ) 



422 L. ZOMBORY 

This velocity is non-negative, therefore 

n' > o. (21) 

From Eq. (17b) it follows directly that 

sign n" = sign e" (22) 

The important consequence of Eq. (22) is the fact that the sign of the attenua­
tion factor depends only on the sign of the conductivity independently of thf' 
c' value. 

c' ;.0 

Fig. 1 

Let us see th(' role of e' in the value of the refractive index and the wav,' 
number. For e' = 0 'we get ll' = in"l. It is approximately valid for real (noll­
ideal) metals. 

The reversal of 1;" means the mutual change of the absolute values of n' 
and n". (In Fig. 1 it means a reflection on one of the lines 1;" = 0.) So for 
1;" > 0 and 1;''' = 0, 'we get 11" = 0 and in the theoretically imaginahle case 
'where 1;" < 0 and 1;''' 0, we obtain 71' = O. It means on the basis of Eq. (20) 
that the phase velocity is infinitely large. A collective oscillation arises in tl11> 
medium with exponentially varying amplitude. It is the first appTOximation 
of a type of collective plasma oscillations. 

The inverse of the mapping discussed ahovc is 1;" -je" = (n' - jn")~. 

The curves n' const. and n" = const. are represented in Fig. 2. The reversal 
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of nil results in the reversal of 10". It is clear from the diagram that 10' < 1 is 
the condition of the appearance of a phase velocity greater than that of light. 

Let us see now the mapping given by Eq. (11): 

R , . X 1 
Zo T ] z:- = Vs' - js" 

(23) 

The diagram is given in Fig. 3. 

Considering the allowable region of YS'_js" = n in the denominatol 
we can state that 

R n' o 

and 
X nil 

n"~ 1l ":!. 

TherefOl'f' 

sign _X == sign e" . 

The inverse of this mapping is shown ill Fig. 4. 
Finallv 'we sho"w the simple mapping 

1 

n ' jn" 

(24) 

(25) 

(26) 
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R ~~~~-,';:o 

Fig. 3 

\ 
Fig. 4 

E' 
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Fig . .=; 

in Fig. 5. ~aturally, this set of diagrams may he applied for the inverse map­

Pino­to: 
11 

Zo 
too. 

Let us summarIze the results obtained for the quantities charaeterizing 
the propagation of the homogeneous plane wave: 

1. The real part of the refractive index and that of the 'wave impedance 
cannot be negative. This property is independent of the value of the permit­
tivity. 

2. The permittivity, the refractive index and the ,,,ave impedance change 
to their conjugate at the same time. 

Inhomogeneous plane wave 

Till now the wave vector characterizing the propagation of the plane 
wave has been the product of the wave number and the unit vector indicating 
the direction of the propagation. The vectors of real and imaginary complex 
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values point to the same direction. It is a very strong restriction. Let us sup­
pose that the waye yector has the forill 

where 

K=K' ~jK" 

K'K" 

1('1(" 
cos 7p 

(27) 

(28) 

i.e. the pure real vector and the pure imaginary vector include an angle 'i'. 
If this vector satisfies the condition 

(29) 

the solution satisfies Eq. (7) in the following form: 

E = Eo exp [j(wt - Kr)] Eo exp (-K" r) exp U«(!)t - K'r)] (30) 

The equi-amplitude planes (K"r = const.) and the equiphase planes (K'r = 
= const.) do not coincide. The plane ·wave is inhomogeneous. This plane ·waye 
solution of Eq. (7) is the most general one. 

Using Eqs. (28) and (29) 

1('2 - 1("2 

21('1(" cos V' = 2kg n'n" = kge" . 

(31) 

(32) 

Let K' point to the direction of the propagation and let us stipulate 

that 0 < Ip < 7[/2. On thest' conditions we get 

1(' o (33) 

and 

sign 1(" == sign II f' . " SIgn f . (34.) 

The behaviour of the wave yector of the inhomogeneous plane wayI' i~ per­
fectly analogou8 to that of its homogeneous counterpart. 

Reflection and refraction of homogeneous I}iane ·waves 
on a flat surface 

As we have seen from the aspect of wave propagation, any linear, homo­
geneous and isotropic medium may he characterized hy the refractive index. 
Its imaginary part reverses the sign together with the conductivity. Further we 
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shall investigate how this reversal affect" the reflection and the refraction on 
a flat surface. Let a homogeneous plane wave travel from vacuum in the way 
indicated in Fig. 6. 

(35) 

In our case K~ = ko, K~ = O. 
T,·,ro other plane waves (and generally inhomogeneous ones) are necessary 

to satisfy the boundary conditions. If their propagation vectors point away 

~;S- -~-- "'-
~/"~ 

./ , 
~~ k/ . 

. _y/ 

Fig. 6 

from the houndary surface we can chose only .one set of waves: one in hoth 
regions. The waves travelling away from the "urface must not he on the same 
side of the houndary surface [-1]. Let these two wayes he the ones represented 

in Fig. 6. 

Er = Eor ('xp [j(Wrt - KTf)] 

El = EOl exp [j«(!)l t - Kjr)] . 

To satisfy the boundary conditions [1] let u:, aSEume that 

El = tEo and 

(36) 

(37) 

(38) (:39) 

at any time and for all the points of the surface. Here t is the complex trans­
misEion coefficient and r is the complex reflection coefficient. 

The neces8ary conditions of t1w fulfilment of Eqs. (38-:39) are the fol­
lowing [5]: 

K~u = K; n = K~ u 

K~ u = K; u = K~ u 

( 40) 

(41a) 

(41h) 
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where U is an arbitrary Yector parallel to the surface. 

Since the complex wave vectors are coplanar, on the basis of Eq. (41), 
the reflection law is valid 

Or = 00 (42) 

and Snell's law remains yalid as well: 

~ = sine1 

n l sin 00 

(43 ) 

or III an equivalent form 

(44) 

In our case 1Z 0 = 1 andO 0 is real. Nevertheless n1 is a complex number of non­
negative real part, so e1 is complex too. From Eqs. (4,3)-(44,) we can see that 

nI' sin e1 and therefore el too change to their conjugate together, but the 
product n1 sin e1 remains un~hanged by the same 0 o' 

An inhomogeneous plane wave may he connected with the complex 
refractive angle. Let us find the connection het'ween Kl and el • Let us choose 
the coordinate system as characterized hy the unit vectors UI, Un and Us in Fig. 6. 
It follows from Eq. (4.1h) that 

(45) 

because K~ = O. It can he proved [5] that for the reflected ",aye in free space, 
K~ = O. In this case the vector K~ is perpendicular to the houndary surface, 
i.e. the equi-amplitude planes of the refracted wayes are parallel to the bound­
ary surfaee. 

It follows from Eq. (41a), that 

K~ sin eo = K; sin Or = K~ sin 01 , (46) 

Using Eq. (42) we directly get the equality of K6 and K;. For Kl is valid, that 

(K~ cos e1 - jK~)ull . (47) 

On the other hand we can write the following formula in analogy with 
the homogeneous plane wave 

(48) 
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Comparing Eqs. (47) and (48) we get 

and it is true for complex angles too that 

From Eqs. (44) and (49)-(51) we can obtain 'with some algebra 

429 

(49) 

(50) 

(5] ) 

(52) 

From this and Eq. (30) we can get the yalues of K{, K~ and COS{J1 as the 
functions of n~, n~ and{}o' respectiyely. But these lengthy formulae are not 
necessary to realize the truth of the following statement: 

The complex permittivity and the waye Yector of the inhomogeneous 
plane waye produced by the refraction of a homogeneous one change to their 
conjugate together. In the case of this reyersal the refractive angle charac­
terizing the equiphase planes remains unchanged. 

We haye seen that n1 and, on the basis of Eq. (43), 01 too change to 
their conjugate but Eq. (44.) sho'ws that n1 sin 01 is unchanged. It follml"s 
from Eq. (50) that K{ cos {J1 remains unchanged too but K~ reyerses the sign. 
So the statement is theoretically proyed - in a total accordance with Eqs. 
(33)-(34l. 

Naturally Eqs. (31) and (32) are yalicl also for the l"t,fracted ·wan. From 
them 

11 (K{ r 
ko J 

( ~);r 1l ~~ 1l~:! El (53) 

K' 
12 1 cos {j 1 n~ ll~ = 

ko k . .., 
0 

(54) 

These are the so-called Ketteler's equations. The deduction giyen here 
IS far simpler than the usual one [6, 7]. The optical inyariants 11 and 

I~ are in direct connection with the complex permittiyity. This recog­
nition is absent from the optical literature of Ketteler's equations. 

For the refraction angle {}l of the equiphase planes we get 

SIn 

sin {J I k o 
(55) 

where we used Eqs. (4.4.), (49) and no = 1. The refractiye index thus defined 
depending on {} 0' satisfies a la'w which is yery similar to Snell's law. 
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Reflection and transmission coefficients 

Till now' we have investigated the change of the amplitude and phase 
of the reflected and refracted wave independently from each other. Let us 
see now the relations between the amplitudes and phases of the three partial 
waves mentioned above. We want particularly to determine the complex 
quantities t and r in Eqs. (38)-(39). These are the so-called Fresnel coeffi­
cients. 

Fig. 

For perpendicular polarization (Fig. 7 a) we get [5] 

F or parallel polarization (Fig. 7 b) similarly 

t" I 

cos {} 0 

~Sel 

I - n1 cos 6 1 (-6 b ) 
W lere %..1. = ;) a, ,c. 

no cos {}o 

where % 
11 

n1 cos-Bo 

no cos 6 1 
(57a,b,c 

Let the conductivity and together with it n~ reverse the sign. Then 6 1 

and therefore % change to their conjugate. On the hasis of Eqs. (56)-(57) 
all the Fresnel coefficients change to their conjugate too. 

This is very advantageous from a practical standpoint. All the tables 
and diagrams calculated for positive conductivity (see e.g. [8]) lend themselves 
to determine the Fresnel coefficients. The absolute value is not changed, only 
the phase angle reverses the sign. 

At the same time this result seems to be incorrect. The po-wer density 
carried by the reflected wave is proportional with the square of the absolute 
value of the reflection coefficient. But it has proved independent from the sign 
of the conductivity. The physically unrealistic result is that the power reflec­
tion is the same for the active and passive half-spaces. 
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The problem is in close connection with the physical realizability of the 
actiYe half-space. Consequently let us find a configuration where the limit of 
the geometry is the half-space and its reflection coefficient tends to the Fresnel 
reflection coefficient in the case of positive conductivity. Let us examine the 
limit of the reflection coefficient measurable on the surface in the case of 
negative conductivity and consider it as the real reflection coefficient of the 
half-space with negative conductivity. 

The proper model is the plan-parallel layer. The total change of the com­

plex amplitude of the wave travelling across the layer of thickness 1 is 

a = exp (-jKlu n ) (58) 

where Un is the unit vector perpendicular to the flat surface. 
Considering Eqs. (48) and (50) -we get 

a = exp (-jko lit cos e) = exp (-K"l) exp (-jK' I cos &) . (59) 

With the help of this quantity the proportion of the amplitudes of the reflected 
and the incident waves is [6, 9]: 

R (60) 

and this proportion for the transmitted and the incident -waves is: 

T a(1 + 1'12) (1 + I'd 
-_.-. . (61) 

where f12 and r 23 are the Fresnel reflection coefficients in the front and the hack 
sides of the layer. 

The examination of Eq. (60) gives an interesting result in the case of 
r:;3 = -1. It is the case of the reflection from an ideal metal plane. For posi­
tiYe conductivity 

(62) 

Let us reverse the sign of the conductivity. As it follows from Eq. (59) 
the phase of a remains unchanged, but its ahsolute value changes to its recip­
rocal. At the same time 1"12 changes to its conjugate. We ohtain that 

(r12) * -. 

1 

Pniodip(l Polytechnica El. 1-1,/·1 

1 

(R+)* 
(63) 
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where the asterisk denotes the complex conjugate. 
Eq. (63) means that the absolute value of the reflectivity changes to its 

reciprocal and its phase remains unchanged in the case of a plan-parallel layer 
that reflects totally on the back side, if the conductivity reverses the sign. 
This configuration exists in a group of lasers of the Fabry-Perot type. If we 
want to examine their mechanism we can use the formulae or diagrams for 
positive conductivity (see e.g. [10]). 

To realize our original intention let I tend to the infinity. In the case 
of positive conductivity K" >- 0 and consequently ;a i --+ O. It follows from 
Eqs. (60)-(61) that 

(64a, h) 

as it has been expected. At the same time, for negative conductiyity J(" < 0, 
i.e. ;a -, =. In this case 

T--+ O. (65a,h) 

The above limits of R'" and R - are the measurable real reflection coef­
ficients. For positiye conductiyity this limit coincides with the Fresnel coef­
ficient 

r (66) 

for negative conductiyity it IS the reciprocal of the same coefficient. But "we 

have seen that 

r (67) 

and so 

1 
-~--

eR:)* 
(68) 

We can state the following: 
If the complex permittivity changes to its conjugate the absolute yalue 

of the reflection coefficient changes to its reciprocal and its phase angle remains 
unchanged. Consequently the absolute yalue of the reflection coefficient of 
the half-space of negative conductivity cannot be smaller than 1. This fact 
coincides with the picture created ahout the actiye materials. 

Now it is also obvious why the Fresnel reflection coefficients fail to 
describe correctly the power reflection. In the course of its deduction the hack­
ward travelling wave was neglected. It is permissible in the case of positiYe 
conductivity hut it is a very had approximation for negative conductivity. 
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Here the backward trayeUing 'waye i5 dominant in the medium. It can easily 
he proyed for perpendicular incidence that the surfaee impedanee is , i.e. 
the waye impedance of the backward trayelling wave. But according to 
Eq. (24) Re(-Z-) < 0 and this is .in!"t what Wp can accept for the case of 
negative conedutivity. 

The statement of Eq. (65b) is yery surprising. The fact that the ampli­
tude of a wa ve trall~mitted by an active medium of very large extension tends 
to zero emphasizes the strong interference character of the phenomenon. 

Conclusions 

1. The hasic parameter of the electromagnetic waye phenomena taking 
place in arhitrary linear suhstances is the properly chosen refractive index. 

2. In the casc of a single frequency sinusoidal wave the real part of the 
refractive index is non-negative and the sign of its imaginary part coincides 
'with that of the conductiyity. The same is true for the waye impedance as 
well as the waye vector. 

3. The permittiyity, the refractiye index, the 'wa,'e Yector, the wave 
impedance and the Fresnel coefficients change to their conjugate together. 

4. The absolute yalue of the surface reflection coefficient of a medium 
of great extension with negative conductivity is the reciprocal of that in the 
case of positiYe conductiyity. The phases are equal in the two cases. 

5. The amplitude of a wave transmitted hy a medium of yery large 
extension tends to zero independently of the sign of the conductiyity. 

The author is grateful to Prof. K. Simonyi, S. Tabics and dr. G. Veszely for their help 
in the preparation of this paper. 

Summary 

The propagation of plane waves of sinusoidal time dependence in lincar isotropic 
media of arbitrary complex permittivity is investigated. Relations are stated between the real 
and imaginary parts of the complex permitth'ity, the refractive index, the wave vector and 
the wave impedance, emphasizing the effect of the reversal of the conductivity. Use is made of 
these data in the examination of the reflection on the plane surface of a medinm with ar­
bitrary complex refractive index. The behaviour of the Fresnel coefficients in the case of 
negative conductivity is examined demonstrating that the reflection coefficient on the snrface 
of media of large extension with negative condnctivitv does not coincide with the Fresnel 
coefficient; fin;lly, a connection is~ established betw'een both qnantities. 
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